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ABSTRACT

The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and
restricts the grid connection of wind power on a large scale. Therefore, wind power forecasting plays a key role in
improving the safety and economic benefits of the power grid. This paper proposes a wind power predicting method
based on a convolutional graph attention deep neural network with multi-wind farm data. Based on the graph
attention network and attention mechanism, the method extracts spatial-temporal characteristics from the data of
multiple wind farms. Then, combined with a deep neural network, a convolutional graph attention deep neural
network model is constructed. Finally, the model is trained with the quantile regression loss function to achieve
the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data. A wind
power dataset in the U.S. is taken as an example to demonstrate the efficacy of the proposed model. Compared with
the selected baseline methods, the proposed model achieves the best prediction performance. The point prediction
errors (i.e., root mean square error (RMSE) and normalized mean absolute percentage error (NMAPE)) are
0.304 MW and 1.177%, respectively. And the comprehensive performance of probabilistic prediction (i.e., con-
tinuously ranked probability score (CRPS)) is 0.580. Thus, the significance of multi-wind farm data and spatial-
temporal feature extraction module is self-evident.
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1 Introduction

Wind energy is the world’s third-largest renewable energy source with huge development potential.
China has the world’s largest installed capacity [1]. However, wind energy is affected by atmospheric
movement and its changes have strong randomness and volatility. With the development of built-in
monitoring and data acquisition technology in power systems, wind farms have stored a large amount
of historical wind power data and meteorological data that can be used for wind power prediction [2].

1.1 Related Literature Review
After the research and development of wind power prediction technology over many years, a large

number of prediction models have been proposed. These models can be divided into three categories
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according to the prediction techniques, namely the statistical model, the machine learning model,
and the deep learning model [3]. A typical statistical model is the time series model, such as the
autoregressive [4] and autoregression moving average [5], etc. The machine learning model includes
multilayer perceptron [6], support vector machine [7], random forest [8], etc. However, it is difficult
for traditional machine learning prediction models based on shallow networks to handle complex
and multi-source historical data. Deep learning models have strong feature extraction ability and
generalization abilities [9]. In the field of wind power prediction, the relatively mature deep learning
networks are the CNN [10,11] and recurrent neural networks represented by LSTM [12,13] and GRU
[14,15]. CNN is widely used to extract non-linear features in complex sequences, and LSTM and GRU
are suitable for times series data modeling [16].

Numerical weather prediction data include the wind speed, the wind direction, the humidity, and
other prediction data related to wind power [17]. Selecting appropriate NWP data as the feature input,
many deep learning models can show better performance in wind power prediction. However, the
complex and diverse NWP data related to wind power can diminish the prediction models’ perfor-
mance, so the dynamic features of NWP data need to be extracted by efficient methods [18]. Literature
[19] proposed a wind power probabilistic prediction model based on CNN and verifies its accuracy.
In Literature [20], CNN and physical models are combined in prediction, which further improves
the forecasting efficacy of short-term wind power. Considering the effect of meteorological elements
on wind power forecasting, literature [21] screened the multivariate meteorological information data
highly correlated with wind power with distance analysis and uses it as the LSTM model’s input data.
The hybrid model composed of CNN and LSTM can take advantage of each model, further improving
the forecasting performance [22]. Literature [22] combined CNN and LSTM for wind power prediction
and takes into consideration the meteorological elements’ influence on wind power in time and space.

Wind power is essentially determined by meteorological factors with spatial-temporal character-
istics, including the wind speed and the wind direction. Conventional input features of wind power
forecasting are all the relevant datasets of the local wind farm, which can only capture the features
in time series and ignore the spatial-temporal features [23]. With the improvement of the electric
system measurement system, the meteorological data of different wind farms can be managed centrally.
Therefore, algorithms could be used to fuse and extract features of the data of adjacent wind farms,
and to achieve more accurate wind power prediction [24]. However, deep neural networks such as
CNN are mainly used to deal with well-structured data. However, the wind farm location distribution,
in reality, is irregular. Therefore, it is more reasonable to use the graph structure to characterize the
relationship between each wind farm. Based on the graph structure, each wind farm is independent and
connected by the line relationship. For such graph structure data, graph neural networks [25] (GNN)
have relatively good spatial-temporal feature extraction effects. Literature [26] proposed a graph deep
learning model, which is used to study neighboring wind farms’ spatial-temporal characteristics from
the wind speed and wind direction data, and to forecast the wind speed of the entire graph node
according to the extracted spatial-temporal characteristics. In literature [27], the spatial-temporal
correlation graph neural network was proposed to forecast the multi-node offshore wind speed, to
better capture the potential spatial dependency from node relationships and historical time series, and
to distinguish node contributions and generate high-dimensional spatial characteristics.

