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ABSTRACT

Distribution generation (DG) technology based on a variety of renewable energy technologies has developed
rapidly. A large number of multi-type DG are connected to the distribution network (DN), resulting in a decline
in the stability of DN operation. It is urgent to find a method that can effectively connect multi-energy DG to DN.
photovoltaic (PV), wind power generation (WPG), fuel cell (FC), and micro gas turbine (MGT) are considered in
this paper. A multi-objective optimization model was established based on the life cycle cost (LCC) of DG, voltage
quality, voltage fluctuation, system network loss, power deviation of the tie-line, DG pollution emission index,
and meteorological index weight of DN. Multi-objective artificial bee colony algorithm (MOABC) was used to
determine the optimal location and capacity of the four kinds of DG access DN, and compared with the other three
heuristic algorithms. Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test
node, the total voltage deviation, voltage fluctuation, and system network loss of DN decreased by 49.67%, 7.47%
and 48.12%, respectively, compared with that without DG configuration. In the IEEE 69 test node, the total voltage
deviation, voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by
54.98%, 35.93% and 75.17%, respectively, compared with that without DG configuration, indicating that MOABC
can reasonably plan the capacity and location of DG. Achieve the maximum trade-off between DG economy and
DN operation stability.
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Distributed generation; distribution network; life cycle cost; multi-objective artificial bee colony algorithm; voltage
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1 Introduction

In recent years, the awareness of environmental protection has gradually gained popularity.
The proportion of distributed generation (DG), which is dominated by renewable energy sources
such as photovoltaic (PV) and wind power generation (WPG), is gradually increasing. Reasonable
access to DG can improve the voltage distribution of DN by changing the power flow distribution
of the distribution network (DN), reducing the system’s active network loss, and reducing voltage
fluctuations [1,2]. However, the output of WPG and PV is related to wind speed and solar irradiance,
which has strong randomness [3]. Therefore, how to reasonably select the access location and capacity
of DG has attracted extensive attention from researchers at home and abroad [4].
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Aiming at the research on improving the stability of DN by accessing DG, Reference [5] studied
the optimal capacity ratio of wind-light-storage intending to minimize power fluctuation, but it did
not consider the impact of accessing DG on the voltage distribution and voltage stability of DN.
Based on particle swarm optimization (PSO), reference [6] optimized the capacity of DG to maximize
its economic benefits, but does not consider the impact of DG access on the stability of microgrid
operation. References [7,8] all planned the location and capacity of DG based on network loss
minimization but did not consider the cost of DG and the stability index of DN. Aiming at minimizing
line loss, Reference [9] planned the form and capacity of DG access DN but did not take into account
the whole life cycle cost of DG and the impact on DN after DG access to DN.

The above studies are all single-objective planning models of DG. However, the location and
capacity determination of DG needs to achieve the optimal balance between the economy of DG
investment and the stability of DN. The traditional single-objective model cannot achieve the optimal
balance between the economy of investors and the stability of DN. Reference [10] planed DG based on
bacterial foraging optimization algorithm (BFOA) to minimize power loss index, voltage deviation,
and economic index. However, this study does not consider the voltage stability index, and the
algorithm used is a multi-objective algorithm based on single-objective weighting, which is subjective.
Reference [11] proposed a double-layer programming model for DG selection with constant volume,
in which the upper layer model selects the location of DG by targeting loss sensitivity and voltage
fluctuation, while the lower layer model allocates the capacity of DG by targeting voltage deviation,
fluctuation, and network loss. Both the upper and lower levels of the system aim at voltage fluctuation,
and the choice of the objective function is worth discussing. Reference [12] optimized the planning of
DG on the IEEE 33 node distribution network topology model by minimizing DG investment cost,
network loss, voltage distribution, pollution emission index and meteorological index. The selected
index can reflect the impact of DG access on climate, but it does not consider voltage fluctuation.
Reference [13] took voltage fluctuation, voltage distribution and network loss of DN as targets to
configure DG, but it does not consider the investment economy of DG. Reference [14] based on
the artificial hummingbird algorithm (AHA) takes minimum expected total cost, reduction of total
prefetch emissions and minimization of prefetch voltage deviation as objective functions to configure
DG in the IEEE 33 node distribution network topology model and the actual distribution system
in Portugal’s 94-node network, but does not consider the voltage fluctuation index and network loss
index when DG accesses DN.

All the above studies have made some contributions to the field of DG planning, but there are still
shortcomings. This paper proposes a new method for DG siting capacity determination, and its main
contributions are as follows:

(1) In this paper, four typical DG types such as PV, WPG, fuel cell (FC) [15] and micro gas turbine
(MGT) are considered for siting and capacity planning. LCC, DN stability index, environmental
pollution emission coefficient and meteorological index weights of DG are taken as the objective
functions of the DG siting capacity model. These objective functions effectively balance the economy
of DG, the stability of DN and the requirements of the meteorological environment, and effectively
achieve a tripartite win-win situation.

