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ABSTRACT

Due to the impact of source-load prediction power errors and uncertainties, the actual operation of the park
will have a wide range of fluctuations compared with the expected state, resulting in its inability to achieve
the expected economy. This paper constructs an operating simulation model of the park power grid operation
considering demand response and proposes a multi-time scale operating simulation method that combines day-
ahead optimization and model predictive control (MPC). In the day-ahead stage, an operating simulation plan that
comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of
15 min. In order to cope with power fluctuations of photovoltaic, wind turbine and conventional load, MPC is
used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual
operating operation status of the park. Finally, the validity and economy of the operating simulation strategy are
verified through the analysis of arithmetic examples.
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Nomenclature

MPC Model predictive control
PV Photovoltaic
EV Electric vehicles
IEO Integrated energy operator
HVACR Heating ventilation and air conditioning, refrigeration
PMV Predicted mean vote
SOC State of charge

1 Introduction

The penetration of wind power and photovoltaic as efficient and clean energy sources has been
rising in recent years [1], with the attendant problem that the total amount of scenery uncertainty
in the system has become larger. As an important form of access to the grid for wind power and
photovoltaics, the large number of uncertainties in the park grid poses a huge challenge to its
economic operation. How to guarantee the economic operation of the park and diminish the impact
of scenery uncertainty and prediction errors has become the focus of research [2–5]. In reference [2],
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a two-stage stochastic robust optimization model for a multi-energy microgrid was proposed to
reduce the cost of a two-stage microgrid under the worst new energy output scenario to deal with
the uncertainty of renewable energy output and the low economy caused by the single form of
traditional microgrid supply. In reference [3], a microgrid game model was proposed to take into
account the uncertainty of wind and light, and the influence of volatility on microgrid optimization
is quantitatively and qualitatively analyzed. The results show that the established model improves the
absorption rate of scenic power, mobilizes the enthusiasm of the energy storage units, and considers
the economy and risk of microgrid operation. Reference [4] considered the impact of the uncertainty
of market frequency modulation demand and wind and photovoltaic output on the operational
strategy formulation of the energy storage system and generates the set of frequency modulation
demand and scenery uncertainty scenarios with time-series correlation based on the scenario stochastic
discretization method. Reference [5] considered the uncertainty of scenery output and constructs a
robust optimization model with the two-stage distribution of scenery output prediction error fuzzy
set based on Wasserstein distance so that the virtual power plant adjusts the flexible resources to
achieve the minimum operation cost when the scenery output prediction error satisfies the worst
distribution within the fuzzy set. Reference [6] proposed an interval optimization scheduling method
for the integrated energy system of the park considering multiple uncertainties and uses the interval
theory to model the uncertainty of the output of distributed power sources. However, the above paper
only considers day-ahead scheduling simulation.

Multi-time scale simulation can reduce the impact of scenery uncertainty and forecast errors.
In reference [7], a coordinated optimization and control strategy of source-grid-load-storage of a
distribution network based on Fisher time division was proposed, and a multi-time scale “source-
grid-load-storage” coordinated optimization architecture was constructed, including three stages of
day-ahead optimization, intra-day rolling and second-level monitoring. In reference [8], a multi-time
scale scheduling strategy for combined electric and thermal systems was proposed to reduce the
impact of wind power prediction errors and improve the wind power consumption capacity of the
system. Reference [9] proposed a multi-time scale consumption method of distributed energy in active
distribution networks that takes into account uncertainty and improves the consumption level of
distributed energy in active distribution networks through the cooperation of different time scales.
Reference [10] established a three-stage optimization model of “day ahead-intra-day rolling-real-time
adjustment” to optimize unit output step by step. However, the above papers do not use the MPC
method and lack an understanding of its advanced nature.

