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ABSTRACT

To address the scheduling problem involving energy storage systems and uncertain energy, we propose a method
based on multi-stage robust optimization. This approach aims to regulate the energy storage system by using a
multi-stage robust optimal control method, which helps overcome the limitations of traditional methods in terms
of time scale. The goal is to effectively utilize the energy storage power station system to address issues caused
by unpredictable variations in environmental energy and fluctuating load throughout the day. To achieve this, a
mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.
The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization
problem. By decomposing the problem into a series of sub-objectives, the system scale is effectively reduced, and the
algorithm’s convergence ability is improved. Compared with other algorithms, the multi-stage robust optimization
model has better economy and convergence ability and can be used to guide the power dispatching of uncertain
energy and energy storage systems.
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1 Introduction

The vigorous development of renewable energy sources such as new energy has gradually weak-
ened the status of traditional energy. Mbungu et al. [1] discussed an optimal load management control
method for economic load shedding problems. The control scheme is based on the coordination
of a diesel generator (DG) system with a separate MG system comprising PER (Potential Energy
Recovery) wind and photovoltaic (PV), two biomass power generation systems and an energy storage
system (ESS). The control model minimizes the fuel cost of the DG unit, where the mill is part of
the load. The optimal control scheme is adopted to minimize the operating cost of DG, maximize
the energy of rrs, and ultimately increase the profit of MG in the load shedding operation. Only a
qualified power dispatching system can ensure the stability, safety, and economy of the operation of
the power grid [2]. In the face of renewable energy with an increasing proportion year by year, due to its
strong randomness and high volatility in power output, it is necessary to adopt a conservative power
generation strategy in the dispatching process. In this way, a large amount of spare capacity is reserved
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to cope with the impact of power output fluctuations, resulting in problems such as insufficient
load rate of thermal power units and uneven consumption of renewable energy. Moreover, the above
contradictions are intensifying with the development of renewable energy, and there is an urgent need
for new dispatching systems to deal with the above uncertainties in a timely manner.

The new integrated energy system covers multiple energy sources. The development of energy
sources including natural gas and heat energy has become an important development direction for the
current national response to the energy crisis [3]. Due to its extensive coverage of energy storage and
transducer equipment, it possesses the capability to effectively manage the uncertainties associated
with renewable energy. However, it also greatly increases the complexity of the operation of the
scheduling system. For problems of uncertainty optimization, the problem is effectively solved by
an algorithm. Khodaya et al. [4] suggested a two-stage stochastic optimization model that has been
experimentally verified to be suitable for optimizing the power dispatch of wind power and pumped
energy storage systems. Dispatch of the power system [5] is arranged in stages, so as to effectively obtain
the unit regulation and dispatch situation in the case of wind output. Zhang et al. [6] put forward
a robust chance-constrained optimization model based on wind power uncertainty analysis and
generalized energy storage reserve. The uncertainty of wind power output was analyzed using Latin
hypercube sampling and fuzzy C-means clustering algorithm. To tackle this uncertainty, a generalized
energy storage optimization rotating reserve capacity was introduced. Furthermore, a robust chance-
constrained optimization model, which combines stochastic programming and robust optimization,
was developed to minimize operating costs in an integrated energy system. This approach aims to
enhance system robustness and efficiency. However, it is important to consider that this method may
require a longer computation time. Si et al. [7] conducted an analysis of the source-load characteristics
of active distribution networks. They took into account the uncertain impact of renewable energy and
energy storage systems on these networks and established a foundational model for renewable energy
and energy storage systems. Through the linear dual theory and Lagrange transformation method,
the constraints with uncertain variables were transformed into constraints with only certain variables,
and then the multi-objective robust optimal scheduling scheme under the fluctuation of renewable
energy was obtained. This approach is advantageous in mitigating the fluctuations in the distribution
network and enhancing the stability and flexibility of the system. However, this method is prone to
data redundancy in the calculation process. Samy et al. [8] proposed a method to determine the size
of photovoltaic grid-connected systems with different cell technologies. In this method, the technical
and economic performance of PV energy systems under five different battery technologies, namely
lead-acid battery, Li-ion battery, vanadium REDOX battery and nickel-iron battery, is compared.
Depending on the frequency of grid outages, this survey conducts 0 to 500 outages per year. The main
comparative indicators considered are the cost of investment, the proportion of renewable energy and
surplus electricity. Grid-connected PV/nickel-iron battery systems are most efficient at high failure
frequencies in the main grid. However, it is worth noting that this method may experience delays.