At present, GNN-related research is developing rapidly, among which the graph convolutional
neural network [28] (GCN) has been studied and applied in many fields. GCN depends on the initial
adjacency matrix and the graph attention network [29] introduces the attention mechanism based on
GCN. Compared with GCN, an adaptive edge weight coefficient is added to the graph attention layer
of GAT. The weight coefficient matrix of GAT does not require complex data formulas, and it can
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be automatically learned from GAT. In addition, the attention mechanism reduces the number of
parameters to be learned. Therefore, the graph attention model has very efficient graph data processing
and expression performance compared with GCN.

1.2 Contributions of This Work
All the above models are point prediction models, which obtain the deterministic value of the

future wind power but cannot accurately describe the uncertainty of the wind power. Due to the strong
volatility of wind electricity power, point forecasting may not be reliable enough to satisfy realistic
scheduling needs [30]. As a result, the probability and interval forecasting of wind power has become a
research hot topic. In literature [31], the authors designed a multi-source and temporal attention model
to dynamically select the variables of NWP and extract temporal dependency, and construct a multi-
step probabilistic prediction using a mixture density module based on a beta kernel. However, this
study only considers temporal dependency. Literature [32] developed a method that improves short-
term wind power probabilistic prediction by the combination of deep belief network (DBN), error
scenario partitioning method that is used to mine spatial-temporal dependence of NWP data, and
kernel density estimation. However, the proposed method is affected by the power characteristic curve’s
accuracy. The interval prediction can provide a high-confidence prediction interval and the probability
forecasting can fit the probability density function curve of the forecasting result [33]. The interval
forecasting and probability forecasting are usually implemented by a combined model of quantile
regression (QR) and point prediction model [34]. Literature [35] combined QR with LSTM to propose
a quantile regression long short-term memory model (QRLSTM) which obtains relatively accurate
results for the wind power point prediction and the probability density prediction.

Based on existing research, a wind power probability forecasting model based on spatial-temporal
feature extraction is proposed in the paper to realize accurate point prediction and reliable interval
forecasting and probability forecasting of wind power. Firstly, CNN, GAT and attention mechanism
are combined to extract the complex dynamic spatial-temporal characteristics of each adjacent wind
farm. Then, LSTM is to build a QR prediction model to realize wind power forecasting. Finally, the
wind power probability density function curve is obtained through KDE. The actual wind power data
of a wind farm in the U.S. is tested and compared with other prediction models. As can be seen from
the results, the forecasting efficacy of the proposed model has been improved. The main contributions
of this work include the following threefold:

(1) Since the meteorological data comes from multiple wind farms, this paper combines CNN and
GAT to extract characteristics of meteorological data. CNN is used to extract the complex dynamic
temporal features of each adjacent wind farm, and the processed features are aggregated into the graph
structure data, and then the GAT module is to learn the spatial-temporal features. Moreover, the
multi-head attention mechanism is introduced in GAT to further overcome the complex data noise
of meteorological data in the graph. Compared with other methods, the proposed model not only
considers the meteorological data characteristics of the target wind farm, but also fuses the historical
meteorological characteristics of multiple nearby wind farms for spatial-temporal feature extraction,
which fully considers the coupling relationship between wind power and multi-source meteorological
factors, and improve the prediction accuracy of wind power.

(2) We combined LSTM and QR to construct a wind power prediction model, and realized point
and probabilistic wind power forecasting based on spatial-temporal data of multi-wind fields.