(2) In this paper, the multi-objective artificial bee colony algorithm (MOABC) based on Pareto
is adopted to solve the DG location fixed-capacity model, and MODA, MOGOA and MOPSO were
used as comparison algorithms. The results show that MOABC has better optimization ability, and
stability, and can obtain the optimal DG location capacity determination scheme.
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(3) In this paper, an improved grey target decision scheme based on the entropy weight method
is adopted, which can effectively solve the weight subjectivity of multi-objective results obtained from
single-objective weighting, making the model solution results more objective and effective.

2 Multi-Objective Optimization Model for DG Planning

This article considers four types of DGs: PV, WPG, FC, and MGT. Eqs. (1) and (2) describe the
uncertainty of the PV and WPG output, respectively.

Ppv,out = PS I W

IS

[1 + p (Tw − Tb)] (1)

where Ppv,out represents the output power of PV; IW and IS are the irradiance intensity of PV under
standard test conditions and normal working conditions, respectively; p is the power temperature
coefficient of PV; Tw and Tb represent the temperature of the photovoltaic cell when it is working
under standard test conditions and normal working conditions, respectively.

PWPG, out(v) =

⎧⎪⎨
⎪⎩

0 0 ≤ v or v > vcut, out

PWPG, rated

v − vcut, in

vrated − vcut, out

vcut, in ≤ v ≤ vrated

PWPG, rated vrated ≤ v ≤ vcut, out

(2)

where PWPG, out and PWPG, rated mean the output power and rated output power of WPG, respectively; v is
the wind speed at which WPG operates; vcut, out, vcut, in, and vrated represent the cut-out wind speed, cut-in
wind speed, and rated wind speed of WPG, respectively.

From Eqs. (1) and (2), it can be seen that the output of PV is mainly affected by the irradiance
intensity of the photovoltaic cell when it is working, while the output of the WPG is mainly affected
by the wind speed when it is working. Both types of DG are considered stochastic power sources in the
site selection and capacity determination problem. In addition, because the power output of FC and
MGT can be controlled by changing the fuel flow rate, FC and MGT can be considered as a power
source with a constant power output in the site selection and capacity determination problem of DG.

2.1 Objective Function
The capacity determination problem of DG location is a multi-dimensional, multi-constraint and

multi-objective optimization problem. In this paper, the life cycle cost (LCC), voltage deviation of DN,
voltage fluctuation, network loss minimization, minimum tie-line power deviation, meteorological
index weight and pollution emission index of four types of DG are used as objective functions to
establish a multi-objective optimization model. The reason for choosing the above objective function
is that when DG accesses DN, whether the construction of DG is economical and feasible should
be considered first. Therefore, this paper takes the LCC of DG as one of the objective functions.
Secondly, when DG is connected, the stable operation of DN is particularly important. Therefore,
the objective function is to minimize the voltage deviation, voltage fluctuation and network loss of
DN, and minimize the power deviation of the tie-line. Finally, it is necessary to consider the degree
of environmental pollution after some types of DG (FC and MGT) are put into operation, so the
pollution emission index is taken as one of the objective functions. Since the amount of PV and WPG
power generation output largely depends on meteorological conditions, to install wind turbines and
photovoltaic systems in areas rich in wind and light resources, maximize the absorption of scenic
energy and make full use of renewable energy, this paper innovatively sets meteorological indicators as
the objective function.
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2.1.1 Life Cycle Cost of DG

LCC is the sum of all costs in the entire life cycle of a product. The whole life cycle cost is a
management strategy with the whole life cycle cost theory as the core. The calculation of LCC is usually
carried out every year, which is 365 days [16].

As an economic indicator for evaluating DG LCC mainly includes initial investment cost (IIC),
maintenance cost (MC), and recovery cost (RC). The LCC of DG is calculated as follows:

min f 1 =
N∑

i=1

IICi + MCi + RCi (3)

where N represents the number of types of DG.

(1) Initial Investment Cost

IIC = r (1 + r)y

(1 + r)y − r
·

N∑
i=1

M∑
n=1

cDG,n,i · EDG,n,i (4)

where cDG,n,i mean the unit capacity cost of the i-th DG of the n-th type; EDG,n,i denote the installation
capacity of the i-th DG of the n-th type; M represents the total number of installed DGs of each type;
r is the discount rate, which is set to 5.5% in this article; y is the service life, which is set to 20 years in
this article.

(2) Maintenance Cost

MC =
N∑

i=1

M∑
n=1

cDG,n,i · EDG,n,i · δDG,n,i (5)

where δDG,n,i represents the ratio of maintenance cost to initial investment cost for the i-th DG of the
n-th type.

(3) Recovery Cost

RC =
D∑

t=1

N∑
i=1

M∑
n=1

r
(1 + r)ty − 1

· (
cDG,n,i · EDG,n,i · ϕDG,n,i

)
(6)

where ϕDG,n,i means the rate of return for the i-th DG of the n-th type, and D represents the number of
times for replacing the components of the DG.