Robustness optimization is an optimization method that makes use of interval disturbance
information to make the best decision under the worst disturbance condition. Recently, it has been
applied to the dispatching decision of power systems because of its advantages such as easily available
basic data, high computational efficiency, and suitability for solving large-scale systems. Based on
this, this paper studies the regulation method of energy storage systems based on multi-stage robust
optimization. Aiming at robust optimization parameters, wind power uncertainty, photovoltaic power
generation uncertainty parameters, renewable energy output uncertainty model, and load uncertainty
model, multi-stage robust optimization of energy storage is carried out. By constructing a multilevel
robust optimal allocation model, the upper optimization model and the lower optimization model
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are refined. By applying decision constraints, the performance of the energy storage power station
system is improved, resulting in enhanced system efficiency and reduced computation time. The use
of generalized Benders Decomposition facilitates coordinated operation and eliminates unnecessary
power data. Taking into account the coordinated operation among different systems, the power
dispatch plan should be developed to enhance the visibility of renewable energy contribution and avoid
operational delays. Experimental results demonstrate that this method can adjust the uncertain set
boundaries by introducing various constraint parameters. It effectively addresses the conservativeness
issue commonly encountered in other robust optimization approaches, enabling a more reasonable
reduction in energy storage capacity within the power system. Consequently, it enhances the responsive
capabilities of large-scale renewable energy integration into the grid.

2 Optimal Allocation Model Design for Energy Storage in Power Systems
2.1 Setting Robust Optimization Parameters

The primary objective of power system dispatch is to ensure a balance between the total energy
generated and the total energy consumed by the load. With the presence of renewable energy, the static
balance of the power system evolves into a dynamic equilibrium over time. That is, in the process of
power dispatching, it is necessary to maintain the energy regulation capacity of the system is greater
than the fluctuation range of the energy consumption load.

Robust optimization is an optimization method for uncertainties. In the process of system
operation, assuming that the value range of uncertainties is fixed, the purpose of the optimal solution
is to make the values of any uncertainties meet the constraint requirements of the system [9,10]. And
even if the uncertainty is the worst in all cases, it will still make the system cost the lowest.

The establishment of a good set of uncertainties is the key to solving the problem of inconsistencies.
In the power dispatching problem, renewable energy is the main source of system uncertainty.
Various factors, including seasonal changes and environmental conditions, can impact wind energy.
Therefore, it is important to enhance the accuracy of wind power output prediction. Similarly, the
output of photovoltaic systems is influenced by factors such as day-night cycles, solar intensity, and
cloud conditions. These factors contribute to more intense fluctuations in the short-term output of
photovoltaic systems.

2.2 Model of Wind Power Generation Uncertainty
The main influencing factor of the fan output is the size of the wind speed. In the case of a certain

air quality, the power generated by the fan P can be expressed as:

P = 1
2

CπρR2v3 (1)

where, ρ is the density of the air in the case of fan output [11]. R is the size of the radius of the fan
blade. v is the wind speed situation at the corresponding time. C is the probability of its contribution.

