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ABSTRACT

Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the
erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating
a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on
the load storage side. A scheduling model is devised that takes into account the confidence interval associated
with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation.
To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon
modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated
and adaptable operational paradigms. Drawing from this analysis, a model is devised to represent the adjustable
resources on the charge-storage side, predicated on the principles of electro-thermal coupling within the energy
system. Subsequently, the dissimilarities in the confidence intervals of renewable energy generation are considered,
leading to the proposition of a flexible upper threshold for the confidence interval. Building on this, a low-carbon
dispatch model is established for the integrated energy system, factoring in the margin allowed by the adjustable
resources. In the final phase, a simulation is performed on a regional electric heating integrated energy system. This
simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation
across various scenarios of reduction margin reserves. The findings underscore that the proactive scheduling
model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the
uncertainties tied to renewable energy generation. Through harmonized orchestration of source, load, and storage
elements, it expands the utilization scope for renewable energy, safeguards the economic efficiency of system
operations under low-carbon emission conditions, and empirically validates the soundness and efficacy of the
proposed approach.
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1 Introduction

Under the guidance of the dual-carbon target, the modern energy system is gradually transforming
into a new energy system with renewable energy as the main source. Within this emerging energy
framework, Integrated Energy Systems (IES) with electric-thermal coupling as the core enhances low-
carbon energy utilization through multi-source coupling conversion, which provides an effective way
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to promote low-carbon emission reduction and improve energy utilization efficiency in the energy
transition process [1].

The distributed generation (DG) within IES is gradually transitioning to become the predominant
energy source for the energy system due to its zero-carbon characteristics [2,3]. However, the random-
ness and predictive errors associated with DG necessitate that IES possess substantial peak-shaving
capabilities. During the energy dispatch process, it is imperative to prepare for peak-shaving reserves to
mitigate the risk of insufficient downward reserves within the IES. This inadequacy could otherwise
lead to instances of curtailed solar and wind power and limitations on carbon emissions reduction
potential. Therefore, it is critical to optimize the control functions within the multi-source coupling
elements of the IES. Achieving a harmonious balance between ensuring the low-carbon operation
of the IES and utilizing the regulation capabilities in generation, demand and storage becomes
essential. This pragmatic approach not only helps to align with the salient features of renewable energy
generation but also helps to develop economically viable dispatch strategies. Consequently, it holds
pivotal significance in realizing the objective of achieving low-carbon operations within the modern
landscape of integrated energy systems.

Since IES carbon emissions mainly originate from coal and other energy sources consumed by
power-side generating units for energy supply [4], source-side cogeneration units utilizing carbon
capture and sequestration technology for carbon capture retrofit can become an ideal complementary
power source for renewable energy power generation. Currently, carbon capture power plants primarily
employ two methods for carbon capture: the shunt type and the liquid storage type. Among them,
the shunt type carbon capture power plant carbon capture energy consumption and unit power are
positively correlated [5], and CO2 must be continuously captured and analyzed. Liquid storage carbon
capture power plants exhibit “energy time-shift characteristics” [6], allowing for the timely storage
of captured CO2. However, economic conflicts may arise when carbon trading prices are low. The
emergence of integrated and flexible operations in carbon capture plants, which combine both shunt
and liquid storage methods [7,8], addresses the limitations of individual approaches and achieves the
separation of CO2 absorption and capture processes. Furthermore, determining how to effectively
employ carbon capture operational adjustments to broaden the output spectrum of carbon capture
power plants, thereby enhancing the source-side carbon capture power plant’s capability for energy
time-shift adjustments to accommodate fluctuations in renewable energy power generation, holds
substantial significance in mitigating carbon emissions within the IES.

Differing from source-side carbon capture power plants that directly capture and absorb CO2,
the load and storage side within IES adjusts its operational conditions through demand response
and grid regulation. This response aims to address fluctuations in distributed generation (DG) power
output, indirectly contributing to the reduction of the system’s carbon emissions. Notably, research
regarding the involvement of electric/thermal energy storage systems (ESS) in regulation applications
has been progressively expanding. It has evolved from focusing solely on single-system optimization [9]
to encompassing optimization across diverse scenarios within the IES framework [10]. Additionally,
load-side controllable loads have initiated participation in the optimization of IES operations through
demand response mechanisms [11,12]. Reference [13] delved into the influential role of existing carbon
trading mechanisms on IES operations, while reference [14] proposed a heuristic algorithm-based
approach for load scheduling and energy storage system management. Nevertheless, the existing
coordination and optimization strategies for resources on the load and storage side within the IES
predominantly rely on deterministic wind and solar forecasts [15]. Unfortunately, this approach tends
to overlook discrepancies between actual values and predictions due to the inherent variability of
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wind and solar resources. This oversight results in inadequate consideration of the available margins
for various resource types.

The objective of this article is to delve into the backdrop of multi-source coupling within IES,
the integrated flexible operational mode of source-side carbon capture power plants in IES, and the
extent to which the coordination attributes of the flexibility of resources on the load and storage side
have been comprehensively considered, as this has a bearing on the holistic realization of low-carbon
complementary advantages. Moreover, the passive consumption scenario resulting from the volatility
and unpredictability of renewable energy sources, such as wind and solar, demands assurance that
the predictive errors associated with distributed generation within IES possess the requisite coping
capacity at the day-ahead stage.

The main contributions of this work can be summarized as follows:

(1) This study centres on the regional IES as its focal research target. The analysis investigates the
energy time-shift characteristics intrinsic to the integrated flexible operation of the source-side carbon
capture power plant. Simultaneously, it evaluates the regulatory attributes and carbon-reduction
adaptability exhibited by the flexible resources on the load and storage components. Leveraging
the low-carbon synergies inherent in IES source-load-storage resources, this research introduces
a coordinating low-carbon scheduling mechanism. This mechanism ensures seamless coordination
among the source, load, and storage aspects.

(2) Given the varying confidence intervals associated with wind and solar renewable energy
sources, along with the downward adjustment margin reserve of flexibility resources, and taking
into account the dispatchable resource utilization efficiency, an IES day-ahead dispatch model is
formulated. This model incorporates confidence intervals, effectively bolstering the IES’s capacity to
accommodate errors in renewable energy forecasts.

(3) Taking the electric-thermal coupling system as an example, the comprehensive benefits of
IES are evaluated through simulation, and the coordinated operation of the source-load-storage side
under different scenarios is analyzed, which effectively reduces the carbon emission of the system after
optimization, improves the economic benefits of the system operation, and provides auxiliary guidance
for the optimized operation of IES in a low-carbon environment.