2.1.2 DN’s Voltage Deviation, Voltage Fluctuation, and System Network Loss

(1) Voltage deviation index

To ensure that DG can effectively improve the voltage distribution of DN, this paper considers
minimizing the voltage deviation of each node in DN as the objective function. The voltage deviation
index can be described by the following formula [17]:

min f2 =
n∑

i=1

(
VDG,i − Vrated

)2
(7)

whereVDG,i is the voltage of the i-th node in the distribution network after DG configuration, and Vrated

is the nominal voltage, which is 1 p.u.
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(2) Voltage fluctuation index

Due to the changes in the distribution of power flow in DN after DG is connected, the voltage
fluctuation of DN is significantly increased. Therefore, the standard deviation of voltage within one
day is selected to define the voltage fluctuation of DN, as follows:

min f3 =
Nnodes∑

j=1

√√√√ T∑
t=1

(
Vj (t) − Vj

)2

T − 1
(8)

where Vj (t) represents the node voltage of node j at time t, and Vj represents the average node voltage
in 24 h.

(3) System network loss index

min f4 =
L∑

d=1

T∑
t=1

I 2
d (t) Rd (9)

where Rd is the resistance of the d-th transmission line, and Id (t) is current on the d-th transmission
line at time t.

2.1.3 Pollution Emission Indicators

This article introduces pollution emission indicators that include carbon dioxide, sulfur dioxide,
and nitrogen oxides to measure the total amount of pollutants emitted by DG during operation time
in light of countries worldwide committed to building a low-carbon society and using green energy
more efficiently to decrease pollution.

min f5 (x) =
dsum∑
dcase

nDG∑
a=1

PDGaηa,d

(
wCO2

EPac + wSO2
EPas + wNOxEPan

)
(10)

where ηa,d is the output efficiency of the a-th DG at the dcase moment; EPac, EPas, and EPan denote the
mass of carbon dioxide, sulfur dioxide, and nitrogen oxides released per unit of power output by the
a-th DG; wCO2

, wSO2
, and wNOx are the weighting coefficients between different gases, with values of

0.5, 0.25, and 0.25, respectively. The pollution emission statistics of different types of DG are shown
in Table 1.

Table 1: Pollution emission statistics of different types of DG

DG unit CO2/(kg·kW·h−1) SO2/(kg·kW·h−1) NOx/(kg·kW·h−1)

FC 0.502 3.629 × 10−6 0.5216
MGT 3.445 3.629 × 10−6 0.1996 × 10−3

PV – – –
WPG – – –

As can be seen from the above table, photovoltaic systems and wind turbines in addition to the
construction period will produce pollution emissions, after the completion of power generation will
not produce pollution emissions, belong to clean electricity. However, fuel cells and micro-gas turbines
not only produce pollution emissions during construction, but also emit a certain amount of pollution
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emissions in the environment after the completion of power generation. Therefore, this paper takes the
pollution emission index as one of the objective functions, to maximize environmental friendliness.

2.1.4 Meteorological Indicators

This paper proposes an objective function considering the annual average wind speed vw and
annual average radiation intensity IS, to install wind turbines and photovoltaic systems in areas rich
in wind and light resources to maximize the consumption of scenic energy, which can be expressed as
follows:

min f6 (x) = 1
n∑
a

w1,avw,a + w2,aIS,a

(11)

{
w1,a = 0, 1
w2,a = 0, 1 (12)

where vw,a and IS,a are the annual average wind speed and the annual average radiation intensity at the
a-th node, respectively; w1,a and w2,a are the weighting coefficients of wind and solar energy at the a-th
node, respectively, which take the value of 0 or 1, and when the value of 1, it indicates that the a-th
node is the siting point of DG. Notably, if w1,a and w2,a are both 1, it indicates that the a-th node is
configured with wind-solar hybrid power generation system.

2.1.5 Distribution Network Tie-Line Exchange Power Deviation

Due to the intermittent nature of the new energy output, large power fluctuations will occur when
it is connected to the grid. In this paper, the power stability of the grid is considered in the DG sizing
and capacity planning, which is expressed in terms of the daily power deviation of the power tie-line
as follows:

min f7 (x) =
T∑

t=1

√[
PTie-line (t) − PTie-line

]2
(13)

where PTie-line (t) represents the switching power deviation of the Tie line of the grid at time t; PTie-line

indicates the average power exchange deviation in a day.

2.2 Constraints
(1) Transmission line power constraint.

|Sk| ≤ ∣∣Smax
k

∣∣ (14)

where Sk and Smax
k represent the apparent power and maximum apparent power of the k-th node,

respectively.

(2) Node voltage constraint.

V min
DG,k ≤ VDG,k ≤ V max

DG,k (15)

where V min
DG,k and V max

DG,k mean the upper and lower limits of the node voltage of node k after DG
connection, respectively, which are 1.05 and 0.9 p.u.

(3) DG configuration power constraint.

Pmin
DG,i ≤ PDG,i ≤ Pmin

DG,i (16)

where Pmin
DG,i and Pmin

DG,i represent the upper and lower limits of the output power for the i-th DG unit.
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(4) Node power balance.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Nnodes∑
k=1

Pk − Ploss =
Nnodes∑

k=1

Pload,k −
Nnodes∑

k=1

PDG,k

Nnodes∑
k=1

Qk − Qloss =
Nnodes∑

k=1

Qload,k − ∑Nnodes
k=1 QDG,k

(17)

where Pk and Qk denote the active power and reactive power injected into node k, respectively; Ploss

and Qloss mean the total active and reactive power losses in the system; Pload,k and Qload,k represent the
active and reactive loads at node k; PDG,k and QDG,k represent the active and reactive power output of
the DG unit connected at node k.

