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ABSTRACT

Due to the unpredictable output characteristics of distributed photovoltaics, their integration into the grid can
lead to voltage fluctuations within the regional power grid. Therefore, the development of spatial-temporal
coordination and optimization control methods for distributed photovoltaics and energy storage systems is of
utmost importance in various scenarios. This paper approaches the issue from the perspective of spatiotemporal
forecasting of distributed photovoltaic (PV) generation and proposes a Temporal Convolutional-Long Short-Term
Memory prediction model that combines Temporal Convolutional Networks (TCN) and Long Short-Term Memory
(LSTM). To begin with, an analysis of the spatiotemporal distribution patterns of PV generation is conducted, and
outlier data is handled using the 3σ rule. Subsequently, a novel approach that combines temporal convolution
and LSTM networks is introduced, with TCN extracting spatial features and LSTM capturing temporal features.
Finally, a real spatiotemporal dataset from Gansu, China, is established to compare the performance of the proposed
network against other models. The results demonstrate that the model presented in this paper exhibits the highest
predictive accuracy, with a single-step Mean Absolute Error (MAE) of 1.782 and an average Root Mean Square
Error (RMSE) of 3.72 for multi-step predictions.
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1 Introduction

With the proposal of carbon peak and carbon neutrality targets, new energy development has
reached a climax. Solar energy has become the main force among many clean energy sources due to its
clean, low-carbon and renewable advantages. With the implementation of new energy access policies
and the increasing maturity of new energy generation technologies, access to more new energy will
inevitably affect the operation of distribution networks. Due to the influence of geographical factors,
irradiance and various meteorological factors, distributed photovoltaic (PV) power generation has
substantial uncertainty. After PV stations are connected to the distribution network, unpredictable
output characteristics can cause source-load imbalances in the system, resulting in voltage fluctuations
in the regional power grid.
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Researchers have conducted studies on distributed energy storage technologies to enhance the
stability of the regional power grid. Wang et al. [1] examined the energy flow in heating and power
networks and developed a two-level planning model for energy stations. The model incorporates
wind turbines, PV power generation, battery energy storage, micro gas turbines, and gas boilers.
Kushwaha et al. [2] suggested an optimization planning framework that involves batteries and thermal
storage. Wang et al. [3] presented an optimal scheduling method that considers multiple energy
flows, explicitly considering the operational constraints of the energy supply network during the
optimization process. The model that describes the operating characteristics of energy storage systems
incorporates the energy storage charging status equation, energy storage capacity range, charging and
discharging power range, complementary power constraints for charging and discharging, and energy-
saving measures during operation. Gilasi et al. [4] introduced a distributed control method rooted in
consensus theory to address the voltage control issue in the wind power grid connection. This method
enhances the frequency distribution among diverse energy storage devices and stabilizes the voltage of
the DC bus.

The above research is all focused on distributed PV power stations and distributed energy storage
grid connection control, but there is less research on the coordinated optimization of light-storage in
regional distributed PV power station clusters. Due to the existence of distributed PV power station
clusters, each PV power station has different geographical information, and PV output has spatial and
temporal characteristics. Therefore, the research on the time and space prediction of distributed PV
output is of great significance to improve the ability of the regional power grid to absorb photovoltaics,
reduce system reserve capacity, enhance the safety and stability of regional power systems, and
optimize regional light-storage coordination [5]. The prediction methods for regional distributed PV
power stations can be divided into three types: accumulation method [6], extrapolation method [7],
and statistical method [8]. Visser et al. [9] evaluated both technical and financial aspects of spatially
aggregated PV systems and found that system size and spacing positively affected the prediction
model’s performance, which, in turn, suggests that spatial factors can improve the accuracy of power
prediction. Therefore, spatio-temporal features considering time can better improve information
utilization. Zang et al. [10] proposed a light irradiance prediction model considering spatio-temporal
correlation, improving the prediction accuracy and providing a good guarantee for power prediction.
Wang et al. [11] combined spatio-temporal correlations between multiple PV power stations with
power and cloud information. They select adjacent power stations that are relevant through spatio-
temporal cross-correlation analysis, and then extract global distribution information of clouds from
satellite imagery as additional input, which together with other general meteorological and power
inputs, train a prediction model. A super short-term PV power generation prediction method based
on satellite image data is proposed. Yang et al. [12] proposed a spatio-temporal prediction model for
PV power considering time-shift correction and multi-station information fusion strategy. By utilizing
multi-station data and a One-dimensional Convolutional Neural Network, the model achieved high
prediction accuracy in simulation, which is essential for the reliability and accuracy of the PV power
system. However, due to the strong spatiality of distributed PV power stations [13], machine learning
algorithms such as graph neural networks should also consider geographical directions and cloud
movement in order to achieve more accurate predictions.

