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ABSTRACT

By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor
measurement, information communication, and other fields, the digital DC distribution network can efficiently
and reliably access Distributed Generator (DG) and Energy Storage Systems (ESS), exhibiting significant advantages
in terms of controllability and meeting requirements of Plug-and-Play (PnP) operations. However, during device
plug-in and -out processes, improper system parameters may lead to small-signal stability issues. Therefore, before
executing PnP operations, conducting stability analysis and adjusting parameters swiftly is crucial. This study
introduces a four-stage strategy for parameter optimization to enhance system stability efficiently. In the first stage,
state-of-the-art technologies in measurement and communication are utilized to correct model parameters. Then,
a novel indicator is adopted to identify the key parameters that influence stability in the second stage. Moreover,
in the third stage, a local-parameter-tuning strategy, which leverages rapid parameter boundary calculations as
a more efficient alternative to plotting root loci, is used to tune the selected parameters. Considering that the
local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment, a multi-
parameter-tuning strategy based on the particle swarm optimization (PSO) is proposed to comprehensively adjust
the dominant parameters to improve the stability margin of the system. Lastly, system stability is reassessed in the
fourth stage. The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue
analysis and nonlinear time-domain simulations.
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DC distribution system; digital grid; small-signal stability; eigenvalue parametric sensitivity; particle swarm
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1 Introduction

The rapid development of Distributed Renewable Sources (DRS), Energy Storage Systems (ESS),
and controllable loads has rendered traditional AC distribution systems increasingly unsustainable. In
contrast, DC distribution technology, providing efficient and reliable integration of Distributed Gener-
ation (DG) and storage units, is considered a more attractive solution for meeting the requirements of
Plug-and-Play (PnP) operations [1]. Digital DC distribution networks, by integrating advanced digital
technologies such as big data, the Internet of Things (IoT), blockchain, and artificial intelligence
(AI) in areas including sensing and measurement, data mining, information communication, and
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operational control, are poised to become a critical component of future grids [2–4]. In the area of
information communication, technologies such as switching ripple communication [5], cognitive radio
[6], and 5G networks [7] support high-quality, low-latency communication, facilitating interaction
between various control stations and the central controller. The advancement of cloud computing [8]
and hardware devices has further enhanced the computing capability of central controllers, enabling
the rapid resolution of more complex problems.

Although DC distribution systems are free from reactive power, phase, and frequency issues, the
complex interactions among numerous power electronic devices lead to significant small-perturbation
stability problems. Poorly designed control schemes or improperly tuned controllers may lead to
small-signal stability issues during device plug-in and -out processes [9]. In this context, to achieve
PnP operations, establishing an accurate small-signal model and proposing a parameter-optimizing
strategy that can rapidly enhance system stability is paramount for digital DC distribution systems.

As mentioned above, individual inappropriate parameters may decrease the stability margin of
DC distribution networks. Therefore, employing local-parameter-tuning instead of simultaneously
adjusting numerous parameters is faster and more feasible in such cases for enhancing system stability.
Traditional individual parameter tuning strategy typically begins by utilizing Participation Factor (PF)
and Eigenvalue Parametric Sensitivity (EPS) to determine dominant parameters affecting stability.
Subsequently, root loci are drawn as the selected parameters vary, with the goal of determining their
feasible ranges and suitable values [10]. Nonetheless, the Modulus of Eigenvalue Parametric Sensitivity
(MEPS), which does not consider the angle of EPS, was utilized to identify dominant parameters,
potentially leading to less accurate descriptions of parameter impacts on system stability. Additionally,
generating root locus requires repeated calculation of high-order matrix eigenvalues, resulting in exces-
sive time consumption and computing burden, which fail to meet the rapid adjustment requirements
specified for digital PnP DC distribution systems.

Current research employs parameter boundary calculation to determine the small-signal stability
margin of power systems, offering an alternative to drawing root loci that require less time. System
parameters are classified into control parameters and operating parameters based on variations
in system equilibrium points [11]. Reference [12] introduced a Newton-based iteration method for
calculating parameter boundaries. However, this method necessitates repeated computation of EPS
during each iteration when estimating new values using the Newton formula, which proves time-
consuming. Literature [13] proposed a secant-based iteration method that avoids repeated EPS
calculations, which speeds up boundary computation. It is worth noting that, for control parameters,
Reference [11] presented a boundary calculation approach utilizing Eigenvalue Perturbation Theory
(EPT), eliminating the need for solving nonlinear equations.