2 Analysis and Modeling of the Source-Load-Storage Mechanism of IES

Electric-thermal coupled IES is powered on the supply side by carbon capture power plants,
conventional cogeneration units, higher-level grids, as well as wind and photovoltaic power sources.
On the demand side, the user’s production process undergoes adjustments via demand response mech-
anisms, effectively addressing the requirements for IES peak shaving and valley filling. Concurrently,
the storage facet is managed through the synergy of electric and thermal energy storage. Notably, the
IES’s internal electric and thermal network is intricately linked with electric heating equipment via
cogeneration units, thereby enabling seamless energy conversion. This synergy facilitates the dynamic
bidirectional energy flow, underscoring the exploration of synergistic potentials among the supply,
demand, and storage components.

In response to the diversified needs of users within the IES, an integrated electric-thermal energy
system, as shown in Fig. 1, is established to safeguard electric and thermal load demand.
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Figure 1: The structure of IES

2.1 Mechanistic Analysis and Modelling of Carbon Capture Power Plants
The integrated flexible operation of carbon capture power plants consists of two parts: split-flow

and liquid storage operation [16]. The split-flow operation controls CO2 emissions by adjusting the
flue gas bypass, while the liquid storage operation decouples the CO2 capture and absorption processes
by relying on liquid storage equipment, allowing the unit to adjust the power consumption for CO2

capture and absorption at any time. The integrated flexible operation mode combines the advantages
of the two operation modes, converting the CO2 that should be captured in real-time during peak load
periods into storage in solution to reduce direct carbon emissions, and consuming the pre-stored CO2

in solution during low load periods to make full use of the unit’s residual power while reducing the
unit’s carbon emissions. Through the process of storing and recapturing the carbon emissions of the
unit, the flexible transfer of CO2 is finally realized, which enables the unit to meet the demand for
energy supply during the peak load period and fully utilize the remaining power of the unit during the
low load period, which is beneficial to the auxiliary IES for renewable energy consumption.

After the installation of carbon capture devices in ordinary CHP, the total output of the carbon
capture unit is increased by the carbon capture energy power on top of the net output of the unit.
The carbon capture energy power is composed of fixed energy consumption and operating energy
consumption [17], and the operating energy consumption is composed of resolved energy consumption
and compression energy consumption [18]. The carbon capture power plant model is thus established,
as shown in Eq. (1) [19].⎧⎪⎨
⎪⎩

PGi,t = PJi,t + σGφGi,t + PDi + PBi,t

EtotalCO2i,t
= ESGi,t + βδiEGi,t

0 ≤ EtotalCO2i,t
≤ ηβegiPGi,max

PBi,t = λEtotalCO2i,t

EGi,t = egiPGi,t

(1)

In the above equation, PGi,t, PBi,t, PJi,t, PDi,t are the total output power, operating energy consump-
tion, net output power, and fixed energy consumption of unit i at time t, respectively; EGi,t , EtotalCO2i,t

,
ESGi,t are the total amount of CO2 produced by unit i at time t, the total amount of CO2 already
captured, and the amount of CO2 provided by the solution memory, respectively; egi is the carbon
emission intensity of unit i; σG is the reduction value of output electric power when extracting unit
steam volume at the fixed steam inlet; δi is the flue gas split ratio of unit i; β is the carbon capture
efficiency; η is the maximum operating condition factor of regeneration tower and compressor; λ is
the energy consumption for capturing unit CO2.
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From the derivation of Eq. (1), the expression of the net output range of the carbon capture unit
is shown in Eq. (2) [19].

PGi,min
− ληβδmaxeg,iPGmax − PD,i ≤ PJt,i ≤ PGi,max − PD,i (2)

Observably, when considering equivalent installed capacities, the carbon capture plant exhibits a
heightened capacity for carbon capture in comparison to a conventional CHP unit devoid of carbon
capture technology. This discrepancy leads to a diminished net output threshold. Additionally, the
incorporation of a solution memory configuration assigns a modifiable power allocation to the unit,
yielding an energy-time-shifting phenomenon. This temporal energy adjustment serves to further
curtail the unit’s lower net output boundary, thereby enhancing its alignment with the requisites
of renewable energy generation and bolstering its efficacy in responding adeptly to low-carbon
imperatives.

2.2 Modeling of Controllable Loads
The load-side controllable load has the characteristics of large scale and obvious influence by the

user’s type of electricity consumption, which is regulated directly by the superior grid or its initiative
to respond to the change of electricity price, change the user’s production process, adjust the working
hours to shift and cut its electricity consumption in response to the IES regulation demand. According
to the characteristics of controllable load, the electrical load is divided into two categories: transferable
load and interruptible load [20]. The controllable loads are modelled as follows:

PDR,t = PL,t + PTSL,t − PIL,t (3)

In the above equation: PDR,t, PL,t are the post and pre-electric load values of the electric load
demand response at time t; PTSL,t is the transferable electric load value; PIL,t is the interruptible electric
load at time t.

Transferable load maintains the same total load throughout the dispatch cycle by reallocating part
of the load from the original consumption period. It satisfies the following constraints:

PTSL,t,min ≤ ∣∣PTSL,t

∣∣ ≤ PTSL,t,max (4)
24∑

t=1

PTSL,t = 0 (5)

In the above equations: PTSL,t,max, PTSL,t,min are the upper and lower limits of transferable electric
load at time t, respectively.

The interruptible load is part of the load that is cut in response to the power system’s peak demand
during the tight power supply time, and the pressure of supplying energy on the IES source side is
relieved by economic subsidies. It satisfies the following constraints:

0 ≤
24∑

t=1

PIL,t ≤ PIL,max (6)

In the above equation: PIL,t,max is the maximum total interruptible load.



466 EE, 2024, vol.121, no.2

2.3 Modeling of Electric Heating Equipment
Electric heat production equipment is generally based on high-grade heat production equipment

such as electric boilers, which effectively connect the IES electric heat coupling link and can quickly and
efficiently convert excess electricity that cannot be consumed by the power system during the time of
large differences in electric heat demand, providing another effective channel for low-carbon emission
electric energy consumption during the low load period, while relieving the heat supply pressure of
CHP units. The model is:

φEB,t = εEBPEB,t (7)

0 ≤ PEB,t ≤ PEB,max (8)

In the above equations: ΦEB,t is the heating power of electric heating equipment; PEB,t is the electric
power consumed by electric heating equipment; PEB,max is the maximum power of electric heating
equipment; εEB is the electric heat conversion efficiency.