3 Design of Model Solver Based on MOABC-Improved Grey-Target Decision-Making
3.1 Artificial Bee Colony Algorithm

Let ABC be presented as a multi-objective intelligent optimization algorithm to mimic the process
of bees collecting nectar in nature. It consists of a food source, leading bees, and follower bees. The
solution process is as follows:

(1) The population is initialized based on upper and lower limits, followed by the calculation of
initial fitness function values.

(2) The leading bees will continuously update their food sources to ensure the freshness of their
food. After updating the food source, bees will update the fitness values and optimal food source
according to the new food source. The process of updating the food source is as follows:

newj
i = a + b × foodj

i (18)

a = c1 × foodj
i + (1 − c1) × gbestj (19)

b = ∣∣foodj
i − gbestj

∣∣ (20)

where foodj
i represents the j-th food obtained by the i-th population, gbest is the best food source of

the current population, and c1 is a random number in [0,1].

(3) After updating the food source, the leading bees will share information with the follower bees.
The follower bees will then allocate to the food sources.

(4) The bee colony will allocate food based on the information provided by the follower bees,
which can be calculated as

newj
i = rand (0, 1) × (

ref1,i − ref2,i

)
(21)

where ref1,i and ref2,i are two reference foods selected from the previous foods, and rand is a randomly
generated new food source within the constraint range.

(5) If the food source falls into a local optimum, it will be abandoned. The scout bees will then
generate a new food source based on Eq. (18), which can be calculated as

newj
i = rand (lb, ub) (22)

where lb and ub are the upper and lower limits of the decision variables. Similar to step 2, the bees will
update the fitness values and the optimal food source.

(6) Repeat steps (2) to (5) until the end of the cycle to obtain the optimal food source and fitness
value.
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3.2 Multi-Objective Artificial Bee Colony Algorithm
Multi-objective optimization problems are different from single-objective ones, as it is impossible

to obtain a solution that minimizes all objectives at the same time, only a set of Pareto optimal solutions
can be obtained [18]. The flowchart of MOABC is shown in Fig. 1. This section introduces the selection
mechanism of MOABC, as follows:

Start

Input the operation data of the distribution network, 
set the parameters of the MOABC algorithm, the 

maximum iteration times, the population size, and the 
size of the external archive set.

Initialize the capacity and 
location of the distributed power 

sources.

Calculate the crowding 
distance and update the 

Rank values of the 
populations.

Update the food 
sources.

The bee colony will 
allocate food sources 

based on the information 
provided by the follower 

bees.

Generate scout bees 
to update the food 

sources.

Calculate the 
crowding distance 

and update the Rank 
values of the 
populations.

It > It max

End

It = It +1

Figure 1: The flowchart of location and capacity selection of DG based on MOABC
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(1) An external archive is added to MOABC to store non-dominated solutions, with capacity
limited to a fixed number.

(2) A solution update mechanism based on Pareto non-dominated ranking.

(3) Calculate the crowding distance of all populations, and rank populations with the same level
based on the size of the crowding distance.

3.3 Improved Grey-Target Decision-Making
In order to avoid the influence of subjective decision on the final result, the grey target decision

scheme based on the entropy weight method (EWM) [19] is adopted in this study, and the compromise
solution of the Pareto non-dominated solution set is taken as the optimal decision scheme. Firstly, the
sample matrix is established based on the Euclidean distance and Mahalanobis distance between the
normalized Pareto solution set and each solution set. Secondly, the decision matrix [20] is established
according to the cost index formula, and then the bull’s-eye is selected in the gray area formed by
the decision matrix. Finally, the weight and entropy of each group of solutions are calculated, and
the distance between each group of solutions and the bullseye is calculated based on the weight and
entropy. The solution closest to the bull’s eye is selected as the best compromise [21].

(1) Build a sample matrix

The normalized fitness function F of all the solutions is taken as one of the evaluation indexes, and
the sample matrix is established. In this paper, we consider adding two related indexes to the sample
matrix, one is the Euclidean distance (ED) ED between each solution and the ideal point, and the other
is the Mahalanobis distance (MD) MD between each solution and the equilibrium point. So the sample
matrix is represented by:

x = [F , ED, MD] = (
xo

a

)
n′×(m′+2)

=

⎡
⎢⎢⎢⎣

F 1
1 · s F 1

m′ E1
D M1

D

F 2
1 · s F 2

m′ E2
D M2

D
... · s

... ...
...

Fn′
1 · s Fn′

m′ En′
D Mn′

D

⎤
⎥⎥⎥⎦ (23)

Fo
a = (

Fmax
a − Fmin

a

) (
f o

a − f min
a

)
(
f max

a − f min
a

) + Fmin
a (24)

Eo
D =

√√√√m′+2∑
a=1

(
Fo

a − Oa

)2
(25)

Mo
D =

√√√√m′+2∑
a=1

(
Fo

a − ua

)T
−1∑ (

Fo
a − ua

)
(26)

In the formula, n′ prime and m′ primes are the number of objective functions and the number
of settlements, respectively; f o

a is the a-th fitness function of the o-th solution; f min
a and f max

a are the
maximum and minimum fit values of the a-th objective function, respectively. Fo

a is the a-th fitness
function of the o-th solution after normalization. Oa is the ideal point of the a-th objective function.
ua is the mean of the a-th objective function.