Given that some operating parameters are limited in adjustment, local-parameter-tuning may
fail. Therefore, a multi-parameter-tuning strategy is necessary to enhance system stability and ensure
the realization of PnP operation. Literature [14] proposed a multi-parameter-tuning method based
on EPS, but it requires recalculating EPS at each iteration, which is time-consuming. Currently,
metaheuristic algorithms such as Particle Swarm Optimization (PSO) [15–18], genetic algorithms [19],
and ant colony optimization [20] have been widely used in parameter optimization for power systems.
However, existing optimization algorithms typically focus solely on optimizing control parameters
and are often tailored for parameter design, making them unsuitable for direct application in multi-
parameter-tuning scenarios.
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Based on the issues above, the main contributions of this paper are:

• Establishes a small-signal model that comprehensively considers the components and topolog-
ical characteristics of digital DC distribution systems.

• Proposes a parameter-optimizing strategy for digital PnP DC distribution systems that consist
of correction, locating, tuning, and verification stages, which aims to swiftly enhance the
system’s small-signal stability before performing PnP operations.

• Develops a multi-parameter-tuning method based on PSO to enhance the system’s stability
margin when local-parameter-tuning proves inadequate.

The rest of the paper is organized as follows: Section 2 proposes the control strategies and dynamic
models for digital DC distribution systems. Various boundary calculation methods and improvement
measures are introduced, and the implementation process of the parameter-optimizing strategy is
shown in Section 3. Meanwhile, a multi-parameter-tuning strategy based on PSO is presented in
Section 4. Section 5 verifies the established small-signal model’s precision and demonstrates the
proposed parameter-optimization strategy’s effectiveness within a practical system. Finally, Section 6
summarizes the primary conclusions and contributions of this study.

2 The Model of the PnP DC Distribution System
2.1 Introduction of the Analyzed System

Fig. 1 illustrates the classic configuration of a digital DC distribution system, comprising the
main grid, DG, VSC, DC distribution network, and loads [21–24]. Additionally, a dedicated central
controller is employed to perform the calculations required for parameter optimization and to
determine the control actions for all units [25]. Fig. 2 shows the equivalent circuit of the studied system.
The DGs and main grid are treated as ideal AC sources, with their internal controllers omitted. These
sources are connected through series impedance, and a constant output voltage is assumed, thereby
neglecting the impact of the dynamic behaviors of the AC system on the stability analysis [10,26]. The
DC distribution network adopts a symmetrical single-pole structure, with DC cables equivalent to the
RL circuit [22]. Loads are considered as RL-parallel constant impedance loads. Filters are installed on
the AC side of the two-level VSC to suppress the significant harmonics it injects.

Figure 1: Classic configuration of a digital VSC-based DC distribution system
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Figure 2: Equivalent circuits

2.2 Nonlinear State-Space Model
The differential equations for the DGs and main grid, as depicted in Fig. 2a, can be formulated

as Eq. (1).⎧⎪⎨
⎪⎩

Ls_i İsdq_i = −Rs_iIsdq_i ± ωPLL_iLs_iIsqd_i + Esdq_i − Usdq_i

Lv_i İvdq_i = −Rv_iIvdq_i ± ωPLL_iLv_iIvqd_i + Usdq_i − Uvdq_i

Cv_iU̇sdq_i = −Ivdq_i + Isdq_i ± ωPLL_iCv_iUsqd_i

(1)

where{
Esd_i = Esm_i cos (θi − θPLL_i)

Esq_i = Esm_i sin (θi − θPLL_i)
(2)

The mathematical equations for the load depicted in Fig. 2b are:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ls_j İsdq_j = −Rs_jIsdq_j ± ωref _jLs_jIsqd_j + ULdq_j − Usdq_j

Lv_j İvdq_j = −Rv_jIvdq_j ± ωref _jLv_jIvqd_j + Usdq_j − Uvdq_j

Cv_jU̇sdq_j = Isdq_j − Ivdq_j ± ωref _jCv_jUsqd_j

LL_j İLdq_j = ±ωref _jLL_jILqd_j + ULdq_j

(3)

where

ULdq_j = −RL_jIsdq_j − RL_jILdq_j (4)

The dynamic model of the DC section, as illustrated in Fig. 2c, is formulated as follows:⎧⎪⎨
⎪⎩

1
2

CDCU̇DC_i = IVSC_i − IDC_ij − Irest_i

LDCİDC_ij = 1
2

UDC_i − 1
2

UDC_j − RDC_ijIDC_ij

(5)
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If the power loss of the VSC is neglected:

IVSC_i = 3
2

(
Uvd_iIvd_i + Uvq_iIvq_i

)
/UDC_i (6)

2.3 Control Strategy of the VSC
This paper employs the dq coordinate system and the Proportional Integral (PI) algorithm to

control the VSC output. Regarding power-sharing control strategies, the droop control method is
widely used in DC distribution systems because it eliminates the need for communication [25,27,28].
However, a central controller is essential in this paper, which diminishes the primary advantage
of droop control and makes the master-slave strategy, which leverages the existing communication
framework, a more suitable choice. Fig. 3 illustrates the comprehensive control system of the VSC,
utilizing a phase locked loop (PLL) for synchronizing the control system’s voltage with the AC system
[29]. Notably, the load’s VSC no longer requires PLL because it is designed as a grid-forming converter
supplying passive impedance [30]. A vector current controller (VCC) is composed of an inner-loop
current controller and an outer-loop power controller [10,21].

