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ABSTRACT

The accumulation of snow and ice on PV modules can have a detrimental impact on power generation, leading to
reduced efficiency for prolonged periods. Thus, it becomes imperative to develop an intelligent system capable of
accurately assessing the extent of snow and ice coverage on PV modules. To address this issue, the article proposes an
innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected
images. Furthermore, the algorithm incorporates an analysis of the morphological characteristics of ice and snow
coverage on PV modules, allowing for the establishment of a residual ice and snow recognition process. This process
utilizes both the external ellipse method and the pixel statistical method to refine the identification process. The
effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow
area pictures. The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual
snow and ice on PV modules. In conclusion, this research presents a valuable method for accurately detecting and
quantifying snow and ice coverage on PV modules. This breakthrough is of utmost significance for PV power
plants, as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the
challenging winter conditions characterized by snow and ice. By proactively managing snow and ice coverage,
PV power plants can optimize energy production and minimize downtime, ensuring a sustainable and reliable
renewable energy supply.

KEYWORDS
Photovoltaic (PV) module; residual snow and ice; snow detection; feature extraction; image processing

Nomenclature

PV Photovoltaic

UAV Unmanned aerial vehicle

OTSU Maximum between-class variance

P, The number of pixels of snow area

P, The total pixel number of PV module

R The proportion obtained by the algorithm segmentation

R, The proportion of icing area obtained by manual measurement
E The absolute error

S

The relative accuracy
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1 Introduction

Solar energy is increasingly gaining attention as an important source of clean energy worldwide,
with a sharp increase in its application [1]. By the first half of 2022, China alone had installed a
solar power capacity of 30.84 GW, and the total installed capacity had reached 336 GW [2]. PV
power generation has become one of the major forms of electricity in China. However, due to their
location in harsh natural environments such as wilderness and mountainous areas, PV modules are
vulnerable to disasters such as rainstorms, lightning, floods, snow and ice, and earthquakes [3]. Among
these meteorological and geological disasters, snow and ice significantly reduce the power generation
efficiency of PV modules, shorten their service life, and even cause them to collapse, making it one of
the main factors that affects the normal operation of PV power plants in winter [4,5]. Reports from
the United States, Canada, Norway, Germany, Turkey, and China all confirm that snow and ice have
resulted in a significant decrease in the power generation efficiency of PV panels, and in some cases,
the collapse of PV panels [6,7]. Relevant data indicate that the maximum monthly power generation
loss caused by snow and ice problems can exceed 80%, with an annual power generation loss of up to
30% [8].

In Fig. 1, different forms of icing, such as snow, glaze ice, hard rime, soft rime, and other forms,
can accumulate on PV modules under specific meteorological conditions. As a special pollutant, icing
hinders sunlight from reaching the PV module’s surface and significantly reduces its power generation
efficiency [9].

A

(a) PV modules covered with snow (b) Manually removing snow

Figure 1: Residual snow and ice on PV power stations

Therefore, researchers from around the world have conducted extensive research on the detection
of ice and snow accumulation on PV modules. Al-Dulaimi et al. [10] proposed the use of five deep
learning models, namely Visual Geometry Group-16 (VGG-16), VGG-19, Residual Neural Network-
18 (RESNET-18), RESNET-50, and RESNET-101, for classification and detection performance
analysis of snow-covered solar panel images. Garcia et al. [1 1] utilized an intelligent sensor network and
developed a Predictive Fault Diagnosis (PFD) application for solar power system management and
supervision. Li et al. [12] designed a new system called “solardiagnostics”, which mainly employs the
K-Means algorithm and convolutional neural networks to identify and characterize damages on the
contours of rooftop PV installations. In the field of PV snow monitoring, various methods have been
proposed for detecting snow accumulation using specialized or external sensors such as weight sensors,
network cameras, and satellite data [13—15]. Additionally, environmental temperature [1 6] and module
temperature [17] have been suggested as measurable parameters to identify snow-related losses in PV
monitoring and fault diagnosis. Moreover, machine learning and deep learning techniques have been
applied to distinguish between damage to PV arrays and other factors causing solar degradation (such
as shading, dust, and snow). However, these approaches have limitations, including long detection
times and high rates of misclassification errors, which have not been extensively addressed in the
literature.
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In addition, there have been notable advancements in the field of snow removal in PV systems.
Abou Yassine et al. [18] identified four snow removal processes for PV modules: melting, rapid sliding,
prolonged melting, and shedding after melting. Increasing liquid water content (LWC) reduces friction
at the snow layer’s bottom, enabling easier sliding off the PV module surface. Zheng et al. [19] devel-
oped a domino-style snow removal system utilizing PV self-heating (PVSH). The system harnesses the
energy generated by uncovered PV modules to remove snow from PV systems in a sequential, string-by-
string manner. Currently, manual removal and natural melting are the most common methods used to
deal with snow and ice on PV modules in power stations [8,20,21], as depicted in Fig. 1. However, these
methods are time-consuming, labor-intensive, and costly due to the large scale and remote location of
PV power stations. Furthermore, the uncertainty in the melting process makes it challenging to predict
power generation accurately [22,23].