The fan’s specific output is influenced by factors such as wind speed, wind direction, air pressure,
and temperature. The uncertainty associated with these factors leads to fluctuations in the actual
output of the fan around its theoretical value. Additionally, due to the non-linear relationship between
wind speed and wind output power, the distribution of wind power output power varies under different
wind speed conditions.
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2.3 Model of Photovoltaic Generation Uncertainty
The situation of solar power generation is mainly determined by the intensity of light at the time

of power output [12]. According to statistical laws, under normal circumstances, the light intensity of
solar light over a period of time has a certain regularity. It can be approximated as a beta distribution,
which can be expressed as:

f (I) = Γ (α + β)

Γ (α) Γ (β)

(
I (t)α−1

Imax

)(
1 − I (t)

Imax

)β−1

(2)

where, I (t) is the light intensity of the corresponding system at the moment t. Imax is the maximum
light intensity on a photovoltaic power generation system during a statistical time period. α and β are
the shape distribution coefficients in the system.

In addition to the impact of light intensity, factors such as air temperature, cloud cover, and
atmospheric conditions also affect the output power of photovoltaic power generation systems.
Therefore, it has obvious output uncertainty.

2.4 Models of Uncertainty in Renewable Energy Output
With the development of multi-energy systems, the share of renewable energy sources in the

electricity mix is steadily rising. However, the unpredictable, fluctuating, and sporadic nature of
renewable energy output presents considerable challenges to the power system. These factors can
significantly impact the stability and safety of the power system.

The uncertainty related to renewable energy sources like wind and photovoltaics can be charac-
terized by the disparity between forecasts and actual output. Thus the model Gk of renewable energy
output can be expressed as:

Gk = Gk + ΔGk (3)

where, Gk is the predicted value of the output of uncertain energy sources such as wind and
photovoltaics. ΔGk is the deviation between the actual output and the predicted result.

By establishing an uncertain regulation model, the multi-energy composite system is represented
as:

pD
k = pr

{
GD

k − Giv

2
< Gk < GD

k + Giv

2

}
(4)

where, GD
k represents the anticipated renewable energy output within the system. The probability of

unit output prediction deviation ΔGD
k in the system is pD

k . The probability that Pr’s contribution to
renewable energy meets the conditions for occurrence, At this time, the system has an output prediction
bias, and the output difference can be calculated by the event probability. Giv is the maximum power
capacity that the unit can regulate.

For renewable energy, the ability to regulate its output also has certain uncertainties. Its uncer-
tainty can be expressed in the model as:

Gk (z, t) =
sk∑

k=1

pk (t) zGD
k (t) (5)

where, sk is the state of the load coordination process in renewable energy [13,14]. z is the formula
transformation of the energy system.
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2.5 Model of Load Uncertainty
In a diverse energy system, uncertainties exist not only in the output of renewable energy sources

but also in the load. The load variation in such systems is influenced by uncertain factors like weather
conditions, energy prices, and behavioral patterns, resulting in load uncertainty [15]. The matching
problem between the uncertainty of unit output and load demand is the main problem of multi-energy
systems.

In the operation of multi-energy systems, the presence of various uncertain disturbances can
significantly impact system stability. Evaluating the compatibility between energy load demand
and system stability in uncertain conditions is of utmost importance. Furthermore, developing an
uncertain load model is critical for ensuring the safety and reliability of the system during its operation.
The model for constructing the load level L(t) is:

L (t) = Pa (t) Pb (t) Pc (t) Lm + N
(
0, σ 2

)
(6)

where, Lm is the maximum annual load in the system. Pc (t) is the ratio of the peak load at the time of
t. Similarly, Pb (t) is the ratio of daily peak load. Pa (t) is the annual peak load ratio. N

(
0, σ 2

)
is the

standard normal distribution.