However, most of the above methods consider neighboring power stations next to a single PV
power station or the total of multiple power stations in an area, and do not consider simultaneous
prediction of multiple power stations. Due to the existence of a large number of abnormal values during
data transmission and storage, these abnormal values significantly reduce the prediction accuracy. In
addition, PV power output has strong randomness. Therefore, solving these problems and considering
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the prediction of PV power output under different scenarios is necessary to further guide regional PV
energy storage coordination and optimization. Temporal Convolutional Networks (TCN) [14] is a
deep learning framework specialized for processing sequence data. It is widely used in transportation
prediction [15,16] and new energy prediction [17,18]. However, TCNs perform well in capturing
short-term dependencies and are inferior to Recurrent Neural Networks (RNN) for spatio-temporal
prediction tasks with medium- and long-term dependencies. Once proposed, LSTM [19] is widely
used in various sequence modeling problems [20,21]. For spatio-temporal prediction tasks, although
LSTM is designed to handle long-term dependencies, it may still perform poorly for very long-term
dependencies in some extreme cases.

Therefore, based on this foundation, this paper combines TCN and LSTM to construct a
spatio-temporal prediction model for distributed PV plants called Temporal Convolutional-Long
Short-Term Memory (TCLM). TCN is used to capture the input data’s local patterns and temporal
dependencies, and then its output is used as the input of LSTM to capture the long-term dependencies.
First, the spatial and temporal distribution patterns of the PV output are analyzed to reduce the
dimensionality of the data. Second, due to a large amount of anomalous data, the anomalous data in
the model inputs are processed using the 3σ rule. Third, the TCLM prediction model is built, and the
processed spatio-temporal dataset is used as input. Fourth, the accuracy of the model predictions is
verified by actual measurement data from a region in Gansu, China.

This paper presents several primary contributions:

1. The spatio-temporal prediction model TCLM for PV power generation is proposed by fusing
Long Short-Term Memory Network and Temporal Convolutional Network.

2. The spatio-temporal distribution pattern of PV power generation is explored. The application
of the 3σ rule in preprocessing anomalous data, which reduces the input dimension of the
model, is discussed.

In this paper, one-step and multi-step spatio-temporal forecasts of PV power output are performed
using the TCLM model, and the accuracy of the combined model predictions is subsequently
evaluated.

2 Case Description

The outputs of distributed PV power stations in different spatial locations are actually due to
the differences in their latitude and longitude, which affect the size of radiation. For distributed PV
power stations with the same latitude but different longitudes, time differences in output will ideally
occur. For distributed PV power stations with the exact longitude but different latitudes, different
outputs will co-occur due to differences in solar radiation. This paper studies six distributed PV power
stations in a particular area of Gansu, China, for 2022, with a historical generation scale of 5 min. The
geographic locations of the six PV power stations and Pearson correlation coefficients [22] are shown in
Fig. 1. These six PV stations are located in highland and mountainous areas, which are geographically
different; and these six stations are distributed PV stations with large local power generation scale.