2.4 Modeling of Energy Storage Devices
Electric/thermal energy storage in IES plays a flexible regulating role during operation, storing

low-carbon clean energy that is difficult to consume by IES during large-scale renewable energy
generation, and making timely supply during periods of high load demand to reduce IES carbon
emission pressure and adapting to IES dynamic regulation needs.

The installation of Battery Energy Storage (BES) and Thermal Energy Storage (TES) can promote
the reduction of carbon emission levels in electric-thermal systems. A unified model of the response
characteristics and constraints of the two types of energy storage is shown below:

Ei,t = Ei,t−1 + PESS,c,i,tμc − PESS,dis,i,t/μdis (9)

Emin ≤ Ei,t ≤ Emax (10)

δESS,c,tPESS,c,min ≤ PESS,c,t ≤ δESS,c,tPESS,c,max (11)

δESS,dis,tPESS,dis,min ≤ PESS,dis,t ≤ δESS,dis,tPESS,dis,max (12)

δESS,dis,t + δESS,c,t ≤ 1 (13)

In the above equations: Ei,t is the remaining capacity of the ith energy storage device in time
t, Emax, Emin are the upper and lower limits of energy storage capacity; PESS,c,i,t, PESS,dis,i,t are the
charging/supplying power of energy storage device i in time t, PESS,c,max, PESS,c,min, PESS,dis,max, PESS,dis,min are
the upper and lower limits of the charging/supplying power of the energy storage device; μc, μdis are
the charging/supplying efficiency of the energy storage; δESS,c,t, δESS,dis,t indicate the working state of the
energy storage, with 0 representing the non-working state and 1 representing the working state.

3 IES Low Carbon Economic Dispatch Model Considering Confidence Intervals for Renewable Energy
Generation
3.1 Choice of an Upper Limit of a Flexible Confidence Interval for Renewable Energy

Acknowledging the inherent unpredictability in forecasting scenic renewable energy outputs,
an IES scheduling model predicated upon confidence intervals is introduced. This model adeptly
addresses the oscillations within scenic renewable energy generation profiles, facilitating the optimized
utilization of low-carbon renewable resources. Moreover, it ensures the equilibrium of electricity and
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heat outputs within the IES domain by orchestrating resource allocation intricacies intrinsic to the
system’s internal dynamics.

Since the forecast curve and confidence interval of renewable energy generation can only be
obtained in the day-ahead scheduling stage, this paper considers the scenario of wind and light
abandonment due to insufficient IES down the regulation margin and plays the role of IES source-
load-storage regulation to make down-regulation margin reserve in the scheduling stage to cope
with the fluctuation of renewable energy generation output. The downward adjustment margin is
composed of common CHP units, carbon capture units, electric heating production equipment,
electric and thermal energy storage and controllable loads. While dispatching according to the scenic
power forecast curve, a sufficient downward margin is provided for IES, and the downward margin
constraints need to be satisfied during the dispatching process:

PEB,max − PEB,h,t + PESS,c,i,t − PESS,dis,i,t + PJi,t − PJi,min
+ PGi,t − PGi,min

= PW up + PV up − PW − PV (14)

In the above equation, PW up, PV up are the upper confidence interval of wind power and
photovoltaic power generation, and PW , PV are the predicted values of wind power and photovoltaic
power generation.

Due to discernible disparities among the projected curves for renewable energy generation and
the associated confidence intervals, the upper bound of the confidence interval is established by
considering the variations across these intervals for both wind and photovoltaic outputs. For the
sake of illustrative computations, confidence intervals ranging from 70% to 100% are determined
in increments of 10% [21]. In line with reference [21], a 10% interval differential identifies the
90% interval as the most reliable prediction range, encapsulating a substantial portion of actual
values. Consequently, the mean divergence between the upper limits of the confidence interval for
renewable energy power generation at 100% and 70% throughout the prediction interval is adopted
as a reference criterion. When a considerable deviation exists between the 100% confidence interval
and the reference value, it indicates relatively diminished prediction accuracy during that timeframe.
Accordingly, the upper limit of the 90% confidence interval is selected as the definitive upper bound for
renewable energy power generation. This choice facilitates prudent provisioning for renewable energy
consumption while avoiding unwarranted overestimation. Conversely, when deviations fall below the
average threshold, indicative of heightened forecast precision for that period, resource scheduling
adheres to the original projected curve to prevent unwarranted downward adjustments. This dynamic
framework establishes a flexible upper limit for the confidence interval, enabling the IES to effectively
address potential resource misallocation resulting from predictive errors. It allows for ample leeway
in downward adjustments, simplifying dispatcher decisions for suitable renewable energy forecast
intervals contingent upon real-world circumstances.

ΔPave,t = (
PYU

100up,t − PYU
70up,t

)
/

24∑
t=1

(
PYU

100up,t − PYU
70up,t

)
(15)

PYC
t =

{
PYU

90up,t ,
(
PYU

100up,t − PYU
70up,t

) ≥ ΔPave,t

PYU
t ,

(
PYU

100up,t − PYU
70up,t

)
< ΔPave,t

(16)

In the above equations: PYU
100up,t, PYU

90up,t, PYU
70up,t are the upper confidence interval of 100%/90%/70%

renewable energy generation at time t, respectively, PYC
t is the renewable energy forecast curve obtained

after considering the difference of confidence intervals at time t, and ΔPave,t is the average value of the
difference between 100% confidence interval and upper 70% confidence interval at time t.
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3.2 Objective Function
In this paper, we construct a low-carbon dispatch model with IES-integrated cost optimization as

the objective function.

min f = CG + Cq + Cy + Cz + CS + CDR + CESS + CTES + Cbuy (17)

In the above equation: f is the comprehensive cost of the dispatch model; CG is the cost of
supplying thermal power units; Cq is the total cost of abandonment penalty; Cy is the cost of carbon
trading; Cz is the cost of renovation and depreciation of carbon capture power plants; CS is the cost of
solvent loss in the carbon capture process; CDR is the cost of demand-side response regulation; CESS,
CTES are the cost of charging/supplying electric and thermal energy storage, respectively; Cbuy is the cost
of purchasing power from the upper grid.