(3) The actual wind farm data is used for example test, and the comparison experiment with several
models is carried out to verify the superiority of the proposed CGA-LSTM model. In addition, for the
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purpose of ensuring the reproduction of the proposed prediction method, we published the relevant
code on GitHub1.

2 The Algorithm Model Principle
2.1 The Graph Modeling

The research subject of GAT is graph data, which is modeled from graph theory. The graph here
refers to the data structure similar to the topological graph which consists of nodes and edges. The
formula of the graph is given by:

G = (V , E, A)

V = {v|v ∈ data object
}

E = {< v, w > |v, w ∈ V ∧ p (v, w)}
(1)

wherein V represents the set of vertices, E represents the set of lines, and A represents the adjacency
matrix of graphs. The elements in the adjacency matrix only represent the connection relation between
wind farms. Therefore, the adjacent matrix of GAT is constructed as follows:

Aij =
{

1 PCC
(
vi, vj

) ≥ γ

0 PCC
(
vi, vj

)
< γ

(2)

wherein PCC
(
vi, vj

)
indicates the Pearson correlation coefficient of the ith and the jth wind farm

meteorological data. When PCC
(
vi, vj

)
is greater than or equal to γ , vi and vj are linked to the edge

eij ∈ E with a weight of 1. When PCC
(
vi, vj

)
is less than γ , vi and vj are not linked with edges, indicating

that only the influence between connected points is considered in the attention mechanism application.

2.2 The Graph Attention Network GAT
The main principle of GAT is that in the model parameter training and feature extraction of graph

data, the neighborhood weight of the target node and its adjacent nodes is determined by the attention
mechanism. In this way, the spatial-temporal correlation between nodes can be determined by the edge
weight without depending on the initial adjacent matrix.

Fig. 1 shows the framework of GAT, h1 denotes the meteorological data of the target wind farm
station, h2 ∼ h6 denote the meteorological data of the nearby station, w1 constitutes the weight matrix
W , and h′

1 represents the output of the target wind farm station. The GAT input can be expressed as:

h =
{→

h1,
→
h2, . . . ,

→
hN

}
,

→
hi ∈ R

F (3)

wherein N represents the quantity of nodes and
→
h denotes the input of a single node.

Each node in GAT corresponds to a hidden state. The hidden state is jointly determined by the
data input of its node and the relevant influence of the neighbor node data. This process is mainly
realized through the self-attention mechanism. Its attention coefficient is calculated as follows:

eij = a
(
Whi, Whj

)
(4)

wherein eij is the attention coefficient of the adjacent node j to the target node i. hi and hj represent
the hidden state of the adjacent nodes. W is the weight matrix and a (·) is the attention mechanism,
indicating the correlation between feature vectors.

1GitHub project website: https://github.com/liyeyang-isfj/CGA-LSTM.

https://github.com/liyeyang-isfj/CGA-LSTM


EE, 2024, vol.121, no.2 363

h1

h2

h3

h4

h5

h6

h'1

w1

w2

w3

w4 w5

w6

Figure 1: The structure of GAT

It can avoid the relatively large calculation amount by calculating only the attention correlation
coefficient of the target node i and its adjacent node j. Its expression is as follows:

αij = softmaxj

(
eij

) = exp
(
eij

)∑
k∈Ni

exp (eik)
(5)

wherein soft maxj (·) is the normalization function and Ni indicates the quantity of adjacent nodes of
node i. And the nonlinear activation function LeakyReLU (·) is used for activation with the slope of
0.2.

αij =
exp

(
LeakyReLU

(
→
aT

[
W

→
hi||W

→
hj|
]))

∑
k∈Ni

exp
(

LeakyReLU
(

→
aT

[
W

→
hi||W

→
hk|
])) (6)

wherein || indicates the feature connection and
→
aT

[
W

→
hi||W

→
hj|
]

shows that nodes i and j are feature-

extracted separately and stitched.

Through the above computation, the output of each node is obtained as follows:

→
h ′

i = σ

⎛⎝∑
j∈Ni

αijW
→
hj

⎞⎠ (7)

wherein σ (·) represents the activation function of sigmoid and
→
hi

′ denotes the output of node i.