MPC is a model-based finite-time domain closed-loop optimal control method [11–13], which
does not require high system accuracy and can rectify the simulation plan points in real-time by short-
time predicted values with feedback correction. Usually, indicators such as power balance, component
characteristics, economy, and tracking are mostly selected in the intra-day phase for rolling simulation
to meet the actual operating conditions [14–21]. In reference [18], MPC was used to track and modify
the active output schedule to obtain smooth output of controllable units. Reference [19] proposed a
two-stage optimal dispatching strategy for an integrated urban energy system considering uncertainty
and interactive power. In the intra-day phase, MPC is used to optimize the scheduling strategy of the
system on a rolling basis based on the prediction results of new energy generation and load. The results
of the algorithm show that the scheduling strategy can reduce the impact of the short-time drastic
fluctuations of the interactive power on the safety and economy of the system operation. Based on the
MPC theory, a new method of coordinated multi-time scale scheduling of active power of wind power
clusters was proposed in reference [20]. In the intra-day stage, the MPC technique is used to achieve
finite-time rolling optimization and real-time feedback correction of the active power of wind power
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clusters. Reference [21] proposed an optimal dispatching method for wind-light-storage-storage multi-
energy complementary coordination considering the uncertainty of renewable energy sources. In the
real-time correction phase, the MPC method is used to precisely control the electrochemical energy
storage output and weaken the influence of scenery prediction errors. The above study only considers
the demand of the simulated power side in the intra-day simulation stage, without considering the
demand response of the user side at the same time, and the simulation is relatively single.

Based on this, this paper proposes a multi-time scale simulation method for the park’s grid with
day-ahead optimization and intra-day MPC rolling optimization, which can solve the problem that the
day-ahead simulation plan fails to consider the customer demand response when the actual operating
state of the park’s grid fluctuates widely, and the simulation plan cannot be revised during the day.
Firstly, in the day-ahead simulation stage, an optimization model is established to solve the day-ahead
simulation plan with the objective of minimizing the operation cost throughout the day, taking into
account the customer-side demand response and the cost of distributed power supply. Then, in the
intra-day simulation stage, the MPC is used to track and correct the intra-day simulation plan in real
time with the objective of minimizing the deviation between the intra-day simulation and the intra-day
simulation plan. Finally, an arithmetic analysis is performed to verify the superiority of the proposed
strategy.

Other sections of this paper are organized as follows. The structure and load classification of the
park are introduced in Section 2. Section 3 presents the power supply and load modeling of the park.
The day-ahead simulation strategy of the park is established in Section 4, and the intra-day simulation
strategy of the park is established in Section 5. Section 6 provides illustrative examples and analysis.
Conclusions are given in Section 7.

2 Parks Scene Analysis
2.1 Parks Architecture

The distributed units in the park constructed in this paper are divided into two parts: the power
side and the load side. The power side includes distributed power sources such as PV systems, wind
turbines, energy storage systems, fuel cells, micro gas turbines, and so on. The load side is divided
into conventional, adjustable and EV loads through demand response. The park is connected to the
distribution network through a contact line for power transmission.

On the power side, the distributed power sources are essential for ensuring a stable and reliable
supply of electricity. Wind turbines harness the power of the wind to generate electricity, while the
photovoltaic system converts sunlight into electrical energy. These decentralized power sources not
only provide a renewable and clean source of energy but also contribute to the overall power generation
capacity of the park. An energy storage system, on the other hand, stores excess energy produced by
the system and releases it when demand arises. They help ensure a continuous and uninterrupted power
supply, reducing the reliance on the grid and improving the overall energy efficiency of the park.

On the load side, power loads are the specific electrical loads within the park, such as lighting
systems, HVACR systems and other electrical devices that require a significant amount of power to
operate. The electric vehicles (EV) loads refer to electric vehicles within the park that require charging.

The structure of the power and load sides is depicted in Fig. 1, illustrating the interplay between the
distributed power sources and the various types of loads. The two, distributed generation and load,
complement each other in terms of multiple energy sources and coordinate their operation, which
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has a significant impact on the optimization and scheduling of the park’s day-ahead and intra-day
operations.
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Figure 1: Basic structure diagram of the park

The park studied in this paper is managed by an integrated energy operator (IEO), which is
responsible for the maintenance of the electrical equipment of all the residents in the park and
manages the loads according to the distribution network time-of-use tariff and other information.
For adjustable or dispatchable loads, such as EVs, the electricity demand can be reduced during peak
load periods, thus reducing the cost of electricity consumption.

The residents of the park sign a contract with IEO to give IEO certain load control rights during
the peak load of the grid and participate in energy interaction through demand response to reduce
electricity expenses without affecting the electricity demand.

Under the management of MGO, the whole park can realize the complementary and coordinated
operation of each unit, optimize the overall economic cost of the park, and realize the function of
economy and energy saving.

2.2 Load Type and Classification
Due to the significant difference between day and night loads in the park, under the condition

of time-of-day tariff, the refined load classification can cut the peaks and fill the valleys, reduce the
power supply pressure of the power grid during the peak period, as well as reduce the cost of electricity
consumption in the park and better control the electricity consumption behavior of the park load.
According to the customer’s demand for load and the difference in load characteristics, the load in the
park is divided into regular load, adjustable load and EV load.