The mentioned topics on PV inspection have provided new insights for this study. The purpose
of this paper is to present a snow and ice detection method for PV modules using image processing
algorithms. To the best of our knowledge, similar work has not been extensively documented before.
It can overcome the drawback of long detection times and is applicable for the identification and
quantitative analysis of residual ice and snow on PV modules. Therefore, it is necessary to monitor the
snow and ice on PV power stations in remote areas through intelligent sensing and UAVs to enable
remote sensing of snow and ice on PV modules. This paper proposes a non-destructive inspection
system based on image processing to achieve online inspection of PV module ice cover and accurate
judgment. The system uses photos of snow and ice on PV modules to calculate the amount of residual
snow and ice on modules during the ice melting process through image processing. Compared to
expensive and delicate hardware inspection equipment, the non-destructive inspection system can be
continuously optimized and updated to achieve intelligent inspection of PV modules and provide a
reference basis for power production forecasting of PV power plants in winter.

The main structure of this article is as follows: firstly, an ice and snow recognition algorithm
is proposed to effectively segment the ice and snow areas in the collected images. Based on this, two
methods for determining the remaining ice and snow volume are proposed: the external ellipse method
and the pixel statistical method. Then, the accuracy of the algorithm is evaluated by covering the ice
and snow images with local and continuous photovoltaic modules. Finally, the importance of research
in the field of ice and snow detection technology is summarized, and the limitations of this method
are discussed.

2 The Recognition Algorithm for Snow and Ice on PV Modules

The parameters, colors, smoothness, and contrast of PV modules undergo significant changes
before and after the accumulation of ice and snow, making their morphological features distinct.
Therefore, image recognition technology can effectively detect residual ice and snow on PV modules.
In this study, we employed various methods of image acquisition, including the use of drones and
surveillance cameras, to obtain images of PV modules. These methods provided us with diverse and
comprehensive image data for our proposed algorithm to assess the extent of snow and ice coverage.

2.1 Algorithm Flow

The algorithm takes the captured PV module image as input and outputs the residual snow area.
Its core steps include image preprocessing, PV module recognition, snow area segmentation, and snow
area calculation.
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In the first step, the saliency detection method [24] is used for image preprocessing to eliminate
the influence of background, illumination, and texture and to obtain clear ice and snow parts and
PV module parts. Then, the corner recognition method [24] is used to locate the region of the PV
module by using the two upper corners of a single module as reference points. Through this method
and the proper segmentation algorithm, the number of pixels within the range of a single PV module
can also be obtained. Finally, the residual area of PV modules is recognized using methods such as the
external ellipse method and pixel statistical method [25]. By calculating the area of residual snow and
ice, the severity of snow and ice-covered PV modules can be determined. The specific algorithm flow

is illustrated in Fig. 2.
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Figure 2: Algorithm flow chart

2.2 Image Preprocessing
2.2.1 Image Graying

In order to reduce the data amount and improve processing speed, the visible light image of a
PV module, which is a true color RGB image, is typically converted to a grayscale image. Various
methods are available for this conversion, including the component method, maximum method,
average method, weighted average method, and more [24]. Among these methods, the weighted average
method is preferred for its excellent processing effectiveness. This method involves multiplying the
three monochromatic values by different weights, based on the importance of the gray value, as shown

~

in formula (1) and in Fig. 3.
Gray (x,y) = 0.30R (x,y) + 0.59G (x,y) + 0.11B (x, ») (1)
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where R (x,¥), G (x,¥), and B (x, y) represent the pixel values of channel R, channel G, and channel
B, respectively, at position (x, y) in the image.