Through GAT, the target node highly aggregates the characteristics information of each adjacent
node according to the weight information with each adjacent node and adaptively extracts the highly
correlated node features of adjacent nodes. Therefore, GAT has efficient spatial-temporal feature
extraction ability and GAT is flexible in modeling without relying on the graph structure and node
order, which can enhance the model’s prediction ability.

2.3 The Head Attention Mechanism
To raise the reliability and stability of GAT spatial-temporal feature extraction, we bring the

multi-head attention mechanism to GAT. The multi-head attention uses K independent attention
mechanisms to improve formula (7), that is, the K-order parallel independent operation of GAT is
conducted. Then, the results of each conversion are combined to obtain the final feature output result
as follows:
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→
h ′

i = ||K
k=1σ

⎛⎝∑
j∈Ni

αk
ijW

k
→
hj

⎞⎠ (8)

wherein αk
ij represents the normalized result of the attention coefficient αk of the kth order attention

mechanism. The features of each head are connected or averaged to get the final feature output
→
h′

1.

The graph data, especially when there is complex data noise in the meteorological data, will greatly
impact the performance of GAT. However, the multi-head attention mechanism can make GAT mode’s
attention learning more reliable and stable, which can help notice the most important node in the graph
and highlight the most important feature information.

2.4 The Convolutional Neural Network CNN
CNN is a deep neural network on the basis of convolution operation with pooling, local

connection, and weight sharing. It is widely used to automatically learn labeled data and extract
complex features in data [11]. The structure of the one-dimensional CNN is displayed in Fig. 2, which is
mainly composed of two convolution layers, two pooling layers, and one fully connected layer. Features
of the input data are extracted by the convolutional layer through scanning the convolution core. The
pooling layer is utilized to sample the features that are extracted by the convolution layer, and to reduce
network complexity while retaining the feature vector’s main information; the fully-connected layer is
to select the appropriate activation function for full connection, and the output activation value is the
feature extracted by CNN.

Conv1 Pooling1 Conv2 Pooling2 fully-connected

Figure 2: The structure of one-dimensional CNN

2.5 The Long Short-Term Memory LSTM
Based on recurrent neural network (RNN), the LSTM model has been improved and solved

RNN’s problem of being unable to effectively process long-distance information and being prone to
gradient disappearance and explosion. Therefore, it is widely used in the analysis and processing of
time series data. As shown in Fig. 3, the unit structure of LSTM mainly contains the “forget gate”,
the “input gate”, and the “output gate”, whose outputs are ft, it and ot, and can selectively retain or
forget information, thus overcoming the adverse effects of short-term memory. The forget gate is to
decide what information should be discarded or retained. The input gate is to update the cell state and
selectively transmits the formerly hidden status information and new input information to the new
LSTM cell, and the output gate is used to regulate the filtering of the unit cell status and determine
information of the next hidden state. In addition, xt denotes the input of the LSTM unit, ct−1 and ct
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denote the cell unit states of the previous moment and the current moment, respectively, and ht−1 and
ht denote the corresponding hidden layer states.

� � tanh �

tanh

Ct-1 Ct

ht-1

ht

ht

xt

ft it gt Ot

Figure 3: The unit structure of LSTM

3 The Wind Power Prediction Model Based on CGA-LSTM
3.1 CGA-LSTM Model

As shown in Fig. 4, the multi-wind farm wind power spatial-temporal prediction combined model
CGA-LSTM consists of the input module, the spatial-temporal feature extraction module, the deep
learning prediction module, and the output module. The input module includes the meteorological
data of multiple wind fields X1, X2, · · · , Xn whose temporal characteristics are extracted by CNN, and
the wind power historical data XP. The feature extraction and deep learning module are the core of the
model, which jointly achieved accurate and reliable prediction of wind power. Through introducing
the multi-head attention mechanism into GAT layers, the spatial-temporal feature extraction module
mines the spatial-temporal characteristics of meteorological data from different wind farms to
prepare for further wind power forecasting. The deep learning prediction module is composed of
LSTM, which further achieves the effective correlation between the spatial-temporal characteristics
of meteorological data and wind power data. The forecasting model based on CGA-LSTM realizes
wind power characteristics mining through the above two modules, and obtains point and probability
forecasting results through the output module. Next, the specific functions of each module are
introduced, respectively.