(1) Conventional load: Once involved in simulation, it will greatly affect the customer’s electricity
experience, such as lighting system and public electricity consumption. In order to satisfy the basic
electricity demand of residents, this paper does not perform simulations for conventional loads.
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(2) Adjustable load: With the rapid development of the economy and the continuous improvement
of science and technology, heating ventilation and air conditioning, refrigeration (HVACR) system has
made a great degree of progress and has been more and more widely used in building design. HVACR is
mainly composed of three sub-systems: heating system, ventilation system and air conditioning system.
In the simulation, the user power can be adjusted, including the HVACR system, etc. Adjustable load
is one of the main scheduling objects of the simulation strategy. Due to the strong correlation between
HVACR load and user comfort, HVACR in adjustable load will be considered as a separate load.

(3) EV load: Located in the parking lot of the park, the charging power can be controlled by an
intelligent switch under the condition of ensuring the normal travel demand of residents.

In addition to the above three types of loads, this paper is equipped with a distributed power system
inside the park, which includes distributed power sources such as photovoltaic, wind turbine, micro
gas turbine, fuel cell and energy storage devices such as lithium battery. HVACR loads play a vital
role in contributing to the peak loads in the power grid, particularly during the summer and winter
peak periods in the park. In fact, in certain areas, the share of HVACR loads has exceeded 40% [22].
The magnitude of these loads has a direct impact on user satisfaction, and therefore, scheduling should
prioritize HVACR loads while taking into account the users’ perceived satisfaction. Consequently, this
study emphasizes the consideration of HVACR loads as the primary control objective.

3 Park Modeling
3.1 Park Load Modeling
3.1.1 Temperature Controlled Load Model

Since the use time of HVAC and HVACR is strongly correlated with the thermal comfort of the
residents, the operation should be simulated within the user’s physical comfort temperature range, and
the HVACR load start/stop status is automatically controlled by IEMS in this paper.

The HVACR load operates in two modes, cooling and heating, and its load power magnitude is
related to the set temperature, the weather temperature of the day, and the model is shown below:

Tk,t+1 = e−Δt/CkRk Tk,t +
(
1 − e−Δt/CkRk

) (
Tα

k,t − Tg
k,t

)
(1)

Tg
k,t =

{
RkηkPk,t cool

−RkηkPk,t heat
(2)

Pmin
k,t ≤ Pk,t ≤ Pmax

k,t (3)

where, Tk,t is the temperature of the HVACR load at time t; �t is the time step; Ck is the thermal
capacitance of the HVACR load; Rk is the thermal coefficient of the HVACR load; Tα

k,t is the ambient
temperature of the HVACR load; Tg

k,t is the temperature gain of the HVACR load; ηk is the efficiency of
the HVACR load; Pk,t is the power of the HCACR load; Pmax

k,t and Pmin
k,t are the maximum and minimum

power.

User comfort is determined by the thermal comfort evaluation index equation proposed by
Franger, the Predicted Mean Vote (PMV) index [23], which on behalf of most people in the same
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environment of hot and cold feeling, considering the relationship between the PMV index and indoor
temperature of users for HVACR load as shown in the following equation:

PMV = exp
[
16.6536 − 4030.1831/

(
Tk,t + 235

)] × 10−4 × 1.1885 + 0.1938 × Tk,t − 4.346

− 2.605 × 10−9 ×
[(

0.47 × Tk,t + 291.04
)4 − (

Tk,t + 273
)4

]
(4)

PMV indicator values of −3 to +3, respectively, indicating cold, cool, slightly cool, heat neutral,
slightly warm, warm and hot seven results, when the PMV value is 0, indicating that the temperature at
this time is the most comfortable temperature for the human body, at this time is 26°C [23]. Considering
the PMV index formula is more complex, for simple calculation, set 26°C as the HVACR load to
provide users with the highest comfortable temperature.

3.1.2 Electric Vehicle Model

As for EV load, it is divided into two categories: one is normal charging EV load, which is classified
as regular load, and the second is adjustable charging power EV load, which is dispatchable EV. Due
to the unique travel needs of EV load, its distribution has strong uncertainty. The travel time and daily
driving mileage of the EV load in the park are simulated using the Monte Carlo method, and the user’s
travel information is obtained through daily driving mileage. It is assumed that the EVs in the park are
parked in the parking lot with charging piles, IEO controls the charging and discharging behaviors,
and certain economic benefits can be obtained.