3.2.1 Cost of Supplying Energy to Thermal Power Units (CG)

CG =
24∑

t=1

M∑
i=1

[ai

(
PG,i,t + σGφG,i,t

)2 + bi

(
PG,i,t + σGφG,i,t

) + ci] (18)

In the above equation: ai, bi, ci are the coal consumption cost coefficients of unit i, respectively;
M is the number of units.

3.2.2 Total Cost of Wind Abandonment Penalty (Cq)

Cq =
24∑

t=1

KqPwq,t (19)

In the above equation: Kq is the penalty cost per unit of abandoned wind volume; Pwq,t is the
abandoned wind power at time t.

3.2.3 Cost of Carbon Trading (Cy)

Cy = Ky

[
Ec −

M∑
i=1

24∑
t=1

(
δhPGi,t

)]
(20)

In the above equation: Ky is the carbon trading price; Ec is the total carbon emission of the system;
δh is the carbon emission allowance factor.

3.2.4 Daily Depreciation Cost of Carbon Capture Power Plant (Cz)

Cz = CFL

(1 + r)Nzl r

365
[
(1 + r)Nzl − 1

] + PRYVRY

(1 + r)NRY r

365
[
(1 + r)NRY − 1

] (21)

In the above equation: r is the discount rate of the carbon capture plant; CFL and Nzl are the total
cost of carbon capture equipment and depreciable life of the split-flow plant, respectively; PRY is the
total cost of solution storage per unit volume of liquid storage carbon capture plant; VRY and NRY are
the volume of solution storage and depreciable life, respectively.

3.2.5 Solvent Loss Cost (CS)

CS =
24∑

t=1

M∑
i=1

KSϕEtotalCO2 i,t (22)
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In the above equation: KS is the ethanolamine solvent cost factor; ϕ is the solvent running loss
factor.

3.2.6 Energy Storage Operating Costs (CESS, CTES)

CESS = βESS
price,i

24∑
t=1

(∣∣PESS,c,i,t

∣∣ + ∣∣PESS,dis,i,t

∣∣) (23)

CTES = βTES
price,i

24∑
t=1

(∣∣φTES,c,i,t

∣∣ + ∣∣φTES,dis,i,t

∣∣) (24)

In the above equations: φTES,c,i,t, φTES,dis,i,t are the charging/supplying power of thermal energy storage
device i in time period t; βESS

price,i, β
TES

price,i are the charging/supplying O&M costs of electric and thermal
energy storage.

3.2.7 Cost of Load Regulation (CDR)

CDR = eprTSL

24∑
t=1

PTSL,t + eprIL

24∑
t=1

PIL,t (25)

In the above equation: eprTSL is the unit transferable load adjustment price; eprIL is the unit
interruptible load adjustment price.

3.2.8 Cost of Power Purchase from the Upper Grid (Cbuy)

CBY =
24∑

t=1

eprice,tPBY,t (26)

In the above equation: eprice,t is the time-sharing tariff for electricity purchased from the upper grid
in time period t.

3.3 Constraints
3.3.1 Constraint with the System’s Electrical Power Balance

M∑
i=1

PG,i + PW + PV + PESS,dis + PBY = PLOAD + Pwq + PEB + PDR + PESS,c (27)

3.3.2 Constraint on the Thermal Power Balance of the System
M∑

i=1

φG,i + φEB + φTES,dis = φLOAD + φTES,c (28)

3.3.3 Climbing Constraints of Cogeneration Units

PG,t − PG,t−1 ≤ ΔPu (29)

PG,t−1 − PG,t ≤ ΔPd (30)
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In the above equations: PG,max, PG,min are the maximum and minimum electric output of the CHP
unit; φG,max, φG,min are the maximum and minimum heat output of the CHP unit; ΔPu, ΔPd are the
climbing rate of the unit.

3.3.4 Constraints for Integrated Flexible Operation Mode Carbon Capture Power Plants

Carbon capture power plants are retrofitted based on ordinary CHP units with the same output
constraint climbing constraint as conventional CHP units.

Considering the carbon capture power plant storage constraint, this paper refers to the treatment
in reference [19] and expresses the CO2 mass in the form of solution volume, as shown in the following
equation:

VCA,t = ESG,tMMEA

MCO2
θCRρR

(31)

In the above equation: VCA,t is the volume of solution required to provide CO2 at time t from the
solution memory installed in the power plant; MMEA and MCO2

are the molar masses of MEA and
CO2; θ is the regeneration tower resolution; CR is the concentration of the alcohol amine solution; ρR

is the density of the alcohol amine solution.

The solution memory constraint contains the reservoir volume constraint and the reservoir volume
change constraint, as shown in the following equation [19]:⎧⎨
⎩

VCFYt = VCFYt−1
− VCAt

VCPYt = VCPYt−1
− VCAt

0 ≤ VCFYt ≤ VCR

0 ≤ VCPYt ≤ VCR

VCFY0
= VCFY24

VCPY0
= VCPY24

(32)

In the above equation: VFY,t and VPY,t are the solution volumes of the liquid-rich memory and the
liquid-poor memory at time t, respectively; VCR is the capacity of the solution memory; VFY0, VPY0,
VFY24, VPY24 are the solution volumes of the liquid-rich memory and the liquid-poor memory at the
beginning/end of the scheduling cycle, respectively.

3.4 Low Carbon Economy Scheduling Model Solution Principles
The core solution principle of the developed IES low-carbon economic dispatch model, as pre-

sented in this study and taking into account the confidence intervals of renewable energy generation,
is depicted in Fig. 2.

Start

Input IES raw data

Input wind and solar prediction 
data and threshold values for each 

confidence interval

Calculation of upper limit of 
flexible confidence interval for 

renewable energy

Determine the adjustment 
characteristics of source, load, and 

storage side resources in IES

Using the CPLEX solver to solve 
with the goal of minimizing the 

overall operating cost of IES

Obtain a complete optimal 
scheduling plan

End

Figure 2: Low-carbon scheduling model solution principle
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The fundamental approach presented in this paper entails establishing the parameters for each
constituent component within the IES. This involves inputting the forecast data for wind and
solar irradiation, subsequently delineating upper and lower bounds for the confidence intervals.
Subsequently, calculations are performed to derive the upper limit of the adaptable confidence interval
for renewable energy. Building upon these calculations, day-ahead optimization of scheduling is
executed encompassing the source-side cogeneration units, carbon capture units, storage-side electric
and thermal energy storage, and load-side controllable loads within the IES. The optimization
process revolves around the objective of minimizing the integrated cost of the IES. In doing so, the
achievable downward reserve margin within the IES under diverse scenarios is assessed, ultimately
yielding an optimized scheduling plan. Furthermore, this approach facilitates an examination of the
contribution of each system component within the scheduling outcome towards enhancing the low-
carbon advantages inherent to the IES.