3 Robust Control Design of Power System with Load
3.1 Multi-Stage Robust Optimization Problem

Given the inherent unpredictability of renewable energy sources, the integration of energy storage
systems plays a vital role in enhancing the flexibility of power systems during power dispatch. By
storing surplus energy generated from renewables during high production periods and releasing it
during low production periods, energy storage systems help mitigate fluctuations and ensure a stable
and dependable power supply [16]. Energy storage capacity allocation optimization is a scheme to seek
the optimal capacity allocation for the purpose of improving the reliability, safety, and economy of
the system, taking into account various factors such as energy storage technology itself, equipment
response characteristics, and installation cost. Optimizing the configuration of equipment energy
storage capacity helps avoid idle energy storage capacity, leading to improved operational economy
and meeting reliability and security requirements. Optimizing the allocation of energy storage system
capacity can improve system coordination and flexibility, while meeting the economic requirements
of the power grid and ensuring cost-effective power operation. Hence, it is crucial to consider the
economic scheduling of different types of energy storage, such as pumped energy storage and battery
energy storage, in the daily production process planning. The inclusion of uncertainty absorption
mechanisms within the energy storage system effectively enhances the power system’s capability to
handle extreme events.

When dealing with short-term and ultra-short-term economic scheduling problems, it is important
to consider the calculation method used. A typical approach is to employ a forward-looking economic
scheduling model with a rolling time scale. To ensure accurate solutions, the time scale for this method
typically falls between half an hour and two hours. This does not meet the requirements of economy
and effectiveness for economic dispatch that needs to cover the whole day. Therefore, a multi-stage
scheduling model is required to ensure system accuracy.

The multi-stage robust optimization model for the daily scheduling model can optimize the energy
storage resources for a relatively long time. It can provide the system with extreme situations, making
the decision-maker’s decision-making more forward-looking [17].
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3.2 Multi-Stage Robust Optimization Configuration Model
Given the uncertain parameters and influences within the system, historical data does not need

to be taken into account during system operation [18]. In the configuration of the energy storage
system’s dispatch, both economic and robustness factors are considered comprehensively. Once the
system input is determined, the model can be represented as:⎧⎨
⎩

min F (s, i)
s.t. G (s, i) ≤ 0

H (s, i) = 0
(7)

where, F (s, i) is the power system dispatching the decision target, s is the decision variable in the
system, and i is the model input parameter. G (s, i), H (s, i) are the inequality constraints and the
equation constraints in this model, respectively.

Decision objective F (s, i) can be expressed as:

F (s, i) = min (D1 + D2) (8)

where, D1 represents the construction cost of the energy storage system, D2 represents the operational
cost of the energy storage system.

3.3 Upper-Level Optimization Model
In order to effectively cope with the robustness of increasing loads, and fully consider the role of

uncertain output and uncertain loads. The setting of the objective function is the maximum fluctuation
of the indeterminant. The objective function after optimization of the configuration is:

f = max (Gk, L) (9)

For a multi-objective optimization process, the influence of different factors needs to be consid-
ered comprehensively. Consider the conflict between the various uncertainties and weigh the objectives
according to their importance. You can optimize a multi-objective problem as a single-objective
problem, expressed as:{

f = λ1Gk + λ2L
min (D1 + D2) ≤ Dbud

(10)

where, λ1, λ2 are the weight coefficients for different optimization goals. Dbud is an uncertainty factor.

3.4 Lower-Level Optimization Model
Another optimization goal of the model is to ensure the economics of the distribution system.

Thus the optimized objective function is the lowest power purchase cost for the distribution network,
expressed as:

min f = min max
T∑

t=1

(
Ci (t) Pi (t)

−Co (t) Po (t)

)
(11)

where, Ci is the unit price of electricity purchase, Co is the unit price of electricity sold, and Pi and Po

are respectively the amount of electricity purchased and sold. For daily running costs, its optimization
function can be expressed as:
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⎧⎪⎪⎨
⎪⎪⎩

min max
(
dTY

)
s.t. G (x, y) ≤ 0

H (x, y) = 0
α ∈ U

(12)

where, dT represents the coefficient vector of y variable in the objective function. x denotes the system
decision variable, primarily the capacity of the energy storage power station. y is a continuous variable
in the power dispatching system, encompassing node voltage, load, renewable energy output, and
branch power flow. X is a set of column vectors composed of x variables. The x variable typically
represents the target variable, such as the system’s capacity and power. Y is the set of column vectors
that constitute the y variable.