The upper and lower limits of its dispatchable power are predicted based on the relevant data of
the dispatchable EV, and the maximum and minimum values of the load of the dispatchable EV at the
next moment are predicted based on the actual load of the dispatchable EV at moment t [24].

Pt+1
ev,max = Pt

ev + ΔPt+1
ev + Nt+1

0 Pc (5)

Pt+1
ev,min = Pt

ev + ΔPt+1
ev (6)

ΔPt+1
ev = Nt+1

1 Pc − Nt+1
2 Pc (7)

Pt+1
ev,min ≤ Pt+1

ev ≤ Pt+1
ev,max (8)

where, ΔPt+1
ev is the dispatchable EV load that must be increased at t + 1, Nt+1

1 denotes the load that is
increased at t + 1, Pc denotes the load that is reduced at t + 1; Nt+1

0 denotes the number of dispatchable
EVs that satisfy the conditions T0 = t + 1 and Tb > 1; Nt+1

1 denotes the number of dispatchable EVs
that satisfy the conditions T0 = t + 1 and Tb < T ; Nt+1

2 is the number of dispatchable EVs that satisfy
the conditions T1 = t + 1 or Cb = Cl; Pt+1

ev denotes the actual load of the EV at the next moment.

3.2 Distributed Generation Modeling
3.2.1 Wind Turbine and Photovoltaic

New energy power generation mainly considers photovoltaic power generation and wind turbine
power generation, this paper mainly considers the power fluctuation of new energy power generation.
Therefore, the power of wind turbines and photovoltaic power generation mainly considers its
predicted power, and its power is fully consumed. Wind turbine and photovoltaic model reference [22].
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3.2.2 Energy Storage Unit

Lithium batteries are used in energy storage units, and the operation and maintenance costs are
shown in the following equation:

Cbat (Pbat (t)) =
[

Cinv

|Pbat (t)|
Nlife (t) × 2Elb

] [
Cinv

|Pbat (t)|
Nlife (t) × 2Elb

+ Kml |Pbat (t)|
]

�t (9)

where, Cinv is the initial investment of lithium battery; Pbat (t) is the charging and discharging power of
lithium battery; Elb is the rated capacity of lithium battery; Kml is the maintenance cost coefficient of
lithium battery.

3.2.3 Power Generation Unit

Lithium batteries are used in the energy storage unit, and the operating and maintenance costs of
lithium batteries are shown as follows [17]:

Cg,i

(
Pg,i (t)

) = Cf

(
Pg,i (t)

) + Com

(
Pg,i (t)

) + Ceav

(
Pg,i (t)

)
(10)

where, Cf is the cost of combustion, Com is the cost of maintenance, Ceav is the cost of pollution
emissions.

4 Day-Ahead Simulation Strategy of the Park
4.1 Day-Ahead Objective Function

This paper takes 15 min as the time scale, divides a day into 96 periods, comprehensively considers
the operation and maintenance cost of each unit in the micro-network of the park, the purchase
and sale price cost of the micro-network of the park, and the objective function to obtain the lowest
integrated cost is shown below:

min C =
96∑

t=1

[
N∑

i=1

Cg,i

(
Pg,i (t)

) +
M∑

j=1

Cbat,j

(
Pbat,j (t)

) + Cgrid

(
Ppro

grid (t)
) + (ηevPev (t)) + ηk

∣∣Tk,t − 26
∣∣]

(11)

where, C is the day-ahead cost of the park microgrid, Cg,i is the operation and maintenance cost of the
controllable distributed power source, Pg,i is the power generated by the controllable distributed power
source, Cbat,j is the operation and maintenance cost of energy storage unit j, Pbat,j is the power of energy
storage unit j at time t, Cgrid is the cost of power purchase and sale between the park microgrid and the
upper grid, Ppro

grid (t) is the planned power of the liaison line between the microgrid and the distribution
grid at time t in the day-ahead simulation plan, ηev is the electric vehicle charging is the cost of electric
vehicle charging, and ηk is the penalty cost factor considering the temperature comfort of customers.