4 Example Analysis

To verify the effectiveness of the proposed scheduling model, a winter IES in a region of North
China is used as an example for analysis.

4.1 Parameter Setting of the Algorithm
Two CHP units are installed in this regional IES, one unit is converted into a carbon capture power

plant and the other unit is a normal CHP unit, the basic parameters of the two units are the same, and
the detailed parameters are shown in Table 1, detailed parameters of the carbon capture unit are shown
in schedule 1 in the Appendix A [22]. The maximum power of both transferable and interruptible
electrical loads is set at 5% of the peak electrical load for each time, where the transferable load subsidy
price is 0.26 RMB/kW and the interruptible load terminal adjustment price is 0.4 RMB/kW [23].

Table 1: Parameters of cogeneration unit

Unit
parameters

Maximum
electrical
output/kW

Minimum
electrical
output/kW

Maximum
thermal output
/kW

Minimum
thermal output
/kW

Cost
parameters a/
(yuan/kW2)

25000 5000 28000 2800 0.00086

Cost
parameters b/
(yuan/kW)

Cost
parameters
c/yuan

Unit climbing
constraint
/(kW/h)

Carbon emission intensity
/(t/(MWh))

1.395 33630 4000 0.9

During the dispatch cycle, the electric and thermal load demand is shown in Fig. 3. The power
purchase price of IES from the superior grid is shown in Fig. 4 [24]. The carbon intensity factor of the
power purchase from the superior grid is set to 1. The electric/thermal energy storage parameters are
shown in Table 2. The power limit of the electric heating equipment is 10,000 kW, and the efficiency of
the heating is 0.95. The rest of the system parameters are shown in the attached Table 1. The simulation
environment of this paper is Intel Core i5-9300H CPU, 16 GB RAM, compiled and tested in MATLAB
R2020b using CPLEX.
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Based on the confidence interval distributions of wind power and PV provided in references
[21,25], the results are shown in Figs. 5 and 6, respectively. The curves in Figs. 5 and 6 are 100%, 90%,
80%, and 70% confidence intervals from outside to inside, respectively, setting the installed capacity
of scenic power for 30,000 kW.

Figure 3: Power/heat load demand curve

Figure 4: Time of use price

Table 2: Energy storage parameters

Rated capacity/kW Charging/discharging
efficiency

Operation and maintenance
costs/(CNY/kW)

BES 5000 0.9/0.9 0.15
TES 5000 0.9/0.9 0.15

From the analysis of Figs. 5 and 6, it is evident that there exist minimal discrepancies within the
confidence intervals of PV power generation. Furthermore, the PV-predicted values exhibit a high
degree of alignment with the actual PV values. Remarkably, throughout the entirety of the prediction
period, the adaptable upper boundary of the PV power generation’s confidence interval closely aligns
with the PV predicted values. Compared with PV, the difference between the confidence intervals
of wind power is more obvious, especially in the period of 14:00–20:00, the predicted and actual
values of wind power have produced significant differences, and the actual values have crossed the
upper bound of the 90% confidence interval. This indicates that wind power has high uncertainty and
low prediction accuracy, so if we rely on wind power prediction for pre-IES dispatch, it will lead to
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insufficient available regulation margin and a large amount of abandoned power when wind power
generation is higher than the predicted value. Therefore, different scenarios are classified according
to the reference upper limit of the downward adjustment margin of controllable resources in the IES
day-ahead scheduling process.

Figure 5: Confidence interval and prediction curve of wind power

Figure 6: PV confidence interval and prediction curve

(1) Scenario 1: Using wind power and PV actual forecast values for IES day-ahead dispatching,
without considering the dispatching downward adjustment margin reserve, and obtaining IES source-
load-storage optimal dispatching results;

(2) Scenario 2: Considering the forecast error due to scenery renewable energy, while dispatching
according to the forecast value, the margin reserve is adjusted downward according to the upper limit
of 70% scenery confidence interval, and the IES source load storage optimized dispatching result is
obtained;

(3) Scenario 3: Considering the scenery renewable energy forecast error, while dispatching accord-
ing to the forecast value, the margin reserve is adjusted downward according to the upper limit of
the flexible confidence interval for renewable energy generation, and the IES source load storage
optimized dispatch results are obtained.

4.2 Analysis of Algorithm Results
The scheduling cost results for each scenario are shown in Table 3, and the source load storage

scheduling results are shown in Figs. 7–12.
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Table 3: Cost results of each operation scenario

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Total cost/CNY 127020 126190 116730 Discount rate
and solution
discount
cost/CNY

419 419 419

Carbon trading
costs/CNY

35076 31441 17646 Solution loss
costs/CNY

202 180 190

Downward
adjustment of
margin shortfall
/kW

13849 12418 10786 Controllable
load regulation
costs/CNY

1320 1320 1320

Unit operating
costs/CNY

88822 73995 80821 Energy storage
operating
costs/CNY

1175 1452 1236

Abandonment
penalty
costs/CNY

0 17386 15100

Observing Figs. 7 and 8, it becomes apparent that in Scenario 1, when not factoring in the
downward adjustment of margin reserves, scheduling based on the anticipated wind and photovoltaic
power generation profiles facilitates the complete utilization of renewable energy. Within the time
intervals of 7:00–12:00 and 19:00–21:00, the primary operational phases of CHP units and carbon
capture units coincide with the troughs in wind and photovoltaic power generation as well as the peaks
in load demand. The carbon capture units, distinguished by their favourable low-carbon attributes,
exhibit slightly higher output than conventional cogeneration units in this period due to the influence
of carbon trading costs. Concurrently, energy storage systems can be strategically centralized to
provide power during periods of elevated demand.
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Figure 7: Scenario 1 power system results
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Figure 8: Scenario 1 thermal system results
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Figure 9: Scenario 2 power system results
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Figure 12: Scenario 3 thermal system results

Following the 12:00–17:00, the photovoltaic power generation enters a phase of heightened
output. During this interval, surplus renewable energy generation finds utilization predominantly
through electric heating equipment, coinciding with a downturn in power supply from the CHP
unit. The carbon capture unit, operating with the distinct advantages of both shunt-type and liquid
storage operation modes, demonstrates a lower minimum output threshold compared to conventional
cogeneration units. This feature renders it more effective in regulating power output during the peaks
of wind and photovoltaic renewable energy generation, thereby ensuring commendable performance
in achieving reduced carbon emissions throughout its operational cycle. In terms of the heating system,
the carbon capture unit showcases superior low-carbon operational attributes compared to standard
units, resulting in sustained higher output when fulfilling the demands of the heat supply within the
specified timeframe.