3.5 Decision Constraints of Power Station Operation

1. Uncertain output constraint of photovoltaic power generation system, expressed as:{
0 ≤ Pv (t) ≤ Pm

v

0 ≤ Pw (t) ≤ Pm
w

(13)

where, Pv is the output of the photovoltaic power generation system. Pm
v is the maximum capacity value

for a photovoltaic system. Pw is the output of wind power systems. Pm
w is the maximum capacity value

for a wind power system.

2. Operation limit of power station, expressed as:
In an equalized circuit system, it is assumed that the state of charge changes in each battery are

consistent. This means that the output characteristics of the battery pack are equivalent to the output
of a single battery. As a result, the battery pack can be simplified using the Thevenan model [19].
Assuming that the AC power value between the power station and the distribution network is constant,
the model can be expressed as:

S (t + Δt) = S (t) (1 − σ) + ηcPch (t)Δt − Pdis (t) Δt/ηd (14)

where, S represents the battery capacity within the energy storage power station, σ as the battery
discharge efficiency, ηc is the system power conversion efficiency, Pch is the power station absorption
power efficiency, Δt is the calculation time interval, Pdis is the power station discharge power efficiency,
ηd is the inverter conversion efficiency.

3. Energy balance constraint, expressed as:{
Pi+1 (t) = Pi (t) − Pi,L (t) + Pi,G (t)
Qi+1 (t) = Qi (t) − Qi,L (t)

(15)

where, Pi and Qi are the active power and reactive power of the popular i node, respectively. Pi,L and
Qi,L are the active loads and the reactive loads on the corresponding node i, respectively. Pi,G is the sum
of distributed power generation and energy storage power stations on node i.

4. Thermal power unit operation constraints, expressed as:

Generally, the fuel cost characteristics of thermal power units are approximated by a smooth
quadratic function, and a pulse is superimposed on the unit energy consumption curve considering the
threshold effect. The output constraint is shown in Eq. (16). See Eq. (17) for the climbing constraint.
The minimum start-stop time constraint is shown in Eq. (18). See Eq. (19) for the logical relationship
between the running and start-stop state variables.
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Ri,tPi,min ≤ Pi,t ≤ Ri,tPi,max, ∀i, t (16)

Pi,t − Pi,(t−1) ≤ Ri,tGRi +
(
1 − Pi,(t−1)

)
Pi,min + Pi,min

(
Pi,t − Pi,(t−1)

)
, ∀i, t (17)

Pi,(t−1) − Pi,t + Pi,k ≤ 1, ∀i, t t ≤ k ≤ Toff ,i + t − 1 (18)

Pi,(t−1) − Pi,t + Pi,t
off ≤ 0, ∀i, t (19)

where, Ri,t is the whole life cycle of the energy storage system; Pi,t is the output of generator i in t
period; Pi,min is the lower limit of unit output; Pi,max is the output limit of the unit; The output of Pi,(t−1)

generator i in t − 1 period; GRi is the number of thermal power units in the system; Is the output of Pi,k

generator i in the corresponding wind farm group; Toff ,i is the minimum stop time of the unit; Pi,t
off is

a Boolean variable.

5. Energy storage system operation constraints, expressed as:

In energy storage systems, the state of charge in each period is affected by both the previous state
of charge and the current charge and discharge amounts. To ensure the sustainable operation of the
energy storage system, it is essential for the total charge and discharge power to balance out over the
entire scheduling period:

T∑
t−1

Pt
ESS = 0 (20)

where, Pt
ESS is the frequency modulation power of stored energy at time t. This ensures that the energy

storage system maintains a balance between charging and discharging, allowing for efficient and
continuous cycling of energy.