Fig. 1b shows a clear trend in the historical output data from neighboring PV stations, indicating
a high correlation. Specifically, the output correlation coefficients show a clear linear relationship with
distance over a limited range of distances. This is because the closer the power stations are, the more
similar the weather conditions are between them, thus showing similar trends in power generation. It
is worth noting that PV stations No. 1 and No. 6 are far apart, resulting in a slight decrease in their
correlation coefficient.
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Figure 1: Geographical location and thermal maps of 6 PV power stations

Moreover, over a long timescale, the distributed PV output is similar to a periodic single wave of
noise. The PV panel surface absorption of irradiance is related to the amount of insolation affected by
the daily periodic characteristic of the earth’s rotation. Additionally, weather conditions such as sunny,
rainy, and dusty days can all affect the PV panel’s ability to absorb irradiance. This paper further
selects representative daily power generation data and irradiance and power generation data under
three conditions of clear, rainy, and cloudy skies for each quarter of the year for analysis, as shown in
Fig. 2.
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(a) Four representative daily power generation analysis

Figure 2: (Continued)
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(b) The relationship between irradiance and power generation

Figure 2: Generation data analysis

Analysis of the power generation data in Fig. 2 shows that PV output has intermittent and
stochastic characteristics quickly impacted by weather factors and irradiance. Furthermore, as seen
in Fig. 2a for the first and fourth quarters, PV power generation generally starts around 7 a.m. and
stops in the afternoon. Power generation in the second and third quarters is comparatively longer.
In conclusion, PV’s effective power generation time interval is about 10 h. Further investigation on
the relationship between irradiance and power generation for three weather conditions of clear, rainy,
and cloudy skies is shown in Fig. 2b. The PV output curve is smoother on sunny days. On the other
hand, on rainy and cloudy days, the moving clouds can cause significant fluctuations in the PV station
output curve. In addition, the overall output power value of the PV station is lower on overcast days
due to the attenuation of solar radiation.

For time series problems requiring continuous data measurements, missing and abnormal data in
the data set can interfere with accurate predictions of the forecasting model. Fig. 3 shows abnormal
data distribution for the six PV power stations.

It is observed that there are many null values (abnormal data) in the data. Furthermore, if the
experimental data contains several abnormal data points, it can reduce the experiment’s reliability and
lead to false conclusions. Therefore, handling abnormal data is crucial for experiments.

In the case of large samples (e.g., n > 185), the Gaussian distribution rule (3σ rule) [23] is widely
used as the crude judgment standard due to its simplicity. Therefore, the 3σ rule is adopted to handle
abnormal data in this paper. The specific formula is as follows:
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σ = ±
√∑n

i=1 (xi − x)
2

n − 1
= ±

√∑n

i=1 (Δxi)
2

n − 1
(1)

Taking PV4 station as an example, the data before and after interpolation according to the 3σ

rule is shown in Fig. 4.

Figure 3: Abnormal data distribution

Figure 4: The data filling situation

Therefore, considering factors such as power generation transmission and project development
plans, each PV site is processed from a data size of every 5 to every 15 min. The large-scale data of 6
× 105120 is reduced to 6 × 35400, and considering the characteristics of PV power generation, this
paper further scales the 6 × 35400 data to 6 × 14600. The first 11680 data sets are used for training,
and the last 2920 data sets are used for testing.
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Finally, since the unit dimensions of each index differ, normalization and anti-normalization
operations are necessary to prevent significant impacts on subsequent calculations and analyses. The
formulas are as follows:

x′ = x − (xmax − xmin)/2
(xmax + xmin)/2

(2)

x = (xmax − xmin) x′ + (xmax + xmin)

2
(3)

where xmax and xmin represent the maximum and minimum values in the data.

3 Model
3.1 TCLM Model

This article proposes a Temporal Convolutional-Long Short-Term Memory (TCLM) model for
spatio-temporal prediction of distributed PV power stations, which combines the TCN and the LSTM.
The TCN captures spatial features among data, whereas the LSTM captures temporal features within
the data. The methodology flowchart proposed in this article is shown in Fig. 5.