3.1.1 Input Module

The model has two input modules, the meteorological data of n adjacent wind farms Xnwp =
[X1, X2, . . . , Xn] and the wind power historical data input XP stitched together with the spatial-temporal
features extracted from GAT.

The meteorological data mainly include the wind speed, the wind direction, the atmospheric
density, the humidity, and the temperature. The correlation and dimension between the meteorological
data are different, and the time series features of wind power are not obvious. Therefore, to guarantee
the more efficient spatial-temporal feature extraction of the subsequent GAT layer, an independent
convolution-based feature extraction module is used for the meteorological data of each node to
initially extract the high-dimensional dynamic time series feature of each node. The meteorological
data of each node Xfi is transformed into a one-dimensional time series feature Xf = [Xf 1, Xf 2, . . . , Xfn

]
through convolution, pooling, flattening, and other operations. The node data of the graph data is
composed of n time series features. As the input of each graph network node, the time series feature
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Xf of each node obtained by convolution constitutes an undirected fully connected graph, which is the
input of the GAT network.

0.5 quantile

LSTM + Dense

Quantile Regression

Multi GAT layers

concatenate

CNN Layer2

Flattening Layer

Pooling Layer

CNN Layer1

Wind Power XP

Probability density function

Interval 
prediction results

Point
prediction results

0.025 quantile

0.975 quantile

Predicate results at 
different quantiles

KDE

Architecture of 
CNNs 

Meteorological data 
of multi-wind farms

Multi GAT layers Multi GAT layers

X1 X2 ... Xn

CNNs CNNs CNNs...

...

Figure 4: The structure of CGA-LSTM

3.1.2 The Spatial-Temporal Feature Extraction Module

The spatial-temporal feature extraction module has three parallel independent GAT modules, and
each GAT module consists of two GAT layers, which is to extract the spatial-temporal characteristics
of the target node. The multi-head attention mechanism is utilized to make the prediction effect more
stable and reliable. The fusion feature is obtained by adjusting the dimension of XG and XP.

3.1.3 Deep Learning Prediction Module

In the probability prediction module, LSTM is used to extract the fusion feature XF . The results
are processed by the multi-fully connected layer. The quantile loss function optimization training is
received and the wind power’s predicted value under diverse quantiles is finally output. The quantile
loss function is:

min
1

mq

q∑
j=1

m∑
i=1

ρτj

(
yi − f

(
W
(
τj

)
, b
(
τj

)
, Xi

))
(9)

wherein m denotes the number of samples for each batch training set. q is the number of quantiles. yi

represents the real value of the output. Xi represents the input of the sample. f
(
W
(
τj

)
, b
(
τj

)
, Xi

)
is the

predicted value output by the ith sample of under the quantile condition τj. W
(
τj

)
and b

(
τj

)
denote the
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model parameters related to the quantile τj. f (·) is the nonlinear function that reflects the connection
between X and y. ρ (·) is the check function and its formula is as follows:

ρτ (μ) = μ(τ − I(μ)), I (μ) =
{

1, μ < 0
0, μ ≥ 0 (10)

wherein is the indicator function and μ is the input of the function.

The process of the probability prediction module can be calculated as:

ỹ (τ ) = f
(
W̃(τ ), b̃(τ ), XF

)
(11)

wherein ỹ (τ ) is the wind power predicted value at the quantile τ . W̃ (τ ) and b (τ ) are the network
weight and deviation, respectively. XF denotes the fusion feature. And ỹ (τ ) denotes the predicted
output of wind power.

3.1.4 The Output Module

Based on the predicted values of different quantile conditions, the point and interval forecasting
results can be obtained. The point prediction result is the predicted value ỹ (0.5) at the of 0.5. The
interval prediction is

[̃
y (τdown) , ỹ

(
τup

)]
, wherein τdown and τup represent the confidence interval lower

and upper limits at the given confidence degree. The prediction results of different quantile conditions
at a certain time can be seen as a random sample following a certain distribution. Therefore, KDE can
fit all the quantile predicted values at that time to get the PDF of the wind power predicted value at
that time.