Figure 3: Control system of the VSC

2.3.1 PLL

The PLL’s control block diagram is shown in Fig. 4, and its dynamic model is described by:{
θ̇PLL_i = ωPLL_i

ω̇PLL_i = 2πkp_iU̇sq_i + 2πki_iUsq_i

(7)

Figure 4: Control diagram of the PLL
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2.3.2 Inner-Loop Current Controller

The current controller adjusts the VSC terminal voltage Uv to enable the output current Is to
rapidly track its reference value Isref . Its model is shown in Eq. (8), and its control diagram is illustrated
in Fig. 5.

⎧⎪⎪⎨
⎪⎪⎩

Uvdref _i = −Rv_iIsd_i + ω0Lv_iIsq_i +
(
1 − ω2

0Lv_iCv_i

)
Usd_i − ω0Rv_iCv_iUsq_i −

(
Isdref _i − Isd_i

) (
kp3_i + ki3_i

s

)

Uvqref _i = −Rv_iIsq_i − ω0Lv_iIsd_i +
(
1 − ω2

0Lv_iCv_i

)
Usq_i + ω0Rv_iCv_iUsd_i −

(
Isqref _i − Isq_i

) (
kp4_i + ki4_i

s

)
(8)

Figure 5: Control diagram of the current controller

According to the principle of Pulse Width Modulation (PWM), for a three-phase bridge converter
circuit:⎧⎪⎪⎨
⎪⎪⎩

Uvdref _i

UDCref _0/2
= Uvd_i

UDC_i/2
Uvqref _i

UDCref _0/2
= Uvq_i

UDC_i/2

(9)

2.3.3 Outer-Loop Power Controller

In this paper, the master station connected to the main grid adopts a scheme of constant UDC

and Q to regulate the DC system voltage [31]. The slave station connected to the DG is controlled to
maintain constant P and Q. The VSC of the load operates as an ideal AC voltage source with constant
f and Usm [32,33]. Fig. 6 illustrates the control diagram of the outer-loop power controller used in VSC.

The dynamic models of the outer-loop controllers shown above are, respectively:

Pref _0 = (
UDCref _0 − UDC_0

) (
kp1_0 + ki1_0

s

)
(10)

Isdqref _i = 2Pref _i

3U 2
s_i

Usdq_i ± 2Qref _i

3U 2
s_i

Usqd_i (11)
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⎧⎪⎪⎨
⎪⎪⎩

Isdref _j = (
Usd_j − Usmref _j

) (
kp1_j + ki1_j

s

)

Isqref _j = Usq_j

(
kp2_j + ki2_j

s

) (12)

Figure 6: Control diagram of the outer-loop controller

State variables that represent the outputs of each PI controller’s integral component are presented
to streamline the VCC model. For instance, considering the master station, the mathematical equations
are:⎧⎪⎨
⎪⎩

ż1_0 = ki1_0

(
UDCref _0 − UDC_0

)
ż3_0 = ki3_0

(
Isdref _0 − Isd_0

)
ż4_0 = ki4_0

(
Isqref _0 − Isq_0

) (13)

In summary, the mathematical model of the typical DC distribution system is formulated using
Eqs. (1)–(13) as:

dx
dt

= f (x, u) (14)

where u and x denote the input and state variables, respectively. By solving the algebraic equation in
Eq. (15), the system’s equilibrium points can be determined.

f
(
x|0|, u

) = 0 (15)

The small-signal model of the studied system is derived by linearizing its nonlinear state-space
model at the equilibrium points.

dΔx
dt

= A · Δx + B · Δu (16)

3 Rapid Local-Parameter-Tuning Strategy Based on Boundary Calculation

After devices are plugged in or out, an originally stable system may experience small-signal insta-
bility due to inappropriate individual parameters. Therefore, adjusting one or more key parameters,
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rather than globally optimizing all parameters, is a quicker and more feasible approach to enhance
small-signal stability. However, current researches on parameter-tuning strategies often rely on root
locus analysis [10], which is time-consuming and fails to meet the rapid adjustment requirements posed
by PnP operation in digital DC distribution networks. A detailed strategy for local-parameter-tuning
to address this issue will be proposed in this section.