(a) Original picture (b) Grayization of weighted average

-
SRRS=
oy

(c) Histogram specification (d) Image segmentation

(e) Holes filling (f) Morphological correction

Figure 3: Image processing process diagram

2.2.2 Image Enhancement

The images captured in a PV power station in real-time are inevitably influenced by various natural
conditions, such as rain, fog, snow, and reflective light. Therefore, it is essential to enhance contrast,
highlight edge details, and increase image definition using methods like image histogram specification
enhancement [24]. The processed images’ results are displayed in Fig. 3c.

Considering continuous grayscale values, the variable r is used to represent the grayscale of the
image being processed. Typically, we assume that the range of values for r is [0, L — 1], where r = 0
represents black and r = L — 1 represents white. The method of histogram specification first performs
gray-scale equalization on the original image, as shown in formula (2).

k k
n
=T () = . (r;) = 2, k=0,1,2,...,.L—1 2
se=T (r) jzzop(,) .- )

j=0

The grayscale of each point in the original image, represented by r,, is mapped to s,. s, represents
the gray level equalization of the original image. n; represents the number of pixels in the image with
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a grayscale value of r;, and n represents the total number of pixels in the image. p, (r) represents the
probability density function.

Then, the target image is also gray equalized:
k
w=G@)=>p.(z), k=012 L1 3)
i=0

In the target image, the grayscale of each point, represented by z,, is mapped to v,. v, represents
the gray level equalization of the target image. p. (z) represents the probability density function that
the target image is expected to have.

Therefore, after performing the equalization, both p, (r) and p. (z) have the same uniform density,
i.e., v, = s;. Substituting s, into the inverse transformation function of formula (3) yields the uniform
gray coefficient required by the required function, as shown in formula (4).

Z=G"(m)=G"(s) 4)

2.3 Segmentation and Correction the Residual Area of Snow and Ice
2.3.1 Image Segmentation

To achieve a relatively complete segmentation of snow and ice areas, this paper compared four
different algorithms for their segmentation effects. Table 1 presents a comparison of the segmentation
results of PV module snow areas using different algorithms, including Niblack, Bradley and Roth,
Sauvola and Pietikainen, and Otsu methods [25]. Niblack introduces more noise, Bradley segmenta-
tion of snow is incomplete, Sauvola segmentation is slightly better than Bradley segmentation, but still
contains many holes in the snow area. Through the comparison of various segmentation methods, it is
evident that the Otsu method can effectively segment the ice and PV module areas, meeting the image
processing requirements of this paper.

Table 1: Image segmentation results of snow and ice areas by different algorithms
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Table 1 (continued)
Serial number 1 2 3 4

Bradley segmentation

Sauvola segmentation
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Otsu segmentation b |
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The main segmentation method utilized in this study is the Otsu method, also known as the
maximum inter-class variance method. This algorithm is based on the principle of the least square
method and performs a global search threshold in the grayscale image, which enables the target to
obtain the maximum between-class variance between the average grayscale values of the background
area [23]. The processing results are presented in Fig. 3d.

The algorithm is implemented as follows: the image size is set to M x N, the gray range of the
imageis [0, 1, 2, 3, ..., L—1], and the number of pixels of gray level k in the image is #,. The probability
that the gray level of the pixel is k is:

ny
M xN

Pk (5

The sum of the probabilities for each gray value is:

S =1 ©)

The pixels in the image are classified into two categories, D, and D,, based on a threshold T.
Region D, includes pixels with gray values ranging from [0, 7], while region D, includes pixels with
gray values ranging from [T + 1, L — 1]. Based on this principle, the probability of pixel occurrence
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in the two regions is expressed as follows:

T
PD] = Z Pk
2 (7
PD2 = Pk = 1 - PDl
k=T+1
The average gray levels of the regions D, and D, are calculated as follows:
1z T
MDIZ—ZkPk:u( )
PDI k=0 PDl (8)
| u—u(T)
= — kP, = ———~
U= g, 2 =TT,
The variable u represents the average gray level of the entire image.
L-1 T L-1
u= Y kP, =Y kPy+ D kP.=Pyup + Ppup, 9)

k=0 k=0 k=T+1

A precise criterion for selecting the optimal threshold to separate two regions is the total variance
between these regions:

oy’ = Py, (up, — u)2 + Py, (up, — u)2 (10)
In addition, due to Py, + Pp, = 1, the formula is simplified as follows:
sz = PDIPD2 (UDI - u)2 (11)