In this specific scenario, the overall cost incurred by the IES stems from carbon trading expenses
and unit operational costs, with the highest solution loss observed in the source-side carbon capture
plant compared to the other scenarios. Here, the strategy of dispatching in line with the forecasted wind
curve disregards the necessary downward margin reserved for wind power generation. Consequently,
an excessive depletion of available downward resources within the IES transpires, resulting in the
highest unit energy supply cost in the day-ahead dispatch plan among the three scenarios. While
the day-ahead scheduling of the IES, aimed at meeting the projected wind power generation, attains
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full utilization of wind-based renewable energy, the analysis depicted in Figs. 5 and 6 underscores
the potential variance between renewable energy forecast values and actual outcomes. Illustrated in
Fig. 7, when actual wind power generation reaches the upper limit of the 70% confidence interval,
a deficit of 13,849 kW in downward margin emerges. This discrepancy implies that an exceeding
actual wind power generation leads to a substantial deficiency in IES’s downward margin, triggering
significant wind and light energy wastage, thereby diminishing the system’s resilience against errors in
renewable energy prediction. Sole reliance on the previous day’s forecast curve for scheduling results
in inadequate readiness for the actual downward adjustment margin necessary for renewable energy.
Therefore, in Scenario 2 and Scenario 3, distinct upper confidence intervals for renewable energy
generation are considered to accommodate adjustable resource reserves, as depicted in Figs. 9–12.

Examining Figs. 9 and 10, notable distinctions arise between the outcomes obtained in Scenario
2 and those in Scenario 1, particularly when integrating the upper limit of the 70% confidence interval
into the day-ahead scheduling strategy. In Scenario 2, operational constraints are imposed on the
CHP units and electric heating equipment due to the utilization of the 70% confidence interval as the
basis for dispatch margin reserves. Throughout the primary abandonment timeframe of 13:00–16:00,
the electric heating equipment necessitates the reservation of a downward margin corresponding to
the upper limit of the 70% confidence interval. Despite this, the equipment’s heating power remains
below its maximum capacity. Notably, the scheduling process does not incorporate the utilization of
electric storage equipment. Consequently, the downward adjustment responding capacity of 5000 kW,
equivalent to the upper limit of the 70% confidence interval, remains unallocated—serving as reserve
capacity to address potential prediction errors associated with wind-solar renewable energy power
generation.

The available downward margin presented in Fig. 9 signifies the downward adjustment capability
offered by the IES when adhering to the upper limit of the 70% confidence interval. This translates to
the potential downward adjusted power that can be harnessed from cogeneration units, carbon capture
apparatus, electric heating generation, controllable loads, and electric energy storage. By reserving
this available downward margin during the preliminary dispatch phase, a reduction of 1431 kW is
achieved in the downward margin deficit compared to the dispatch outcome of Scenario 1, especially
when actual wind and solar renewable energy generation reach the upper limit of 70% confidence
interval. This highlights the advantageous impact of pre-allocating resources across the IES’s source,
load, and storage components. Such strategic allocation empowers the IES to adeptly accommodate
the inherent fluctuations of renewable energy, effectively contributing to the economic decarbonization
of IES operations.

From an economic standpoint, Scenario 2 yields a reduction in the supply strain imposed on the
primary carbon-emitting component within the IES, namely the CHP unit. This reduction stems from
the adoption of day-ahead scheduling aligned with the upper limit of the 70% confidence interval.
Consequently, both carbon transaction costs and unit operation costs diminish by 10% and 16.7%,
respectively, relative to the benchmarks established in Scenario 1. Additionally, the cost linked to
solution losses in the carbon capture unit experiences a decline due to lowered energy supply pressures.
However, this strategy of day-ahead dispatch according to the upper limit of the 70% confidence
interval coincides with an amplified necessity for regulating the fluctuations inherent in renewable
energy within the IES. Consequently, the IES witnesses a 23.6% surge in the requirement for energy
storage regulation in comparison to Scenario 1. This augmentation is geared towards achieving
enhanced adaptation to the dynamic shifts characteristic of renewable energy generation.
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While the inclusion of a downward margin reserve based on the upper limit of the 70% confidence
interval in Scenario 2 undeniably enhances the IES’s capacity for renewable energy consumption,
it is not without its drawbacks. This approach leads to the inadvertent expenditure of regulation
resources during certain peak load periods. To address this concern, Scenario 3 introduces a more
adaptable approach: it involves the dynamic selection of upper confidence interval limits for renewable
energy output based on the distinctions observed in each confidence interval. Subsequent scheduling
outcomes following the allocation of reserves for adjustable resources are aptly illustrated in Figs. 11
and 12.

In Fig. 11, with the implementation of adjustable resource reserves based on the flexible upper
limit of the renewable energy confidence interval, the penalty cost associated with power abandonment
experiences a notable decrease of 13.4%. Furthermore, compared to Scenario 2, the deficiency in
the downward adjusted margin for renewable power generation is further mitigated by 13.1%. Both
scenarios exhibit periods of power abandonment and downward margin deficits predominantly during
the 13:00–16:00 timeframe. However, this interval witnesses a notable transformation when adapting
to the flexible upper limit of the renewable energy confidence interval. This adaptation relieves the
pressure on IES internal resources—source, load, and storage—associated with renewable energy
consumption. This proactive adjustment effectively curtails the redundancy in regulation margin,
enabling the system to more adeptly concentrate resource regulation. Particularly within the 21:00–
7:00 timeframe, the disparity between the upper limits of the 100% and 70% confidence intervals
for renewable energy generation remains relatively marginal. This results in conserving the required
available down-regulation margin in Scenario 3. Such resource conservation enables the load and
storage-side resources to better manage renewable energy fluctuations and be optimally allocated to
periods necessitating urgent down-regulation margin.