Data Preprocessing

Data Spilt Test-set

Training-set

TCLM Model 
Training

Missing Data

Data Sparsity

Data Normalization

One Step PV Power 
predicting Model
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Figure 5: Methodology flowchart

3.2 Temporal Convolutional Networks
The Temporal Convolutional Networks (TCN) is a variation of the convolutional neural network

(CNN) [24] that is specifically designed for sequence modeling tasks with causal constraints. The TCN
comprises two main components: dilated causal convolution and residual connections.

In Section 3.2, TCN is introduced as a variant of CNN that is specifically utilized for sequence
modeling tasks with causal constraints. TCN comprises two essential components: a dilated causal
convolution and a residual connection. In the TCN model, the causal convolution ensures the preser-
vation of the temporal order in the input sequence. In contrast, the dilated convolution expands the
receptive field to prevent information leakage from the future to the past and minimize computational
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load. The causality convolution is an efficient way of data processing, which captures the relationship
between past inputs and current outputs and can improve processing efficiency by extending the
convolution using dilation.

The extended convolution operation F of elements s in a one-dimensional sequence (x ∈ Rn) for
convolution kernel f : {0,1, . . . ,k-1} is expressed as:

F (s) = (
x ∗ df

)
(s) =

k−1∑
i=1

f (i) · xs−d·i (4)

where d is the dilation factor, i is the number of filters, k is the filter size, and ∗ is the convolution
operator. Fig. 6 shows an example of a dilated causal convolution with dilation factors of d = 1, 2,
4 and a filter size of k = 3 to expand the receptive field. To further enlarge the receptive field of the
network, larger filter sizes and dilation factors are added.

Output

d=4

Hidden

d=2

Hidden

d=1

Input

time

Figure 6: Dilated causal convolution

The TCN communicates information between layers through residual connection modules, which
are utilized in a skip-connection manner. Fig. 7 showcases the residual block utilized in this article,
which is composed of two layers of dilated causal convolutions and non-linear layers that employ
Rectified Linear Units (ReLU) as the activation function. To prevent overfitting, WeightNorm and
Dropout layers are implemented after every dilated convolution operation, and an additional 1 × 1
convolution layer is employed to restore the original number of channels.

3.3 Long Short-Term Memory Networks
Long Short-Term Memory network (LSTM) was first proposed by Hochreiter et al. [19]. Its gating

structure can monitor the input, output, and neuron unit state of the data flow in real time to better
monitor the transmission of information content. The standard LSTM network structure is shown in
Fig. 8, and the detailed principle is shown in Eq. (5).

it = σ
(
Wxixt + Whf ht−1 + bi

)
ft = σ

(
Wxf xt + Whf ht−1 + bf

)
Ct = ft ◦ Ct−1 + it ◦ tanh (Wxcxt + WhcHt−1 + bc)

ot = σ (Wxoxt + Whoht−1 + bo)

Ht = ot ◦ tanh (Ct) (5)



EE, 2024, vol.121, no.4 941

where W xi, W hi, W xf , W hf , W xc, W hc, and W xo represent the weight terms, and bf , bi, bc, and bo represent
the bias terms. The ° denotes the Hadamard product, xt represents the current input, and ht−1 represents
the previous time step’s hidden state. The activation function used in LSTM includes tanh and sigmoid
functions.

Dilated Causal Conv

Dilated Causal Conv

WeightNorm

RELU

Dropout

WeightNorm

RELU

Dropout

+

1×1Conv
(optional)

Figure 7: Residual block

Figure 8: The unit cell structure of LSTM

Compared with the RNN, the significant feature of LSTM is the introduction of the cell state Ct.
It not only overcomes the gradient vanishing problem in RNN but also enables the memory of certain
information for a long time. Three vectors, including the previous cell state Ct−1, the previous hidden
state ht−1, and the current input xt, are inputted to the current unit at each time step. These inputs are
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outputted to three vectors, ft, it, and ot, respectively, with each vector element between 0 and 1, through
each gate. The forget gate determines the relevant historical PV power information and selects them
to make better predictions. The input gate decides the final input of current information. The output
gate decides which information is used as the final output.