4.2 Constraints
To ensure safe and stable operation of the park microgrid, each distributed power source needs to

meet the following constraints:

(1) Microgrid power balance constraint
M∑

i=1

Pg,i (t) + Ppv (t) + Pwt (t) +
N∑

j=1

Pbat,j (t) − Ppro
grid (t) = Pev (t) + Pk (t) + Pload (t) (12)
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where, Ppv (t) and Pwt (t) are respectively the power of PV and wind power at time t, and pload (t) is the
conventional load power of the system at time t.

(2) Power constraints of controllable distributed power supply

The upper and lower limits of the controllable distributed power supply are shown in Eq. (13).
M∑

i=1

Pg,i (t) + Ppv (t) + Pwt (t) +
N∑

j=1

Pbat,j (t) − Ppro
grid (t) = Pev (t) + Pk (t) + Pload (t) (13)

where, Pmin
g,i and Pmax

g,i are respectively the boundary values of the allowable output power of distributed
power supply i.

The climbing constraint of the controllable distributed power supply is shown in Eq. (14).

�Pmin
g,i ≤ Pg,i (t) − Pg,i (t − 1) ≤ ΔPmax

g,i (14)

where, �Pmax
g,i and �Pmin

g,i are respectively the boundary limits of climbing power of controllable
distributed power supply i.

(3) Energy storage unit power constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sbat (t) = Sbat (t − 1) + ηcPch (t) �t
Ebat

Sbat (t) = Sbat (t − 1) − Pdis (t)�t
Ebatηd

Smin
bat ≤ Sbat (t) ≤ Smax

bat

Sbat (t = 1) = Sbat (t = 96)

0 ≤ Pch (t) ≤ Pmax
ch (t)

0 ≤ Pdis (t) ≤ Pmax
dis (t)

(15)

where, Sbat (t) is the State of Charge (SOC) of the lithium battery at time t; Pch (t) and Pdis (t) are the
charging and discharging power of the lithium battery at time t respectively; ηc and ηd are respectively
the efficiency of the lithium battery when charging and discharging; Ebat is the total capacity of the
lithium battery; �t is the simulation time period; Smax

bat and Smin
bat are the boundary value of the SOC of

the energy storage unit.

(4) EV load constraint
T∑

t=1

Pev
t =

T∑
t=1

Pev
dp (16)

where,
∑T

t=1 Pev
dp denotes the total schedulable EV load.

5 Intra-Day Simulation Strategy of the Park
5.1 Model Predictive Control

Because the actual operating state of the microgrid in the park is bound to have some deviation
from the simulation plan of the day before, the daily need to revise the simulation plan can ensure
the stability of the microgrid in the park and achieve the expected economy. As a closed-loop control
method with good tracking and anti-interference ability, MPC has the advantages of low requirement
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on system accuracy and real-time correction of simulation plan through short-term predicted value
and feedback correction [25]. Therefore, the simulation plan is tracked in real-time and run ahead of
the day using MPC, which consists of three parts: prediction model, rolling optimization and feedback
correction.

5.1.1 Intra-Day Objective Function

The prediction model can predict the state of the future system based on the current moment state,
which is composed of state quantity, control quantity and output quantity, as shown in Eqs. (17) and
(18). Where, X (t) is the state quantity at time t, namely generator power, energy storage unit power,
tie-line power, HVACR load power and dispatchable EV load power; ΔX (t) is the control quantity
at time t, namely the power change value of generator set, energy storage unit, dispatchable EV and
HVACR load; r (t) is the system error, namely load, wind turbine and photovoltaic fluctuation error;
Y (t) is the output at time t, which is the power of the tie line and the SOC; A, B, C and D are system
matrix, input matrix, output matrix and error matrix, respectively.

X(t+1)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

Pg,i (t + 1)

Pbat,j (t + 1)

Pgrid (t + 1)

SB (t + 1)

Pev
d (t + 1)

Pk (t + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦ = A

X(t)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

Pg,i (t)
Pbat,j (t)
Pgrid (t)
SB (t)
Pev

d (t)
Pk (t)

⎤
⎥⎥⎥⎥⎥⎥⎦ + B

ΔX(t)︷ ︸︸ ︷⎡
⎢⎢⎣

ΔPg,i (t)
ΔPbat,j (t)
ΔPev

d (t)
ΔPk (t)

⎤
⎥⎥⎦ + D

r(t)︷ ︸︸ ︷⎡
⎣ΔPload (t)

ΔPpv (t)
ΔPwind (t)

⎤
⎦ (17)

Y(t)︷ ︸︸ ︷[
Pgrid (t)
SB (t)