Simultaneously, the incorporation of a flexible upper limit for the renewable energy confidence
interval results in further optimization of the IES operational expenses. This adaptation notably
reduces carbon trading costs in contrast to Scenario 2. Nevertheless, due to the comparably con-
servative setting of the renewable energy confidence interval when juxtaposed with Scenario 2, the
unit regulation cost undergoes a 9.2% escalation. However, this increase remains substantially lower
than in Scenario 1. While the solution loss cost registers a mere 5.6% increment in comparison to
Scenario 2, the downward adjustment margin is effectively fine-tuned—a marked enhancement over
Scenario 2. This refinement enables the conservation of regulation resources within the IES, fostering
improved resilience against renewable energy forecast errors. By skillfully directing the available
regulation resources towards periods characterized by elevated regulatory demands, the approach
avoids dispersing the allocation of down-regulation resources across the entirety of the operational
cycle, effectively alleviating the regulation burden on energy storage resources. Moreover, since the
solution memory investment cost of the carbon capture unit remains constant, the discount rate
and solution discount cost maintain uniformity across all three scenarios. Considering the relatively
higher regulation cost associated with controllable load operation, energy storage emerges as a more
frequently summoned, flexible regulatory resource across the three scenarios. The utilization of
controllable loads is confined to instances of heightened regulation pressure in specific periods.

For the district heating system, the heating power of the units in Scenario 3 is similar to that of
Scenario 2, with the main difference centred on the 12:00–15:00 time period. During this period, the
output of the carbon capture unit in Scenario 3 is lower than that of the carbon capture unit in Scenario
2, while the output of the CHP unit in both scenarios is the same. The reason is that in Scenario 3, the
flexible upper limit of renewable energy generation reduces the supply pressure of the electricity and
heat conversion equipment, which can provide more heat energy for the district heat system so that the
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units do not have to prepare too much downward margin to meet the demand of electricity and heat
loads. The carbon capture unit, due to its better low-carbon characteristics, can take on more energy
supply functions at lower carbon costs, effectively guaranteeing the low-carbon operation of the IES.

5 Conclusion

The low-carbon coordinated optimization of the integrated electric and thermal energy system
considering the confidence interval of renewable energy generation leads to the following conclusions:

(1) Carbon capture plants that embrace an integrated flexible operational strategy can harness
energy time-shift attributes to attain versatile power adjustments. This approach fosters collaborative
synergy between carbon capture units and resources on the load and storage sides, effectively ensuring
a reduced output threshold. By skillfully distributing adjustable resources across the operational cycle,
this strategy enhances the promotion of renewable energy utilization and bolsters the system’s capacity
to effectively manage the forecast errors associated with renewable energy generation.

(2) The adept orchestration of source-load-storage resources within the IES aptly accommodates
source-load oscillations, thereby amplifying the regulation potential of thermal power units while
maintaining a reduced carbon emission expense. This approach not only offers room for substantial
renewable energy utilization while upholding low carbon emissions but also bolsters the allowance
for wind and other renewable energy intake. Consequently, it curtails the utilization of high carbon-
emitting raw materials during peak demand periods, effectively mitigating the carbon emission
magnitude throughout the entire operational cycle of the IES.

(3) By adeptly opting for the upper limit of the renewable energy confidence interval, the
inherent volatility and unpredictability in renewable energy generation can be proficiently addressed
during the pre-date scheduling phase. This approach strategically reserves an adjustment margin for
renewable energy consumption, ensuring judicious use of regulatory resources. In the subsequent
day-ahead preparation, the pressure from downward adjustment margins stemming from source-side
uncertainties is alleviated. This permits the concentration of adjustable resources during the periods
of most critical demand, thus markedly refining the overall operational efficiency of the IES.

(4) Within this paper, the establishment of the upper limit for the elastic confidence interval of
renewable energy draws upon the specified confidence interval thresholds assigned to wind power and
photovoltaic renewable energy. In forthcoming investigations, the optimization and determination of
the optimal elasticity interval threshold can be further advanced at a more profound level for each
discrete time interval through the application of intelligent algorithms and artificial intelligence. This
progressive approach is poised to significantly amplify the operational efficiency of the IES.

Acknowledgement: This paper was completed with the hard help of every author.

Funding Statement: This project was supported by the Science and Technology Project of State Grid
Inner Mongolia East Power Co., Ltd.: Research on Carbon Flow Apportionment and Assessment
Methods for Distributed Energy under Dual Carbon Targets (52664K220004).

Author Contributions: The authors confirm their contribution to the paper as follows: study conception
and design: Shi Yan; data collection: Li Wenjie; analysis and interpretation of results: Fan Gongbo;



480 EE, 2024, vol.121, no.2

draft manuscript preparation: Zhang Luxi, Yang Fengjiu. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: The wind, PV, load profiles, unit parameters and other data used
in this paper have been given in the paper.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Wang, Y. L., Liu, C., Qin, Y. M., Wang, Y. N., Dong, H. R. et al. (2023). Synergistic planning of an integrated

energy system containing hydrogen storage with the coupled use of electric-thermal energy. International
Journal of Hydrogen Energy, 48(40), 15154–15178.

2. Yu, F., Chu, X. D., Sun, D. L., Liu, X. M. (2022). Low-carbon economic dispatch strategy for renewable
integrated power system incorporating carbon capture and storage technology. Energy Reports, 8, 251–258.

3. Zhao, P. F., Li, S. Q., Hu, P. J. H., Gu, C. H., Cao, Z. D. et al. (2023). Managing water-energy-carbon
nexus for urban areas with ambiguous moment information. IEEE Transactions on Power Systems, 38(5),
4432–4446.

4. Cheng, Y. H., Zhang, N., Zhang, B. S., Kang, C. Q., Xi, W. M. et al. (2020). Low-carbon operation of
multiple energy systems based on energy-carbon integrated prices. IEEE Transactions on Smart Grid, 11(2),
1307–1318.

5. Li, J., Wen, J., Han, X. (2015). Low-carbon unit commitment with intensive wind power generation and
carbon capture power plant. Journal of Modern Power Systems and Clean Energy, 3(1), 63–71.

6. Wang, L. Y., Jiang, B. Y., Shi, Y. H., Chen, Z. (2023). Adaptive robust unit commitment of combined-cycle
gas-turbine considering mode-based modeling of carbon capture plant. IEEE Access, 11, 34510–34528.

7. Wu, H. Y., Krad, I., Florita, A., Hodge, B., Ibanez, E. et al. (2017). Stochastic multi-timescale power system
operations with variable wind generation. IEEE Transactions on Power Systems, 32(5), 3325–3337.

8. Yan, Z. C., Li, C. Y., Yao, Y. M., Lai, W. B., Tang, J. Y. et al. (2023). Bi-level carbon trading model on
demand side for integrated electricity-gas system. IEEE Transactions on Smart Grid, 14(4), 2681–2696.