6. Uncertain delay constraint, expressed as:

The uncertain delay is treated by delay dependence, and the margin of preset delay is constrained
to minimize to evaluate the robustness of closed-loop systems with different delays. The delay meets
the following conditions:

τmin ≤ d ≤ τmax (21)

where, τmin delay margin calculated minimum constant; τmax delay margin calculated maximum constant
calculated by delay margin. The marginal effect of delay can be optimized by effective delay constraint.
The delay margin is the key factor that affects the frequency modulation index in load frequency
control. Hence, Eq. (21) can effectively account for the cumulative communication delay during power
system energy storage and frequency modulation operations. By addressing the challenges arising from
the fluctuations in uncertain energy and load throughout the day, it enables the coordination of load
frequency in regional power grids.

3.6 Solution of Optimal Allocation Model Based on Generalized Bending Decomposition
For multi-stage robust optimization problems, the model needs to be solved by generalized

Benders Decomposition. This decomposes the problems in the model into sub-problems [20].

A flowchart of the decomposition method is shown in Fig. 1.
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Figure 1: Flowchart of generalized Benders Decomposition

After the decomposition of the model, the main requirements to solve the problems include
economic optimization problems, feasibility problems and planning optimization problems.

4 Experimental Results and Data Analysis
4.1 Experimental Node Test System

The test system was obtained after modification of the PJM 5-bus system. The system consists of
four thermal power units, one wind farm, one photovoltaic power station and one energy storage
system. The specific parameters of the test system are as follows: the rated voltage is 10.60 kV,
the maximum allowable voltage of a single node is 1.97 pu, the maximum allowable current of
the corresponding branch is 1.20 kA, and the minimum required voltage value of the standby is
0.25 pu, the minimum allowable current of the corresponding branch is the minimum. The value is
0.15 kA. Among them, the rated capacity of traditional units is 1000 MW, the proportion of new
energy photovoltaic power generation is 20%, the rated power of energy storage power station is
20 MW, and the total power is set at 20 MW·h. The parameters of the generator set are shown in
Table 1.
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Table 1: Thermal power unit parameters

Unit Power range (MW) RU/RD (MW/h) Unit cost (yuan/MW·h)

G1 0∼180 80 9800
G2 0∼200 68 25000
G3 0∼50 16 9000
G4 0∼500 208 19000

For thermal power sets, the cost function is considered to be a linear change. The penalty cost per
unit cut load is 120 yuan/kW·h. The penalty cost of not meeting the standard for uncertain energy
consumption is 30 yuan/kW·h.

Set the battery energy storage device of the energy storage power station as a lithium iron
phosphate material battery. The unit capacity cost of the battery is 2100 yuan/kW·h, the power cost
is set to 1600 yuan/kW·h, and the operation and maintenance cost accounts for 1% of the total
investment. Set the fluctuation deviation of renewable energy storage to 10%.

4.2 Experimental Results
1. Schedule the analysis results
The method of this paper, the method of reference [7] and the method of reference [8] are used

to calculate the economic operation cost, and the worst-case impact on the energy storage system is
considered. The lower the cost, the better the application effect of the method, and the determination
of the calculation results is shown in Fig. 2.
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Figure 2: Iteration case

As shown in Fig. 2, when the number of iterations approaches 80, the method in this paper has
converged, the cost is low, and the calculation time of the whole model is only 25 s. It is proved that this
method has certain applicability. This is because the proposed method constructs constraint strategies
in various modes, and optimizes the operation efficiency of power system from all directions and
angles.

Considering the worst-case scenario in which the power output in the system is uncertain, the
system scheduling scenario is shown in Fig. 3. Since Vitality Generator 3 has the lowest operating
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cost, it is always under maximum load. Unit 2 has the highest cost and is therefore basically out of
service. The load variation of other units changes with the change of net load.
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Figure 3: System scheduling schedules

As can also be seen in Fig. 3, the energy storage system is charged during the time period of 3:00 to
9:30 to absorb more fan discharge. Charge from 14:00 to 16:00 to absorb solar and wind loads. Other
times are mainly discharged to reduce the operating costs of thermal power.