The KDE expression is as follows:

gh (z) = 1
nh

n∑
i=1

K
(

z − zi

h

)
(12)

wherein gh (z) represents the estimated PDF. n denotes the number of samples. K (·) represents the
kernel function. h is the kernel function bandwidth. Epanechnikov is selected as the kernel function.
In this paper, we select the grid search with cross-validation to obtain the suitable bandwidth.

3.2 Evaluation Indicators to Predict Model Performance
3.2.1 Point Prediction Evaluation Indicators

To assess and compare the point prediction capability of the forecasting model, the root mean
square error (RMSE) and normalized mean absolute percentage error (NMAPE) are adopted as the
evaluation metrics with the formulas as:

ERMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2
(13)

ENMAPE = 1
n

n∑
i=1

∣∣yi − ŷi

∣∣
maxn

i=1 yi

× 100% (14)

wherein n denotes the quantity of test samples. i denotes the sample serial number. yi and ŷi represent
the real value and predicted value of the ith sample output, respectively.

The model with the smaller RMSE and NMAPE values has higher point forecasting accuracy.
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3.2.2 Probabilistic Prediction Evaluation Indicators

To assess the effect of interval prediction models, we selected the average coverage error (ACE),
the prediction interval normalized average width (PINAW), and the interval sharpness (IS) metrics for
comparative analysis. The formula is:

EACE =
(

1
n

n∑
i=1

{
1, yi ∈ [lα

i , uα

i

]
0, yi /∈ [lα

i , uα

i

] − (1 − α)

)
× 100% (15)

EPINAW = 1
ns

n∑
i=1

(
uα

i − lα

i

)
(16)

EIS = 1
n

n∑
i=1

⎧⎪⎨⎪⎩
−2α

(
uα

i − lα

i

)
, yi ∈ [lα

i , uα

i

]
−2α

(
uα

i − lα

i

)− 4
(
lα

i − yi

)
, yi < lα

i

−2α
(
uα

i − lα

i

)− 4
(
yi − uα

i

)
, yi > uα

i

(17)

wherein α represents the significance level. uα

i and lα

i represent the lower and upper limits of the ith

sample prediction under confidence degree (1 − α). s is the difference value of the actual maximum
and minimum value.

A larger ACE indicates a larger coverage of the prediction interval at a certain significance level
and a higher interval prediction reliability. Smaller PINAW indicates the narrower average width of
the prediction interval obtained by the model. And higher IS indicates the better interval prediction
comprehensive capability of the model.

In this paper, the continuously ranked probability score (CRPS) is employed to reflect the
probability forecasting efficacy. And the formula is as follows:

ECRPS = 1
n

n∑
i=1

∫ +∞

−∞

[
F (yi) − I

(
ŷi − yi

)]2
dyi (18)

F (yi) =
∫ yi

−∞
p (xi) dxi (19)

wherein i is the sample serial number. F (·) represents the cumulative density function; xi denotes the
i sample input. And p (·) denotes the probability density function. Smaller CRPS indicates the better
probability prediction comprehensive capability of the model.

4 The Example Test

To confirm the proposed model’s forecasting effect, the wind power historical data and meteoro-
logical data of Rock River Wind Farm from January 01, 2012 to December 31, 2012, including the
wind speed, the wind direction, the temperature, and the humidity are adopted. The meteorological
data of 10 adjacent wind farms are selected by the Pearson’s correlation coefficient method. The data
is 1 recording point per hour. Compared with other meteorological data, the correlation of wind speed
and wind power data is the strongest. As shown in Fig. 5, the higher the wind speed, the greater
the corresponding wind power output, but the relationship between them is nonlinear, and when the
wind speed reaches a certain point, the power output of the fan will tend to be stable. The relevant
characteristics of other meteorological data and wind power are relatively complex, and the proposed
method can learn the dynamic complex characteristics well to achieve the forecast target.
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Figure 5: The target site wind speed and wind power data scatter plot

4.1 The Input Data Normalization
To prevent the neuron saturation, the normalized input data is required. In this paper, the min-max

normalization method is adopted with the expression as:

x̂ = xmax − x
xmax − xmin

(20)

wherein x̂ denotes the normalized data. x denotes the original data. And xmax and xmin denote the
maximum and minimum value of the original data, respectively.