∑−1 is the covariance matrix.
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(2) Computational bullseye

The operator qa is used to dimensionalize the sample matrix, and its calculation formula is as
follows:

qa = 1
n′

n′∑
o=1

(
xo

a

)
, a = 1, 2 · · · , m′ + 2 (27)

where xo
a is the evaluation index of the o goal of the a solution.

The decision matrix V is established based on the operator qa and the sample matrix, as follows:

V = (
vo

a

)
n′×(m′+2)

= qa − xo
a

max
{
max1≤o≤n′

{
xo

a

} − qa − min1≤o≤n′
{
xo

a

}} (28)

The selected bullseye is vo
a = min

{
vo

a |1 ≤ o ≤ n′ }.

(3) Establish the weight and Mahalanobis distance

Based on EWM, the weights of each evaluation index can be obtained objectively, and the optimal
compromise solution can be selected from Pareto non-dominated solution set. The weights ωa and
entropy Ea are calculated as follows:

ωo
a = xo

a

/ n′∑
o=1

(
xo

a

)
, xo

a � 0 (29)

Ea = − 1
ln n′

n′∑
o=1

(
ωo

a ln ωo
a

)
, Ea > 0 (30)

ωa = (1 − Ea)
/ m′+2∑

a=1

(1 − Ea) (31)

Each MD to the bullseye can be expressed as:

Mo = ∣∣vo − v0
∣∣ =

√√√√m′+2∑
a=1

ωa

(
Fo

a − ua

)T
−1∑(

Fo
a − ua

)
(32)

The non-dominated solutions are sorted according to MD. Each set of solutions in the archive
set is considered an independent decision scheme. The solution closest to the bullseye is chosen as the
optimal decision solution.

4 Case Studies

In order to verify the effectiveness of the multi-objective optimization algorithm proposed in this
paper [22], a DG siting constant volume simulation test based on IEEE 33 and IEEE 69 standard test
node system was designed, and two PV, two WPG, one FC and one MGT were configured. In addition,
the optimization results of MOABC were compared with MODA, MOGOA and MOPSO. In order
to ensure the fairness of algorithm comparison, the maximum number of iterations and population
of the two algorithms were set to 100 and 100, respectively [23]. In addition, the simulation tests of all
the examples were completed in MATLAB 2022a environment on a computer equipped with Intel (R)
Core (TM) i9-13900K 3.0 GHz CPU and 128 GB memory. Table 2 shows the statistical table of the
control parameters of the MOABC algorithm, and Fig. 2 shows the topology structure of the IEEE
33 standard test node system. Table 3 shows the system data of IEEE 33 standard test node [24]. Fig. 3
shows the system topology structure of IEEE 69 standard test nodes, Table 4 shows the system data of
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IEEE 69 standard test nodes, and Table 4 shows the basic configuration parameters of DN. The basic
configuration parameters of DN and the cost parameters of DG are given in Table 5.

Table 2: MOABC control parameters

MOABC

Maximum iterations 100
Population size 100
Quantity of food resources 50
Maximum number of updates of food resources 5
Quantity of objective function 7
Archive size 100
Optimization problem dimension 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

Figure 2: Topology of IEEE 33 standard test nodes system

Table 3: System data of IEEE 33 standard test node

Node Node Branch
impedance

Load Node Node Branch
impedance

Load

0 1 0 + j0- 0 + j0 17 18 0.7320 + j0.5740 90 + j40
1 2 0.0922 + j0.047 100 + j60 2 19 0.1640 + j0.1565 90 + j40
2 3 0.4930 + j0.2511 90 + j80 19 20 1.5042 + j1.3554 90 + j40
3 4 0.3660 + j0.1864 120 + j80 20 21 0.4095 + j0.4784 90 + j40
4 5 0.3811 + j0.1941 60 + j30 21 22 0.7089 + j0.9373 90 + j40
5 6 0.8190 + j0.7070 60 + j20 3 23 0.4512 + j0.3083 90 + j50
6 7 0.1872 + j0.6188 200 + j100 23 24 0.8980 + j0.7091 420 + j200
7 8 0.7114 + j0.2351 200 + j100 24 25 0.8960 + j0.7011 420 + j200
8 9 1.0300 + j0.7400 60 + j20 6 26 0.2030 + j0.1034 60 + j25
9 10 1.0440 + j0.7400 60 + j20 26 27 0.2842 + j0.1447 60 + j25
10 11 0.1966 + j0.0650 45 + j30 27 28 1.0590 + j0.9337 60 + j20
11 12 0.3744 + j0.1238 60 + j35 28 29 0.8042 + j0.7006 120 + j70
12 13 1.4680 + j1.1550 60 + j35 29 30 0.5075 + j0.2585 200 + j600
13 14 0.5416 + j0.7129 120 + j80 30 31 0.9744 + j0.9630 150 + j70