2. Algorithm comparison

In order to prove the superiority of this model, it is compared with the methods of reference [7]
and the methods of reference [8]. The results are shown in Table 2.

Table 2: Economic comparison

The methods of
reference [7]

The methods of
reference [8]

Methods of this paper

Fuel cost (million yuan) 185.35 198.35 178.14
Load abandonment cost (10,000 yuan) 1.42 10.06 0.98
Cut load cost (10,000 yuan) 0 16.23 0
Total cost (10,000 yuan) 186.77 240.35 179.12

It can be seen from the results in Table 2 that the total cost of the multi-stage robust optimization
model in this paper is the lowest among all algorithm models. The cost of this method is slightly lower
than that of reference [7] by 4.2% and lower than that of reference [8] by 25.4%. This is because the
method proposed in this paper establishes both the upper-level planning objective function and the
lower-level planning objective function. By doing so, it effectively calculates the overall life cycle cost
of the power system, which includes the fixed investment cost and the operation and maintenance cost.
This approach ensures the sustainable operation of the energy storage system and maintains consistent
energy storage capacity throughout each dispatching cycle.

3. Uncertainty analysis

To verify the influence of uncertain source loads on power system dispatching. According to
the different deviations of renewable energy fluctuations, the robust dispatching model is analyzed
to ensure that the deviation of load fluctuations is less than 10%. Set the fluctuation deviation of
renewable energy to 0%–30%. In this scenario, compare the operating cost fluctuation range of the
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methods in this paper [7,8]. The more stable the change of operating cost, the better the effect of the
method. The calculation results are shown in Fig. 4.
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Figure 4: Changes in operating costs

It can be seen from Fig. 4 that the operating costs of the system under the three methods
all increase with the fluctuation deviation of renewable energy. When the fluctuation deviation of
renewable energy is 0, the three methods have no fluctuation, so the prediction of uncertain energy is
more accurate. This makes the system the lowest solution of running cost and the lowest robustness of
the system. With the fluctuation of renewable energy gradually increasing and realizing, the prediction
error of the system appears, but the error of this method is always smaller than that of the methods
in references [7,8]. This is because, in this method, the generalized bending decomposition is adopted
to solve the optimal allocation model, and complex variables are introduced to complete the linear
programming problem, which effectively ensures the robustness of power system scheduling.

When the fluctuation of uncertain energy sources is small, the system can effectively ensure its
economy on the basis of ensuring robustness. In actual scheduling, the staff needs to ensure the
economy of the scheduling system according to the fluctuation deviation.

5 Conclusion

To address the scheduling challenges related to energy storage systems and uncertain energy
sources, this research proposes a regulation method based on multi-stage robust optimization. The
study constructs an optimal allocation model for energy storage in power systems and employs the
multi-stage robust optimization approach to address the limitations of traditional methods in terms
of time scale. By doing so, it aims to tackle system issues arising from the fluctuations of uncertain
environmental energy and unpredictable load variations. The generalized bending decomposition
method is utilized to optimize the parameters of the target solution model, reducing the system size and
ensuring algorithm convergence. Comparative analysis demonstrates that the proposed model exhibits
favorable economic performance when compared to other models. Additionally, the study highlights
the significant impact of fluctuation deviations on the system’s operating cost and robustness. This
model can effectively enhance the economic efficiency of power systems containing uncertain energy
and energy storage systems, making it suitable for guiding the regulation and control of related power
systems. Future research can further explore the uncertainty on the power side and investigate the
coordinated configuration of energy storage and reactive power compensation equipment with 100%
renewable energy supply and support for new energy stations.
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