4.2 The Model Parameter Setting
The proposed model sets 99 quantile points with the quantile point τ = [0.01, 0.02, . . . , 0.98,

0.99]. Table 1 displays the hyper-parameter settings of the CGA-LSTM model. To demonstrate
the superior comprehensive spatial-temporal prediction performance of CGA-LSTM, GCN-LSTM,
CNN-LSTM, CGA-MLP and LSTM are selected as the comparison models. GCN-LSTM could
process the graph network data. It has the same structure set up as the CGA-LSTM but requires the
input of the initial adjacent matrix. CNN-LSTM and LSTM cannot process the graph network data.
Therefore, their input is only the meteorological datasets of the targeted wind farm and the structure
is cascaded. The CGA-MLP model consists of a CGA module and a fully connected layer (MLP) as
a measure of the necessity of LSTM networks. Next, the efficacy of the proposed model and others in
the point prediction and probabilistic prediction are compared, respectively.

Table 1: Hyper-parameter settings of CGA-LSTM

Layer Parameter Value

CNN1, 2 Kernel size 2 × 2
Number of kernel 16, 32

GAT1, 2 Number of nodes 32, 64
Number of hands 4, 8

(Continued)
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Table 1 (continued)

Layer Parameter Value

GAT1 Way of aggregation Average
GAT2 Way of aggregation Average
LSTM Number of nodes 64
Dense Number of nodes 128, 64
Dropout Rate 0.2

4.3 The Analysis of Prediction Results
4.3.1 The Analysis of the Point Prediction Effect

In the paper, the predicted value corresponding to 0.5 quantiles of each model is selected as the
wind power point forecasting result. Table 2 shows the point prediction result error statistics for each
model. As can be seen in Table 2, RMSE and NMAPE of CGA-LSTM are the lowest. Compared with
other models, RMSE decreases by 0.0741, 0.3035, 0.3732, and 0.3865 MW, respectively, and NMAPE
decreases by 0.3133%, 1.1391%, 1.4554%, and 1.548%, respectively. Table 2 also indicates that each
component of the model contributes to the overall performance and removing any component would
lead to a significant drop in the performance. The prediction accuracy of the models using the graph
network to extract spatial-temporal features is higher than those using the single wind farm data.
Compared with the effect of CGA-LSTM, the wind power prediction accuracy of CGA-LSTM is the
highest, indicating that the proposed CGA module is effective in processing spatial-temporal features.

Table 2: The comparison of point forecasting results of different models

Model RMSE/MW NMAPE/%

CGA-LSTM 0.304 1.177
GCN-LSTM 0.378 1.490
CNN-LSTM 0.608 2.316
CGA-MLP 0.677 2.632
LSTM 0.691 2.725

Fig. 6 is the comparison between the predicted value of each model and the actual value of wind
power. As displayed in Fig. 6, relying on the performance of deep learning, each model has good point
prediction performance. However, by comparing the randomly selected magnified sub-graphs, it can
be seen more clearly that the predicted value of the CGA-LSTM model is closest to the real value.
To summarize, the CGA-LSTM model has better point forecasting performance of short-term wind
power.
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Figure 6: Point forecasting results of diverse models

4.3.2 The Analysis of Probability Prediction Effect

The forecasting results at diverse quantiles are gained from CGA-LSTM by using QR. The KDE
method was utilized to fit the PDF for each observation point, and Fig. 7 displays the PDF of 4
randomly selected observation points. As can be seen from Fig. 7, most of the real values approach
the PDF peak and the predicted median, which indicates the proposed probability forecasting model
is efficient.

(a) observation point 1 (b) observation point 2

Figure 7: (Continued)
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(c) observation point 3 (d) observation point 4

Figure 7: The PDF curve at different observation points predicted by CGA-LSTM

The error statistics of each model’s probabilistic forecasting are shown in Table 3. It can be
concluded that:

Table 3: Comparison of probabilistic prediction results of different models

Model PINAW ACE/% IS/MW CRPS

CGA-LSTM 0.078 2.291 −0.172 0.580
GCN-LSTM 0.118 4.791 −0.240 0.669
CNN-LSTM 0.153 0.833 −0.337 0.710
LSTM 0.129 0 −0.375 0.743

First, the ACE average value of CGA-LSTM and all contrast models is no less than 0, indicating
that the models’ prediction interval meets 95% confidence.