The threshold T is iteratively selected in the gray range [0, L — 1]. The threshold that maximizes
o’ is considered the optimal segmentation threshold.
T* = arg max{o,” (1)} (12)

0<T<L-1

2.3.2 Morphological Amendment

The PV module image segmented for the ice and snow areas may contain holes in the icing area and
have an uneven edge curve. To address this, this paper utilizes the morphological correction method
[24] to process the segmented image. In order to preserve the details of the icing area and maintain the
original state, the main steps of the morphological correction were determined through continuous
experimentation.

Firstly, a disc structure of an initial radius of 7 pixels is created, and the filtering effect is influenced
by the structure’s different sizes. The segmented image is subjected to an open operation to eliminate
isolated dots, burrs, and bridges with the above feature size, while maintaining the shape of the residual
snow and ice by removing the white fence in the background.

Secondly, all connected domains that are smaller than a certain number of pixels are removed from
the image obtained in the previous step, and the internal small holes are filled. This process results in
another binary image.

Lastly, the frame of the PV panel is cropped from the image obtained in the previous step in
preparation for the next computational step of residual snow and ice.
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3 Calculation of Residual Area of Snow and Ice on PV Modules

3.1 Calculation of Residual Area of Snow and Ice Based on the Pixel Statistical Method

This paper presents two methods to calculate the residual area of snow and ice on PV modules:
the pixel statistics method and the external ellipse method [25]. The pixel statistical method involves
calculating the percentage of foreground image pixels in the preprocessed PV module images with
residual snow and ice relative to the total image pixels. The percentage is then multiplied by the actual
area of the PV module to obtain the actual area of the product that is covered by residual snow and
ice. The calculation formula is as follows:

P, xS,

Py

where S, is the area of snow and ice, P, is the number of pixels of snow area, p, is the total pixel number
of PV module, S, is the actual area of the PV module.

The proposed method consists of two main components. Firstly, it involves calculating the area of
the entire image by utilizing the corrected image. A pixel-based approach is employed to traverse the
entire image, counting the number of pixels within each region and recording the total number of pixels.
Secondly, it entails the computation of the ice and snow area. By traversing the target regions that exist
as connected domains after segmentation, the pixel count within these regions is tallied. Finally, the
area and proportion of the ice and snow-covered regions are obtained through calculation. The pixel
statistical method has high requirements for image segmentation, and low error can be guaranteed
only when the image segmentation of residual snow and ice area is accurate. However, because of the
uncertain type of snow and ice cover, such as the late stage of snow melting, the small color difference
between the background and the target may be ignored, and this part will be missed when counting
the number of pixels.

S, = (13)

3.2 Calculation of Residual Area of Snow and Ice by External Ellipse Method

During the process of snow and ice melting, their shapes undergo significant changes, making
it challenging to accurately segment them. Given that the dimensions (major axis, minor axis, and
angle) of an ellipse can be adjusted, this study proposes the external ellipse method to estimate the
inaccurately segmented remaining snow and ice area during the later stages of melting.

The main steps of the external ellipse method are as follows: (1) Roughly determine the snow and
ice area based on the image preprocessing results. (2) Take the frame direction of the PV module as
the X-axis of the ellipse and the vertical direction as the Y-axis. Determine the center of the ellipse
as the midpoint of the maximum pixel projection of the residual snow and ice along the X and Y-
axis, and the two characteristic lengths of the ellipse as the projection length of the maximum pixel in
the images. (3) Draw the ellipse with the parameters obtained in step 2. (4) If the area of the residual
snow and ice outside the ellipse is 10%—20% of the ellipse area, consider it to meet the requirements.
Otherwise, move to step 5. (5) Adjust the major axis, minor axis, and angle in 2% step length, and
return to step 3.

The calculation formula is as follows:
S, =mab (14)

where a is the long axis, b is the short axis, and S, is the elliptical area, regarded as the residual area of
snow and ice, as shown in Fig. 4. Subsequently, R, is derived by quantifying the ratio of the remaining
ice and snow.
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Figure 4: The ellipse outside the ice area

3.3 Precision Calculation
In this paper, the accuracy of the algorithm is evaluated using both relative accuracy and absolute
error.