4 Results
4.1 Experiment

All experiments were conducted on Nvidia GeForce RTX 3090Ti with the PyTorch environment
in Python3.7. The experiment server is equipped with Intel(R) Xeon(R) Platinum 8358P CPU@
2.60 GH and 24 GB memory. In order to prevent the overfitting of neural networks, all models used
the early-stopping mechanism with the monitor set as the loss of the validation set. The patience is set
as 5.

Due to the involvement of a large number of hyperparameters in the models and the significant
computational cost involved in each training step, some hyperparameters in this experiment were fixed
by experience and summarized in Table 1.

Table 1: Model hyperparameter

Hyperparameters Value

Loss funtion MSE
Optimizer Adam
Layers 4
Epochs 50

To demonstrate the predictive performance of the proposed TCLM model, it was compared
with CNN-LSTM [25], LSTM, Gated Recurrent Unit (GRU) [26] and CNN-GRU [27]. Since the
remaining parameters are always considered to be the main contributors to the network performance,
a grid search approach is used to determine the optimal model settings by examining their possible
combinations. The hyperparameters to be tuned include batch size, Number of Layers, filter, and kernel
size, whose values are specified in Table 2. After grid search, all model hyperparameters are shown in
Table 3.

Table 2: Hyperparameters and their values studied by grid search method

Hyperparameters Value

Number of layers 2, 3, 4
Batch size 8, 16, 32, 64
Filter 1, 2, 3, 4
Kernel size 1 × 1, 3 × 3
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Table 3: The parameters of the model

Models Parameters Value

Activation function Sigmoid
Batch size 16

LSTM/GRU Number of layers 4
Number of neurons in the first layer 64
Number of neurons in the second layer 128

Activation function ReLU
Number of layers 4
Kernel size (1,3)
Filter 3

CNN-LSTM/CNN-GRU Padding Same
Batch size 64
Dropout 0.5
Number of neurons in the first layer 64
Number of neurons in the second layer 128

Kernel size 3
Filter 3
Padding Same

TCLM Batch size 32
Dropout 0.1
Number of LSTM neurons 128
TCN output channel 32

To evaluate the accuracy of the model in predicting the results and measure the discrepancy
between the predicted and actual results, five evaluation indicators were utilized. These include
Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Squared Error (RMSE),
Normalized Mean Absolute Error (NMAE), and Normalized Root Mean Squared Error (NRMSE).
These indicators are presented as follows:

MAE = 1
m

m∑
i=1

|yi − ŷi| (6)

MSE = 1
m

m∑
i=1

(
yi − ŷi

)2
(7)

RMSE =
√√√√ 1

m

m∑
i=1

(
yi − ŷi

)2
(8)

NRMSE =
√

1
m

∑m

i=1

(
yi − ŷi

)2

(ymax − ymin)
2 (9)
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NMAE = 1
m

∑m

i=1 |yi − ŷi|
(ymax − ymin)

(10)

where yi represents the real PV power data,
∧
yi represents the predicted value, m represents the number

of test sets, ymax, and ymin represent the maximum and minimum values of PV power in the test set.

RMSE, MAE, and MSE are used to evaluate the performance of the regression model. The
lower the value, the higher the predictive accuracy. NRMSE and NMAE are obtained by normalizing
RMSE and MAE, respectively, and the lower the NRMSE and NMAE values indicate the more stable
predictive performance and higher predictive accuracy of the model.

4.2 Single-Step Prediction Performance
TCLM, LSTM, GRU, CNN-GRU and CNN-LSTM were compared in terms of single-step

prediction of the output power of each PV station, with the input of 3D tensor (14595, 5, 6), and
the last step (15 min) was predicted based on the first four steps (1 h).

Firstly, this paper compared the single-step predictions of the four models for the output power
of each PV station, and Table 4 describes the prediction errors of the four models.