]
= C

X(t)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

Pg,i (t)
Pbat,j (t)
Pgrid (t)
SB (t)
Pev

d (t)
Pk (t)

⎤
⎥⎥⎥⎥⎥⎥⎦ (18)

In order to cope with the power fluctuations of wind power, photovoltaic power and electric load
in the intra-day phase, to ensure that the park contact line power and customer HVACR load power
track the day-ahead power while ensuring that each distributed power source and demand response
load control regulation increment is as tiny as possible, the objective function is as in Eq. (19).

min (f ) = ∥∥Y (t) − Yref (t)
∥∥2 + ‖ΔX (T)‖2 (19)

where, m is the prediction time domain, and the performance indexes on m time domains are optimized
at moment t. The control sequence in the prediction time domain from t to t + m is obtained as in
Eq. (20), and only the control quantity at the first moment is executed, and the above steps are repeated
at moment t + 1.

ΔX (t) =
[
ΔX (t)T , ΔX (t + 1)

T , . . . ,
ΔX (t + m − 1)

T , ΔX (t + m)
T

]
(20)
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5.1.2 Constraints

In the intra-day scheduling stage, it is necessary to satisfy the constraints for each unit operation,
where the primary guarantee is the power balance constraint at each moment so that the load and
output power of each unit in the park can be dynamically balanced, as shown in Eq. (21).

M∑
i=1

Pd
g,i (t) + Pd

pv (t) + Pd
wt (t) +

N∑
j=1

Pd
bat,j (t) − Pd

grid (t) = Pd
ev (t) + Pd

k (t) + Pd
load (t) (21)

where, Pd
g,i (t) is the power of other controllable distributed power sources in intra-day dispatch, Pd

pv (t)
and Pd

wt (t) are the power of PV and wind power in the intra-day dispatch phase at time t, pd
bat,j (t) is the

power of system j energy storage unit in intra-day dispatch phase at time t, Pd
k (t) is the HVACR load

power in intra-day dispatch phase at time t, and Pd
load (t) is the conventional load power in intra-day

dispatch phase at time t.

5.2 Dispatch Process
The flow of the simulation strategy in this paper is shown in Fig. 2, and the simulation strategy is

divided into two stages: day-ahead optimization and intra-day rolling optimization. In the day-ahead
optimization phase, the park microgrid is optimized according to the predicted power of wind turbine,
PV and conventional load, as well as the power demand of the demand response load of the park, with
the objective of the lowest day-ahead economic cost, to obtain the day-ahead simulation plan; in the
intra-day phase, the simulation is carried out based on the short-term prediction data of wind turbine,
PV and conventional load every 15 min, with Eq. (19) as the objective function. This 15 min simulation
result is obtained, and this step is cycled until the 96th time period to complete the intra-day rolling
optimization.

Start

Modeling for distributed power

and demand response loads

Economically optimal

scheduling model considering

user satisfaction

Day-ahead scheduling model is

solved based on CPLEX

Build forecasting models based

on intra-day data

Establish the objective function

Solve the predicted control

quantities in the time domain

t=96

t=t+1

End

Day-ahead
optimization

Builuu d foff recasting models based

on intratt -dadd y dadd ta

Estaba lishss the obo jb ective fuff nction

Solve thtt e predictcc ed contn rtt ol

quqq anaa tities in thtt e timemm domamm in

t=96

t=t+1

Intraday rolling
optimization

Figure 2: Multi-time scale simulation flowchart
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6 Analysis of Algorithms
6.1 Scenario Setting

In this paper, we analyze the example of a real demonstration microgrid system [17], which includes
wind turbines, PV systems, micro gas turbines, fuel cells, and energy storage systems, and the load side
includes conventional load, HVACR load, and EV load. The parameters of the time-sharing price are
shown in Table 1. The parameters of each distributed power supply in the system are shown in Table 2.
Rk = 2 (°C/kW ), Ck is 0.2, and the efficiency ηk is 2.5 in the HVACR system.