(Continued)
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Table 3 (continued)

Node Node Branch
impedance

Load Node Node Branch
impedance

Load

14 15 0.5910 + j0.5260 60 + j10 31 32 0.3105 + j0.3619 210 + j100
15 16 0.7463 + j0.5450 60 + j20 32 33 0.3410 + j0.5362 60 + j40
16 17 1.2890 + j1.7210 60 + j20 – – – –

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28

29

30

31

32
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34

35
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41 42 43 44 45 46

47 48 49 50

51

52

66

67

53 54 55 56 57 58 59 60 61 62 63 64 65

68 69

Figure 3: Topology of IEEE 69 standard test nodes system

Table 4: System data of IEEE 69 standard test node

Node Node Branch
impedance

Load Node Node Branch
impedance

Load

0 1 0 + j0 0 + j0 3 36 0.0044 + j0.0108 26 + j18.55
1 2 0.0005 + j0.0012 0 + j0 36 37 0.064 + j0.1565 26 + j18.55
2 3 0.0005 + j0.0012 0 + j0 37 38 0.1053 + j0.123 0 + j0
3 4 0.0015 + j0.0036 0 + j0 38 39 0.0304 + j0.0355 24 + j17
4 5 0.0251 + j0.0294 0 + j0 39 40 0.0018 + j0.0021 24 + j17
5 6 0.366 + j0.1864 2.6 + j2.2 40 41 0.7283 + j0.8509 1.2 + j1
6 7 0.3811 + j0.1941 40.4 + j30 41 42 0.31 + j0.3623 0 + j0
7 8 0.0922 + j0.047 75 + j54 42 43 0.041 + j0.0478 6 + j4.3
8 9 0.0493 + j0.0251 30 + j22 43 44 0.0092 + j0.0116 0 + j0

(Continued)
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Table 4 (continued)

Node Node Branch
impedance

Load Node Node Branch
impedance

Load

9 10 0.819 + j0.2707 28 + j19 44 45 0.1089 + j0.1373 39.2 + j26.3
10 11 0.1872 + j0.0619 145 + j104 45 46 0.0009 + j0.0012 39.2 + j26.3
11 12 0.7114 + j0.2351 145 + j104 4 47 0.0034 + j0.0084 0 + j0
12 13 1.03 + j0.34 8 + j5.5 47 48 0.0851 + j0.2083 79 + j56.4
13 14 1.044 + j0.345 8 + j5.5 48 49 0.2898 + j0.7091 384.7 + j274.5
14 15 1.058 + j0.3496 0 + j0 49 50 0.0822 + j0.2011 384.7 + j274.5
15 16 0.1966 + j0.065 45.5 + j30 8 51 0.0928 + j0.0473 40.5 + j28.3
16 17 0.3744 + j0.1238 60 + j35 51 52 0.3319 + j0.1114 3.6 + j2.7
17 18 0.0047 + j0.0016 60 + j35 9 53 0.174 + j0.0886 4.35 + j3.5
18 19 0.3276 + j0.1083 0 + j0 53 54 0.203 + j0.1034 26.4 + j19
19 20 0.2106 + j0.069 1 + j0.6 54 55 0.2842 + j0.1447 24 + j17.2
20 21 0.3416 + j0.1129 114 + j81 55 56 0.2813 + j0.1433 0 + j0
21 22 0.014 + j0.0046 5 + j3.5 56 57 1.59 + j0.5337 0 + j0
22 23 0.1591 + j0.0526 0 + j0 57 58 0.7837 + j0.263 0 + j0
23 24 0.3463 + j0.1145 28 + j20 58 59 0.3042 + j0.1006 100 + j72
24 25 0.7488 + j0.2475 0 + j0 59 60 0.3861 + j0.1172 0 + j0
25 26 0.3089 + j0.1021 14 + j10 60 61 0.5075 + j0.2585 1244 + j888
26 27 0.1732 + j0.0572 14 + j10 61 62 0.0974 + j0.0496 32 + j23
3 28 0.0044 + j0.0108 26 + j18.6 62 63 0.145 + j0.0738 0 + j0
28 29 0.064 + j0.1565 26 + j18.6 63 64 0.7105 + j0.3619 227 + j162
29 30 0.3978 + j0.1315 0 + j0 64 65 1.041 + j0.5302 59 + j42
30 31 0.0702 + j0.0232 0 + j0 11 66 0.2012 + j0.0611 18 + j13
31 32 0.351 + j0.116 0 + j0 66 67 0.0047 + j0.0014 18 + j13
32 33 0.839 + j0.2816 14 + j10 12 68 0.7394 + j0.2444 28 + j20
33 34 1.708 + j0.5646 19.5 + j14 68 69 0.0047 + j0.0016 28 + j20
34 35 1.474 + j0.4873 6 + j4 – – – –

Table 5: The basic configuration parameter of DN

Base voltage/kV 12.66
Baseline capacity/MVA 10
Baseline impedance/kΩ 16.03
PV unit capacity cost/(yuan·kW−1) 8000
WPG unit capacity cost/(yuan·kW−1) 7500
FC unit capacity cost/(yuan·kW−1) 7000
MGT unit capacity cost/(yuan·kW−1) 7000
Discount rate 5.5%
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The MOABC control parameters in the table above are most consistent with the research topic of
this paper.