Table 4: One-step prediction performance comparison

Model Input Output MSE↓ � MAE↓ � RMSE↓ � Training time/s

GRU 4 × 6 1 × 6 18.656 – 3.303 – 4.319 – 3173.56
LSTM 4 × 6 1 × 6 17.887 −0.769 3.243 −0.06 4.229 −0.09 3155.62
CNN-LSTM 4 × 6 1 × 6 11.306 −7.350 2.625 −0.678 3.362 −0.957 4503.11
CNN-GRU 4 × 6 1 × 6 10.021 −8.635 2.596 −0.707 3.165 −1.154 4371.95
TCLM 4 × 6 1 × 6 3.873 −14.783 1.782 −1.521 1.968 −2.351 4359.08

As presented in Table 4, the GRU model exhibits the lowest predictive accuracy, yielding MSE,
MAE, and RMSE values of 18.656, 3.303, and 4.319, respectively. Although LSTM demonstrates
a slightly enhanced predictive accuracy compared to GRU, the improvement is not statistically
significant. This observation underscores the proficient performance of both LSTM and GRU in
handling time series data, albeit with suboptimal results when applied to the prediction of cluster-
distributed PV power stations, considering their spatial dimension. In contrast, the CNN-LSTM
model, which combines CNN for spatial feature extraction and LSTM for temporal feature extraction,
notably enhances predictive accuracy. This suggests that the integration of CNN and LSTM surpasses
the standalone LSTM and GRU models in predictive performance. Further comparison of CNN-
LSTM and CNN-GRU models reveals that CNN-GRU has slightly improved prediction accuracy.
Furthermore, compared to the CNN-GRU model, the TCLM model introduced in this paper achieves
the highest prediction accuracy, boasting MSE, MAE, and RMSE values of 3.873, 1.782, and 1.968,
respectively.

Regarding prediction training time, the prediction models using LSTM and GRU networks have
short training times, but LSTM and GRU networks have the lowest prediction accuracy. Similar to
the prediction accuracy performance, the prediction time of CNN-LSTM and CNN-GRU networks is
also similar. Further, the model proposed in this paper significantly improves the prediction accuracy,
although the prediction time is improved by 12.87 s compared to CNN-GRU. This indicates that
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using TCLM can reduce the training and prediction time of the system while maintaining prediction
accuracy.

To further validate the single-step prediction performance of the proposed model, this paper
presents a comparison of the NMAE and NRMSE errors of four models, as shown in Fig. 9.
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Figure 9: The comparison of single-step prediction errors

It can be observed from Fig. 9 that the CNN-LSTM model exhibits superior prediction accuracy
compared to the baseline LSTM and GRU models, achieving NMAE and NRMSE values of
0.075 and 0.096, respectively. Further comparison of CNN-LSTM and CNN-GRU models reveals
that CNN-GRU has slightly improved prediction accuracy. This is because CNN-GRU has fewer
parameters relative to CNN-LSTM. This means that the CNN-GRU model may require less data
and computational resources to achieve similar predictive performance during training. Moreover, the
TCLM model demonstrates significantly enhanced prediction accuracy in comparison to the CNN-
GRU model, yielding NMAE and NRMSE values of 0.0509 and 0.056, respectively. These findings
indicate that the proposed TCLM spatio-temporal prediction model offers high accuracy in predicting
distributed PV spatio-temporal patterns and proves to be effective in this regard.

4.3 Multi-Step Prediction Performance
The last section of this paper discusses the exceptional performance of the proposed TCLM model

in single-step prediction. To further validate the predictive capabilities of the proposed model, this
section proceeds to conduct multi-step prediction built upon single-step prediction. The input step
length of all models is fixed at 4 (1 h), but the output step length is changed to 2 (30 min), 3 (45 min),
and 4 (1 h). The comparison results of output power prediction accuracy for different output step
lengths are shown in Table 5.