Table 1: Time-sharing price parameter

Time period Purchase price of
electricity/($/kW·h)

Sales price of
electricity/($/kW·h)

10:00–15:00, 18:00–21:00 1.055 1.001
7:00–10:00, 15:00–18:00, 21:00–23:00 0.633 0.511
23:00–7:00 0.291 0.191

Table 2: Distributed power parameters

Distributed power Upper limit of technical
output/kW

Lower limit of technical
output/kW

Climbing
rate/kW·min−1

Micro gas turbine 100 0 10
Fuel cell 80 0 4
Wind turbine 40 0 −
Photovoltaic cell 30 0 −
Energy storage system 60 −60 20

According to the functional requirements specifications for power prediction systems that have
been developed [26,27], the short-term prediction error of wind power should be less than 20% and
the prediction error of photovoltaic power should be less than 25%, and the relevant standards for
load prediction have not been specified. In order to facilitate the comparison test, the middle value of
the source-load output power fluctuation range is set to 20%, and 10% is floated up and down to set
the comparison experiment to compare the effectiveness and economy of the simulation strategy in
this paper under different conditions. Figs. 3–5 represent the predicted power and the actual intra-day
power of wind turbine, PV power and conventional load, respectively.

6.2 The Result of Day-Ahead Optimization
The simulation results of dispatchable EVs are shown in Fig. 6. In Fig. 6, the maximum charging

power and the minimum charging power respectively indicate that the dispatchable EV meets the
maximum and minimum power demands of EV users at every moment. In the day-ahead stage, it
can be seen from the day-ahead charging power curve that the EV can be scheduled to charge at
the maximum charging power at 0:00–9:00 and 21:00–24:00, when the park load is small and the
distributed power supply idle power is large. Charge at the minimum power from 9:00–17:00 and
18:00–21:00, when the park load is large, the EV can be dispatched to reduce the charging power. In
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summary, the schedulable EV basically realizes the role of peak load and valley filling in the day-ahead
simulation stage.
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Figure 3: Daily predicted power and actual power of the wind turbine
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Figure 4: Photovoltaic day-ahead predicted power and day-ahead actual power

The HVACR load operating power and temperature are shown in Fig. 7. Under the condition
of the predicted temperature, the demand of 26°C can be basically met by the users under the
consideration of user satisfaction in the day-ahead stage, and only at the highest temperature moment
from 14:00 to 16:00, the temperature of the HVACR load does not reach 26°C under the consideration
of cost factor.
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Figure 5: Daily predicted power and actual power within the day
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Figure 6: Dispatchable EV power

The optimized power before the distributed power supply and lithium battery day is shown in
Fig. 8. The micro gas turbine and fuel cell operate at rated power during 9:00–21:00 when the load
is high and bear the main load power in the park due to their lower cost, and operate at low power
during the trough; compared with the two, the micro gas turbine costs less, so the bear the main load
power in the park.
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Figure 7: HVACR load power and temperature

Figure 8: Distributed power supply in day-ahead stage

6.3 The Result of Intra-Day Optimization
6.3.1 Effectiveness Analysis of Simulation Strategy

This section analyzes the intra-day rolling optimization results of HVACR loads, dispatchable
EVs, distributed power sources, and energy storage units under three scenarios to analyze the
effectiveness of the simulation strategy in this paper.

Figs. 9 and 10 represent the power and temperature of the HVACR load, respectively, and the
simulation results for the three cases are shown in the figure. In the case of a 10% power fluctuation of
the fan, PV and conventional load, the HVACR load basically traces to the previous day’s simulation
curve, and the highest temperature curve compensates over 27°C; when the power fluctuation increases
to 20% and 30%, it can be seen that the HVACR load power also fluctuates, but it can still trace the
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previous day’s power curve. The highest temperature does not exceed 28°C under the condition of
considering user satisfaction, basically meets the user’s comfort demand.

Figure 9: Actual adjusted power of HVACR load within the day

Figure 10: Actual temperature of HVACR load during the day

Fig. 11 represents the intra-day operating power of the micro gas turbine. From the operating
simulation of the three cases, it can be seen that the micro gas turbine operates basically at full power
from 9:00 to 22:00. Because of its lower cost, it operates at rated power at the moment of higher load.
At 0:00–8:00, compared with the day-ahead operating power, it can be seen that when the micro gas
turbine fluctuates by 30%, the operating power is much different from the planned power, but the
simulation strategy also adjusts the operating power to meet the power balance of the park.
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Figure 11: Actual daily power adjustment of micro gas turbine

The dispatchable EV charging power is shown in Fig. 12, which basically meets the high-power
charging at low load valley. And low-power charging at peak load to achieve the effect of user-side
demand response simulation. Under the power fluctuation of different situations of wind turbine, PV
and conventional load, EV can be dispatched to adjust the charging power to ensure the stability of
power consumption in the park.