S

R, = S—': x 100%
R = Se o 100%
S, (15)
E =R,— R
M, = (1 _ u) x 100%

The manually measured snow area is represented by S,,, while the residual area of snow and ice
obtained by the algorithm is represented by S,. The proportion of icing area obtained by manual
measurement is represented by R,, and the proportion obtained by the algorithm segmentation is
represented by R,. The absolute error and relative accuracy are represented by E, and M, respectively.

The methods to obtain an S,, are as follows: The size of the PV module used in the experiment is
36 % 36 cm, and each small grid within the module has dimensions of 2.5 % 5.2 cm. The steps to manually
measure the snow area are as follows: (1) Prepare measurement tools: Use a ruler or measuring tape to
have the appropriate measuring tools at hand. (2) Select the PV module area: Determine the specific
area of the PV module where you want to measure the snow coverage. (3) Outline the boundaries:
Use the measuring tools to draw a closed boundary around the snow-covered portion. The boundary
should closely follow the outer contour of the snow. (4) Measure the boundary length: Along the
drawn boundary, use the measuring tools to measure the length of the boundary. You can use a ruler
to measure straight segments or use a measuring tape to trace along curved sections. (5) Calculate the
arca: Based on the measured boundary length, calculate the snow area. If the boundary has a regular
shape (such as a rectangle or square), you can directly multiply the length by the width to obtain the
area. If the boundary has an irregular shape, you can approximate it as a combination of multiple
simple shapes (such as rectangles or triangles), calculate the area of each simple shape, and then sum
them up.
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4 Analysis of Identification Results of Residual Area of Snow and Ice

4.1 Identification and Calculation for Continuous Snow Area
To assess the universality of the algorithm, images of the residual snow and ice areas of continuous
PV modules captured by UAV were processed, and the processed images are presented in Fig. 5.

(a) Original picture (b) Pretreatment diagram

AN N
T

(c) Split picture (d) Morphological modification

Figure 5: Image processing of the continuous snow on PV modules

After preprocessing, image segmentation, and morphological filling, effective processing results
were obtained, as shown in Figs. 5Sb—5d. The residual snow area was then calculated using the
aforementioned method. However, since the image consists of upper and lower rows of PV modules,
and the snow area is connected in a long strip shape, the external ellipse method cannot be applied
to calculate the residual snow area, which would result in a significant error. Therefore, only the pixel
count method was used to calculate the area of residual snow by counting the number of pixels in the
target area of the image.

Table 2 presents a comparison of the algorithm’s calculation results and manual segmentation.
The proportion of residual snow area in the upper row of PV modules is 58.3%, and the algorithm’s
relative accuracy is 92.7%. The algorithm demonstrates high accuracy in handling the residual snow
and ice areas of continuous PV modules.

Table 2: Identification accuracy of residual snow area for Fig. 5

P, P, R, R, E.(%) M (%)
70299 120582 58.300%  62.865%  4.57% 92.74%

4.2 Identification and Calculation for Isolated Snow Areas

By using the aforementioned algorithm and steps, we have selected five representative and diverse
cases of PV modules with different levels of ice and snow coverage from the images captured in the
artificial climate laboratory. These cases were chosen to validate the detailed process and comparison
of the algorithm analysis. A sequence of images of isolated residual snow areas on PV modules are
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processed by the above-mentioned algorithms of pixel statistical method and external ellipse method,
respectively, and the results are shown in Table 3.

Table 3: Identification results for isolated snow areas on PV module

Serial Original images Pixel statistics method External ellipse method
number

Segmentation results R, Ellipse drawing results R,

Case 1
34.074% i adeall % 34.079%
Case 2 IIl !
42.456% el 5 46.153%
Case 3
20.015% 22.814%
Case 4 ' '
4 19.067% 4 17.457%
! )
Case 5
o P aian 77.934% oF as® aiaa 71.156%

The specific structure of the artificial climate laboratory is shown in the Fig. 6.

(1) The walls of the artificial climate chamber test platform are constructed of several insulation
panels. The dimensions of the walls are 4.2 m in length, 3.2 m in width, and 2.2 m in height. The walls
can be divided into rectangular wind tunnel structures with dimensions of 1.5 m in length and 0.8 m in
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height. Inside the walls, there are meteorological and icing monitoring devices, including temperature
sensors, temperature and humidity recorders, temperature and humidity pressure displays, 360-degree
high-definition cameras, and multiple sets of experimental equipment.
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Ice monitoring
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(d) snow accumulation and melting/shedding on PV modules obtained from the
artificial climate laboratory.