The IS and CPRS values of CGA-LSTM are the lowest. The IS absolute value of CGA-LSTM
decreases by 0.0674, 0.1649, and 0.2027, respectively. In comparison with other models, the CPRS
value of CGA-LSTM decreases by 0.0886, 0.1295, and 0.1631, respectively. It means that CGA-LSTM
has narrower prediction intervals and higher acuity, interval prediction comprehensive performance,
and probabilistic prediction performance. Based on the above analysis, the CGA-LSTM model
proposed in this paper is effective in using spatial-temporal features for probabilistic prediction.

In order to illustrate that CGA-LSTM proposed in this work can better describe the uncertainty
of wind power prediction, Fig. 8 shows the interval forecasting results of diverse models in the same
period. It is obvious that the actual value of CGA-LSTM almost all falls within its prediction interval,
which indicates that the performance of CGA-LSTM in interval prediction is very reliable. In addition,
the figure shows that the proposed model is narrower in the prediction interval compared with contrast
models, indicating that the proposed model CGA-LSTM has relatively high interval prediction acuity.
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(b) GCN-LSTM interval prediction result

(d) LSTM interval prediction result(c) CNN-LSTM interval prediction result

(a) CGA-LSTM interval prediction result

Figure 8: Interval forecasting results of diverse models

For the purpose of further illustrating the proposed method prediction effectiveness, we also
select three methods for comparative experiments, namely SATCN-LSTM [36], TAC-BiLSTM [37]
and SANN [38]. The evaluation indexes of point prediction and interval prediction results for the
90% confidence interval of different models are shown in Table 4. It can be seen that the proposed
model obtains optimal results on each evaluation index. For point prediction, compared with other
models, RMSE and NMAPE of CGA-LSTM are the lowest, which are reduced by 11.8% and 1.1% on
average, respectively, which reflects that the feature extraction model CGA can give full play to its own
performance, and actively enhance the point prediction accuracy. For interval prediction, under the
90% confidence level, although the absolute values of ACE of CGA-LSTM is not the smallest, PINAW
and the absolute values of IS are both the smallest, indicating that the prediction interval generated
by this method has good reliability, higher sensitivity and better comprehensive performance. In
summary, the method of this paper has certain advantages over other selected methods, especially
in the scenario of multiple wind field data, where the proposed model can fully consider the coupling
relationship between wind power and meteorological factors, and obtain better prediction results.

Table 4: Comparison of point prediction and interval prediction results of different methods

Method RMSE/MW NMAPE/% PINAW ACE/% IS/MW

CGA-LSTM 0.304 1.177 0.078 2.291 −0.172
SATCN-LSTM [36] 0.354 1.201 0.078 1.239 −0.195
TAC-BiLSTM [37] 0.355 1.183 0.096 2.354 −0.209
SANN [38] 0.327 1.186 0.102 1.859 −0.185
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5 Conclusion

In this paper, a wind power prediction model of convolution graph attention long short-term
memory model based on multi-wind farm spatial-temporal data, namely CGA-LSTM, has been
proposed. Firstly, CNN is used to primarily extract the high-dimensional characteristics of the
meteorological data at each node. Then, the multi-layer attention network is used to extract the spatial-
temporal characteristics of the graph data and LSTM is combined to form the graph attention deep
neural network CGA-LSTM, which can effectively extract the spatial-temporal characteristics of the
multi-wind farm meteorological data and realize the deterministic and probabilistic prediction of wind
power using multi-wind farm meteorological data. Compared with traditional models such as CNN-
LSTM, the proposed model has a higher prediction capability. The proposed model has only one target
node, that is, the multi-wind farm meteorological data is used to predict the wind power of only one
wind farm. In future research, multi-task models can be constructed to predict and model multiple
adjacent wind farms simultaneously and share the same graph network information.
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