Table 5 reveals that, with an increase in the prediction step length, all models exhibit a noticeable
decline in prediction accuracy. Both LSTM and GRU models effectively leverage historical output
power data from all PV power stations within the designated region. In contrast, the CNN-LSTM
and CNN-GRU models outperform the benchmark LSTM model and GRU model in both single-
step prediction and multi-step prediction, highlighting the advantages of these two hybrid models in
predicting long-time series. Further analysis shows that CNN-GRU outperforms CNN-LSTM in 2-
step, 3-step, and 4-step prediction. The model introduced in this study, TCLM, combines a TCN with
LSTM, and it achieves the highest accuracy in multi-step prediction. The average MAE, MSE, and
RMSE are 3.33, 14.01, and 2.72, respectively.
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Table 5: Multi-step prediction performance comparison

Output step Models Input Output MSE MAE RMSE

2

GRU 4 × 6 2 × 6 25.55 3.95 5.06
LSTM 4 × 6 2 × 6 22.69 3.75 4.76
CNN-LSTM 4 × 6 2 × 6 15.17 3.14 3.90
CNN-GRU 4 × 6 2 × 6 13.20 3.01 3.63
TCLM 4 × 6 2 × 6 9.09 2.81 3.02

3

GRU 4 × 6 3 × 6 32.44 4.52 5.70
LSTM 4 × 6 3 × 6 30.24 4.42 5.50
CNN-LSTM 4 × 6 3 × 6 19.36 3.58 4.40
CNN-GRU 4 × 6 3 × 6 17.05 3.60 4.13
TCLM 4 × 6 3 × 6 15.36 3.56 3.92

4

GRU 4 × 6 4 × 6 34.70 4.74 5.89
LSTM 4 × 6 4 × 6 33.09 4.69 5.75
CNN-LSTM 4 × 6 4 × 6 21.06 3.78 4.59
CNN-GRU 4 × 6 4 × 6 19.03 3.77 4.36
TCLM 4 × 6 4 × 6 17.86 3.63 4.23

Further validation of the proposed model shows the NRMSE and NMAE error plots of four
methods, as shown in Fig. 10.
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Figure 10: (Continued)
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Figure 10: NMAE, NRMSE comparison for different steps

Fig. 10 shows that the prediction accuracies of all models decrease as the prediction step increases.
The NMAE and NRMSE of the TCLM model are lower than those of the other four models. In
addition, the prediction accuracy of the TCLM model, which combines a temporal convolutional
neural network and a long and short-term memory network, is better than that of the CNN-LSTM and
CNN-GRU models at different output steps, and its average NMAE and NRMSE are 0.095 and 0.106,
respectively. In the case of multi-step outputs, the proposed TCLM model can accurately consider
the temporal characteristics of the output power and the spatial characteristics of the input data and
provide accurate modeling analysis and prediction of the spatio-temporal data.

5 Conclusion

This research introduces a spatio-temporal prediction model termed the Temporal Convolutional-
Long Short-Term Memory (TCLM) model, which amalgamates the temporal convolutional network
with the long short-term memory network. To assess the model’s effectiveness, we conducted validation
using a dataset comprising 14,600 instances sourced from a specific region in Gansu Province, China.
Through meticulous case analysis and verification, the following key findings have been established:

1. Missing and anomalous data from data transmission and storage have been meticulously
addressed using the 3σ criterion. Moreover, the data dimensionality has been reduced by
incorporating insights from the spatio-temporal distribution pattern of photovoltaic (PV)
output.

2. Our study introduces a hybrid model that synergizes the temporal convolutional network with
the long short-term memory network. This innovative approach facilitates spatial information
extraction via the TCN component and captures temporal features through LSTM.

3. The proposed model in this study has demonstrated exceptional predictive performance across
both one-step and multi-step prediction scenarios when benchmarked against three alternative
models. Notably, it has achieved an average Normalized Root Mean Square Error (NRMSE)
of 0.0842. Multi-step average Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) are 3.33 and 3.72, respectively.

This investigation has been centered on the spatio-temporal prediction of distributed PV power
generation, encompassing diverse scenarios. It presents a novel avenue for optimizing the coordination
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of distributed PV and energy storage systems. Nevertheless, there remains scope for enhancing the
predictive accuracy of the model. Future endeavors will explore various strategies to augment the
model’s performance, including: (1) Integration of additional external information, such as satellite
imagery, to adapt to longer prediction horizons, spanning 12 to 36 h. (2) Emphasis on developing
robust predictive models with inherent resistance to data contamination from transmission issues.
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