4.1 Performance Comparison of IEEE 33 Node Algorithm
Table 6 shows the upper and lower limits of DG capacity constraints. Table 7 shows the specific

configuration schemes of four types of DG obtained by MOABC. Table 8 shows the optimization
results of configuring DG in the IEEE 33 node test system via MOABC, MODA, MOGOA and
MOPSO, respectively. Compared with no DG configuration, MOABC algorithm costs $3.473 × 104

after DG configuration. The total voltage deviation, voltage fluctuation, system network loss and
tie-line power deviation of DN decreased by 32.88 p.u (49.67%), 0.082 p.u (7.47%), 1954.77 kW
(48.12%) and 71.33 kW (5.90%), respectively, among the 7 objective functions, MOABC can obtain
the optimal results in the 5 targets of total voltage deviation, voltage fluctuation, system network
loss, power deviation of the liaison line and weight of meteorological indicators. This shows that the
results obtained by MOABC are friendly to users and power grid companies, and are only $0.957×104

higher than MOPSO, which has the lowest configuration cost. The pollution emission coefficient of
151.29 kg/h obtained by MOABC is only lower than MOPSO, and compared with the optimized
results of MODA and MOGOA, this result has certain environmental friendliness. In addition, the
weight of the meteorological index of MOABC configuration scheme is 0.8188, which is close to 1,
indicating that the PV and WPG position configured in this scheme can make better use of natural
scenery resources and effectively improve the utilization rate of scenery resources.

Table 6: DG capacity constraints upper and lower limits

PV#1 PV#2 WPG#1 WPG#2 FC MGT

Upper limit/kW 700 750 450 500 300 500
Lower limit/kW 30 25 20 10 10 50

Table 7: Configuration scheme of the DG in IEEE 33 case

Algorithm PV WPG FC MGT

#1
Capa
City/
kW

#1
Install
node

#2
Capa
City/
kW

#2
Install
node

#1
Capa
City/
kW

#1
Install
node

#2
Capa
City/
kW

#2
Install
node

Capa
City/
kW

Install
node

Capa
City/
kW

Install
node

MOABC 31 3 30 31 300 18 34 16 44 33 210 13
MOGOA 531 28 56 32 425 23 157 8 20 12 300 15
MOPSO 215 13 741 32 127 16 86 2 20 7 164 18
MODA 295 27 310 32 162 2 214 10 97 12 324 31
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Table 8: Optimization results of objective function under IEEE 33 case

MOABC MODA MOGOA MOPSO No DG is
configured

LCC/yuan 2.479 × 105 4.122 × 105 3.960 × 105 1.796 × 105 –
Total voltage deviation/p.u 33.32 38.42 41.22 45.83 66.20
Voltage fluctuation/p.u 1.015 1.021 1.024 1.030 1.097
System loss/kW 2107.10 2013.09 2524.03 2789.88 4061.87
Pollution discharge
coefficient/kg/h

151.29 257.371 231.294 106.682 –

Tie-line power
deviation/kW

1137.86 1139.12 1147.56 1152.38 1209.19

Weight of meteorological
index

0.8188 0.4854 0.5108 0.5075 –

Fig. 4 shows the box plot drawn by each algorithm after 10 independent runs under the same
number of iterations, population number and constraints. As can be seen from the figure, among the
seven objective functions of MOABC compared with other algorithms, four have good stability and
all have good numerical performance, indicating that MOABC has the best stability and effectiveness
among the four algorithms.

Figure 4: (Continued)
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Figure 4: Target function box plot of each algorithm (IEEE 33)

Figs. 5 and 6 respectively show the voltage fluctuation diagram of DN after DG configuration
with MOABC and the voltage level distribution diagram of 33 nodes. As can be seen from the figure,
the node voltage level of 33 nodes increases after DG is configured, which is closer to 1 p.u. This
shows that compared with MODA, MOGOA and MOPSO, the DG configuration scheme selected by
MOABC can effectively improve the stability of DN operation and give full play to the positive role
of DG in DN.

4.2 Performance Comparison of IEEE 69 Node Algorithm
Table 9 shows the specific configuration schemes of the four DGs obtained by MOABC. Table 10

gives the optimization results of configuring the DG in the IEEE 69-node test system via MOABC,
MODA, MOGOA and MOPSO, respectively. Compared to the unconfigured DG, the MOABC
algorithm spends $3.392 × 104 to configure the DG, the total voltage deviation, voltage fluctuation in
terms of, system network loss and tie-line power deviation of the DN decreases by 39.25 p.u (54.98%),
0.425 p.u (35.93%), 3345.22 MW (75.17%) and 424.135 kW (33.91%). By comparing the optimization
results of each algorithm in Table 9, MOABC can obtain optimal results in five objectives among
seven objective functions: total voltage deviation, voltage fluctuation, system network loss, power
deviation of the tie-line and weight of meteorological indicators. This indicates that MOABC is able
to obtain results that are user and grid company friendly. In addition, the meteorological indicator
weight of the MOABC configuration scheme is 0.8180, which is close to 1. This indicates that the
PV and WPG locations configured in this scheme can better utilize the natural scenic resources and
effectively improve the utilization rate of scenic resources.
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Figure 5: Comparison of the voltage fluctuation curves of DN before and after the configuration of
DG at node 33