9. Li, X., Wang, L., Yan, N., Ma, R. (2021). Cooperative dispatch of distributed energy storage in distribution
network with PV generation systems. IEEE Transactions on Applied Superconductivity, 31(8), 1–4.

10. Hou, H., Chen, Y., Liu, P., Xie, C. J., Huang, L. et al. (2022). Multisource energy storage system optimal
dispatch among electricity hydrogen and heat networks from the energy storage operator prospect. IEEE
Transactions on Industry Applications, 58(2), 2825–2835.

11. Yao, L. Y., Liu, Z. Y., Chang, W. G., Yang, Q. (2023). Multi-level model predictive control based multi-
objective optimal energy management of integrated energy systems considering uncertainty. Renewable
Energy, 212, 523–537.

12. Ma, R., Li, X., Luo, Y., Wu, X., Jiang, F. (2019). Multi-objective dynamic optimal power flow of wind
integrated power systems considering demand response. CSEE Journal of Power and Energy Systems, 5(4),
466–473.

13. Xiang, Y., Fang, M., Liu, J., Zeng, P., Xue, P. et al. (2023). Distributed dispatch of multiple energy systems
considering carbon trading. CSEE Journal of Power and Energy Systems, 9(2), 459–469.

14. Rehman, A. U. (2021). An optimal power usage scheduling in smart grid integrated with renewable energy
sources for energy management. IEEE Access, 9, 84619–84638.

15. Mohandes, B., Acharya, S., Moursi, M. S. E., Al-Sumaiti, H., Doukas, H. et al. (2020). Optimal design of
an islanded microgrid with load shifting mechanism between electrical and thermal energy storage systems.
IEEE Transactions on Power Systems, 35(4), 2642–2657.



EE, 2024, vol.121, no.2 481

16. Akbari-Dibavar, A., Mohammadi-Ivatloo, B., Zare, K., Khalili, T., Bidram, A. (2021). Economic-emission
dispatch problem in power systems with carbon capture power plants. IEEE Transactions on Industry
Applications, 57(4), 3341–3351.

17. Yang, Y., Zhang, J. R., Wang, Z., Wang, T., Zhao, Y. T. (2020). The day ahead dispatching strategy of
wind light solar thermal combined power generation system taking into account the price based demand
response. CSEE Journal of Power and Energy Systems, 40(10), 3103–3114.

18. Guo, X., Lou, S., Wu, Y., Wang, Y. (2022). Low-carbon operation of combined heat and power integrated
plants based on solar-assisted carbon capture. Journal of Modern Power Systems and Clean Energy, 10(5),
1138–1151.

19. Cui, Y., Zeng, P., Hui, X. X., Li, H. B., Zhao, J. T. (2021). Low carbon economic dispatch considering
comprehensive flexible operation mode of carbon capture power plants. Power Grid Technology, 45(5),
1877–1886.

20. Ma, K., Yao, T., Yang, J., Guan, X. P. (2016). Residential power scheduling for demand response in smart
grid. International Journal of Electrical Power & EnergySystems, 7(8), 320–325.

21. Liao, E. T. (2022). Research on short-term photovoltaic power interval prediction method based on enhanced
cyclic neural network (Master Thesis). Guangdong University of Technology, China.

22. Cui, Y., Deng, G. B., Zhao, Y. T., Wu, C. Z., Tang, Y. H. et al. (2021). Economic dispatch of power system
with wind power considering the complementarity of low-carbon characteristics of source side and load
side. CSEE Journal of Power and Energy Systems, 41(14), 4799–4815.

23. Chen, H., Tang, Z., Lu, J. Y., Mei, G. Y., Li, Z. N. et al. (2021). Research on optimal dispatching of micro
grid based on quantitative uncertainty of CVaR. Power System Protection and Control, 49(5), 105–115.

24. Shi, M. G., Wang, H., Xie, P., Lyu, C., Jian, L. N. et al. (2023). Distributed Energy scheduling for integrated
energy system clusters with peer-to-peer energy transaction. IEEE Transactions on Smart Grid, 14(1),
142–156.

25. Xiang, H. J., Dai, C. H., Ming, J., Wu, M. L., Zhao, C. et al. (2017). Study on multi-objective unit
combination optimization considering negative peak shaving capacity at low moments and wind power
prediction interval. Power Grid Technology, 41(6), 1912–1918.

Appendix A

Schedule 1: Carbon capture unit parameters

Parameter name Numerical value Parameter name Numerical value

Ky(Carbon trading
price)/(CNY/t)

102.43 λ(Energy consumption per
unit of carbon
capture)/((MWh)/t)

0.359

δh(Carbon emission quota
factors)/(t/(MWh))

0.7 δ(Flue gas split ratio) 0.9

Kq(Wind abandonment
penalty cost factor)/(CNY
/(MWh))

286.8 η(Maximum operating
condition factor)

1.2

r(Discount rate for carbon
capture power plant
projects)/%

8 β(Carbon capture efficiency) 0.9

(Continued)
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Schedule 1 (continued)

Parameter name Numerical value Parameter name Numerical value

CFL(Total cost of carbon
capture equipment)/RMB
10,000

169170 MMEA(MEA molar
mass)/(g/mol)

61.08

NZJ(Depreciable life of carbon
capture equipment)/year

15 MCO2(CO2 molar
mass)/(g/mol)

44

PRY(Solution memory unit
price)/(CNY/m3 )

717 θ (Regeneration tower
resolution)/(mol/mol)

0.3

V RY(Solution memory
volume)/m3

3000∗4 CR(Alcoholamine solution
concentration)/%

30

NRY(Depreciable life of
solution memory)/year

5 ρR(Alcohol amine solution
density)/(g/ml)

1.01

KS(Ethanolamine solvent cost
factor)/(CNY/kg)

8.39 V CFY,0(Initial volume of
liquid-rich memory)/m3

1500

ϕ(Solvent running loss factor)
/(kg/t)

1.5 V CPY,0(Initial volume of lean
liquid memory)/m3

1500

PDi(Fixed energy
consumption)/(MWh)

5


	Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation
	1 Introduction
	2 Analysis and Modeling of the Source-Load-Storage Mechanism of IES
	3 IES Low Carbon Economic Dispatch Model Considering Confidence Intervals for Renewable Energy Generation
	4 Example Analysis
	5 Conclusion
	References
	Appendix A  