Figure 6: Artificial climate test platform
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(2) The temperature control device of the test platform includes a refrigeration compressor,
negative pressure fans, infrared quartz radiation lamps, and heaters. The SHP refrigeration compressor,
controlled by an independent control box and temperature sensors, allows continuous temperature
adjustment from —25°C to 60°C inside the artificial climate chamber, with a control accuracy of
£0.1°C. The heater consists of a negative pressure fan and a heating resistor wire, which is easy to
operate and control. The infrared quartz radiation lamp can achieve multi-level power adjustment
from 0 W to 140 W, with adjustable position, and emits light that can simulate sunlight under various
temperatures and radiation intensities in natural conditions. This structure enables the simulation of
multi-angle light sources for testing.

(3) The objects for icing simulation inside the laboratory are PV modules, which simulate the
process of snow and ice coverage on the modules and capture images.

By comparing the above two methods, the algorithm accuracy of residual area in the process of
snow and ice melting is evaluated, as shown in Table 4.

Table 4: Comparison of accuracy of local PV module residual snow and ice calculation

Serial Calculation of residual snow and ice of Calculation of residual snow and ice
number external ellipse based on pixel points
E. (%) M, (%) E, (%) M, (%)
Case 1 0.177 99.483 0.182 99.469
Case 2 0.336 99.277 4.030 91.331
Case 3 0.793 96.399 2.006 90.891
Case 4 0.864 95.128 0.716 96.098
Case 5 2.249 96.936 4.529 93.830

Both methods can be utilized to calculate the isolated areas of melting snow and ice on PV
modules, with a maximum error of less than 5%. The pixel statistical method does not require
consideration of the shape of residual snow and ice, only counting the pixels of the segmented image.
This method is more suitable for analyzing snow layer and rime with strong color contrast and high
image segmentation accuracy.

However, due to the strong light transmittance and weak color contrast of melting snow and ice,
image preprocessing may not be satisfactory. In this case, it is more effective to use the external ellipse
method to obtain the snow and ice area, rather than overemphasizing image segmentation accuracy.
Thus, the external ellipse method is more valuable for identifying the isolated area of snow and ice in
the later stages of natural melting.

This study selected representative cases that did not include freshly covered snow on the modules.
Instead, modules with slightly melted snow were chosen as the display objects. The final selection
consisted of five images that represented different processing results. It can be imagined that the
identification of the target area is best when the PV module has just been covered with ice and snow,
as the color contrast is significant and there is no melting. The cases 1, 2, 3, 5 in the selection show
obvious signs of melting. This aligns with the results shown in Table 4: the external ellipse method
exhibits higher accuracy in the later stages of melting, while the pixel statistical method performs
better for large-scale snow coverage on PV modules.
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5 Conclusions

Snow and ice accumulation on PV modules can significantly reduce their power generation
efficiency. This paper studies the monitoring technology of residual snow and ice on PV modules,
and establishes an algorithm for identifying snow and ice. The research is valuable for manual snow
cleaning and power generation prediction of power plants. The main conclusions are as follows:

(1) The morphological characteristics of residual snow and ice on PV modules are significant.
Therefore, a complete image identification process is proposed, including PV module corner position-
ing, area segmentation, residual area calculation of snow and ice, etc.

(2) Two methods for calculating residual snow and ice on PV modules are proposed and verified
with errors less than 10%: the external ellipse method and the pixel statistical method. The external
ellipse method exhibits higher accuracy during the later stages of snow and ice melting, while the pixel
statistical method performs better in detecting large-scale snow coverage on PV modules.

In summary, this article proposes a non-destructive detection system based on image processing
that can identify residual ice and snow on PV modules and assess the extent of snow and ice coverage.
Compared to expensive and precise hardware detection equipment, the non-destructive detection
system can be continuously optimized and updated, enabling intelligent detection of PV modules. This
is of significant importance for predicting the power generation efficiency and PV operations under
winter snow and ice conditions in PV power plants. However, this method still has limitations, such
as the mismatch between calculation speed and acquisition speed, as well as concerns regarding the
alignment of quantitatively analyzed images with the on-site positioning.
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