Figure 6: Comparison of node voltage levels of DN before and after configuration of DG at 33 nodes
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Table 9: Configuration scheme of the DG in IEEE 69 case

Algorithm PV WPG FC MGT

#1
Capa
City/
kW

#1
Install
node

#2
Capa
City/
kW

#2
Install
node

#1
Capa
City/
kW

#1
Install
node

#2
Capa
City/
kW

#2
Install
node

Capa
City/
kW

Install
node

Capa
City/
kW

Install
node

MOABC 593 68 600 61 30 51 132 46 30 26 217 64
MOGOA 427 56 579 61 144 46 173 9 98 59 68 65
MOPSO 653 2 28 61 176 15 300 10 20 7 149 65
MODA 311 16 440 61 166 50 117 18 53 67 132 68

Table 10: Optimization results of objective function under IEEE 69 case

MOABC MODA MOGOA MOPSO No DG is
configured

LCC/yuan 2.421 × 105 1.807 × 105 1.112 × 105 1.649 × 105 –
Total voltage deviation/p.u 32.14 38.94 39.78 36.50 71.39
Voltage fluctuation/p.u 0.758 0.773 0.761 0.760 1.183
System loss/kW 1104.77 1758.04 1430.87 1420.43 4449.99
Pollution discharge
coefficient/kg/h

144.514 115.41 80.694 98.344 –

Tie-line power
deviation/kW

820.715 834.994 825.935 821.28 1241.85

Weight of meteorological
index

0.8180 0.7730 0.6008 0.5683 –

Fig. 7 shows the box plots of each algorithm after 10 independent runs with the same number
of iterations, population size and constraints. From the figure, it can be seen that MOABC has good
stability and good numerical performance in six of the seven objective functions compared with other
algorithms, indicating that MOABC has the best stability and effectiveness among the four algorithms.

Figs. 8 and 9 show the voltage fluctuation graph of DN after MOABC configured DG and the
distribution of node voltage level of 69 nodes, respectively. From the figures, it can be seen that the
node voltage levels of the 69 nodes after configuring the DG have increased and are closer to 1 p.u.
This shows that the DG configuration scheme that MOABC can select can effectively improve the
stability of DN operation compared to the schemes of MODA, MOGOA and MOPSO, and can fully
utilize the positive role of DG in DN.
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Figure 7: Target function box plot of each algorithm (IEEE 69)
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Figure 8: Comparison of the voltage fluctuation curves of DN before and after the configuration of
DG at node 69

Figure 9: Comparison of node voltage levels of DN before and after configuration of DG at 69 nodes
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5 Conclusion

Considering the operation stability of DN, the investment economy of DG, the environmental
friendliness and the full utilization of scenic resources, this paper carries out the capacity allocation
location of four typical DG based on MOABC. Based on the improved grey target decision, the
optimal compromise solution is obtained. The main conclusions are as follows:

1) This paper establishes a multi-objective programming model based on DG LCC, pollution
emission index, meteorological index weight and DN voltage fluctuation, voltage distribution, net-
work loss and tie-line power deviation. It can achieve the maximum improvement of DN stability and
economy on the premise of ensuring the interests of DG investors.

2) In this paper, an improved grey target decision scheme based on Euclidean distance and
Mahalanobis distance is adopted, which can effectively avoid the influence of subjective decision on
the optimal compromise solution.

3) In this paper, a simulation experiment based on IEEE 33 standard node test system is designed
to verify the validity of the proposed configuration method. The experimental results show that the
total voltage deviation, voltage fluctuation and system network loss of DN decreased by 49.67%,
7.47% and 48.12% respectively after the DG configured by MOABC. The stability of DN operation
is effectively improved.

4) In this paper, a simulation experiment based on IEEE 69 standard node test system is designed
to verify the validity of the proposed configuration method. The experimental results show that the
total voltage deviation, voltage fluctuation and system network loss of DN decreased by 54.98%,
35.93% and 75.17% respectively after the DG configured by MOABC. The stability of DN operation
is effectively improved.

In this paper, based on IEEE 33 and IEEE 69 distribution network structure, MOABC is used to
locate and determine the capacity of four types of DG. After the optimized configuration of DG is
connected to DN, the total voltage deviation and voltage fluctuation of DN are significantly reduced,
which is conducive to the more stable and economical operation of DN. It shows that the distribution
of distributed generation is crucial to the success of grid planning [25]. At the same time, compared
with other schemes, the configuration scheme of MOABC has the smallest configuration capacity, but
can improve the stability and economy of DN to the greatest extent, and the configuration scheme is
more effective. Secondly, the configuration scheme of MOABC can maximize the utilization of scenery
resources and has good economic and environmental protection, and its configuration scheme has
better economy, environmental protection and high efficiency. Finally, MOABC has better stability
and effectiveness compared to MODA, MOGOA and MOPSO, as shown in the box whisker diagram.
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