Figure 12: Dispatchable EV actual power transfer within the day

Fig. 13 shows the simulated power of the operation of the lithium battery device. From the figure, it
can be seen that the lithium battery, as the park’s energy storage unit, in the intra-day phase also meets
the load at low-time charging and peak-time discharge. The simulation in three cases can be seen: at
10%, the power adjustment per moment is small, and when the power fluctuation is large, the lithium
battery operating power also varies widely, as the main adjustment device to bear the fluctuation of
the wind turbine, photovoltaic and conventional load.



EE, 2024, vol.121, no.3 763

Figure 13: Actual adjusted power of lithium battery within the day

Fig. 14 shows the contact line power. Considering the impact of the time-sharing tariff, the
park purchases large power at a low tariff and low power at a high tariff, which basically meets the
requirements of low-cost operation of the park; in the intra-day simulation stage, the impact of power
fluctuation of wind turbine, PV, and conventional load is reduced by distributed power, HVACR load,
and dispatchable EV adjustment.

Figure 14: Tie line power

6.3.2 Economic Analysis of Simulation Strategies

In this section, the concept of day-after simulation [24] is introduced to analyze the economics of
the simulation strategy of this paper by comparing the results of the simulation of this paper with the
results of the day-after simulation at 10% power fluctuation, and the results are as follows.
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The comparison of the simulated power for the intra-day operation of the HVACR load and the
simulated power for day-after operation is shown in Fig. 15. As shown in Fig. 15, the simulated power
for intra-day operation of HVACR load and the simulated power for day-after operation basically
overlap, which indicates that the simulation strategy proposed in this paper is economical for the
simulation of HVACR load operation.

Figure 15: HVACR load power comparison diagram

Fig. 16 shows the comparison of the day-after simulation power and the intra-day simulation
power of the micro gas turbine. From the image, it can be seen that the intra-day simulation power and
the day-after simulation power basically overlap, which indicates that the simulation strategy proposed
in this paper is economical for the micro gas turbine simulation.

Figure 16: HVACR load power comparison diagram

From Table 3, we can see that the day-ahead simulation cost is the smallest, and considering the
day-ahead optimization based on forecast information, all simulation costs are the lowest. With the
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increase of wind power, PV power, and conventional load power fluctuation in the intra-day phase, the
intra-day simulation cost also increases; compared to the day-after simulation with the intra-day 10%
fluctuation case, the simulation strategy of this paper is only $2.85 more than the optimal day-after,
which indicates that the simulation strategy of this paper is economical.

Table 3: Cost of the simulation

Day-ahead
simulation

Intra-day simulation Day-after
simulation(10%)

10% fluctuation 20% fluctuation 30% fluctuation

Cost/$ 2564.15 2593.21 2674.53 2789.35 2590.36

This section illustrates that the simulation strategy of this paper is equally economical and accurate
for distributed power, HVACR load and dispatchable EV units by comparing the effect graphs of micro
gas turbine and HVACR load.

7 Conclusions

In this paper, a multi-time scale operation simulation method for the park microgrid is proposed,
including day-ahead optimization and day-day MPC rolling optimization. The method establishes
constraints for each unit model and considers power fluctuations of wind turbines, photovoltaic
systems, and conventional loads. By considering the power supply side and the user side, a combined
approach of day-ahead optimization and intra-day rolling optimization is devised to simulate the
park’s operation across multiple timescales, with the goal of minimizing the park’s electricity cost. The
feasibility of the proposed day-ahead and intra-day scheduling strategies has been validated through
experiments, and draws the following conclusions:

(1) In the day-ahead dispatching stage, the park is optimized with the source-load forecast data to
obtain the day-ahead simulation plan. Under the consideration of customer satisfaction, all distributed
power sources and loads in the park are in low economic cost operation and play the role of peak-
shaving and valley-filling.

(2) In the intra-day dispatching stage, considering the randomness of the source load, the
distributed power sources and park loads are dispatched through rolling optimization, which is feasible
and economical under the fluctuation of source load power.

(3) With the continuous rise and vigorous construction of microgrid in the park, microgrid
demonstration projects have been built around the world, such as Kythnos microgrid demonstration
project in Greece, Mannheim microgrid demonstration project in Germany, Bomholm microgrid
demonstration project in Denmark and Xinwanda microgrid demonstration project in China. The
strategies proposed in this paper can be applied to these microgrid demonstration projects to help
them reduce operating costs.
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