3.1 Locating Dominant Parameters
The damping ratio describes the rate and characteristics of decay for the corresponding eigenvalue

(λ = σ ± jω). To ensure the system has a sufficient stability margin, this paper asserts that the damping
ratio for all modes must be greater than ξb = 0.05 [11]. The definition of damping ratio is:

ξ = −σ√
σ 2 + ω2

(17)

EPS measures the ability of parameter change to affect the system eigenvalue, whose definition is:

S′
j = dλi

dkj

= uT
i · dA

dkj

· vi (18)

where kj is the system parameter. The operating points x|0| in A remain unchanged despite variations
in kj when kj is a control parameter, which means dx|0|/dkj is zero. At this point:

dA
dkj

= ∂A
∂kj

(19)

When kj is an operating parameter:

dAik

dkj

= ∂Aik

∂kj

+
nA∑

m=1

∂Aik

∂xm|0|
· dxm|0|

dkj

(20)

where nA is the order of characteristic matrix A, dxm|0|/dkj represents the sensitivity of the mth state
variable to kj, which can be determined using the following formula:

dx|0|

dkj

= −
(

∂f
∂x|0|

)−1

· ∂f
∂kj

= −A−1 · ∂f
∂kj

(21)

Considering the different orders of magnitude for various parameters, a change in parameters
with smaller orders has a more significant impact on the eigenvalues than those in parameters with
larger orders. In order to facilitate the identification of dominant parameters with significant influence
on eigenvalue through EPS, normalization of EPS has been performed.

Sj = dλi

d
(
kj/kj0

) = kj0S′
j (22)

where kj0 is the value of the system parameter. Sj quantifies the impact of parameter change rate on
eigenvalue, allowing comparisons between parameters of different orders of magnitude. However, EPS
is a complex number and cannot be directly compared. In current researches, parameters with the
maximum MEPS, as shown in Eq. (23), are typically identified as having the greatest influence on
system stability [22].

τj =
√[

Re
(
Sj

)]2 + [
Im

(
Sj

)]2
(23)
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However, MEPS does not value the angle of EPS, which leads to potential inaccuracies when
assessing how a parameter impacts system stability. Therefore, this paper introduces a novel indicator,
more accurate than MEPS, known as the projection of EPS (PEPS) [22]. This metric describes the
influence of a parameter on system stability, as defined in Eq. (24).

χj =
∣∣∣Re

(
Sj

) · √
1 − ξ 2

b + Im
(
Sj

) · ξb

∣∣∣ (24)

Fig. 7 illustrates the geometric interpretation of EPS, MEPS, and PEPS. The small-signal security
boundary λb, defined by the damping ratio, can be represented in the upper half complex plane as:

λb = μbρb μb = −ξb + j
√

1 − ξ 2
b (25)

Figure 7: Schematic diagram of EPS, MEPS, PEPS

From a mathematical perspective, χj represents the absolute value of the projection of EPS in
the direction perpendicular to the security boundary. Meanwhile, the security boundary’s vertical
direction is the quickest path for an unstable mode to re-enter the secure region. Therefore, adjusting
the parameter that has the highest PEPS will most rapidly bring an insecure mode back within the
secure range.

3.2 EPT-Based Method for Calculating Control Parameter Boundaries
This paper rapidly determines the feasible region of control parameters using an EPT-based

strategy [11], thus avoiding drawing root loci and freeing up resources for solving high-order nonlinear
algebraic equations.

3.2.1 Principle of the EPT-Based Method

As mentioned above, the equilibrium points are not affected by variations in control parameters.
Furthermore, analysis shows that the partial derivatives of elements in matrix A to control parameters
kj_con are constant, indicating that dA/dkj_con is a constant matrix. Consequently, the change of A is
represented as:

Ã = A + δ · Y = A + δ · dA
dkj_con

(26)

where δ represents change of kj_con. Suppose Y contains r non-zero value and Ti is the ith element
located at (ai, bi). Thus, Y is described as:

Y =
r∑

i=1

Ti · Iai · IT
bi

= D · E (27)
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where Ij represents the jth nA-dimensional unit vector. E and D, as defined in [11], are the right and
left decomposition matrices respectively given by Eq. (28).

E = [
Ib1

, Ib2
, · · ·, Ibr

]T

r×nA
D = [

T1Ia1
, T2Ia2

, · · ·, TrIar

]
nA×r

(28)

Assuming that the eigenvalues of A do not contain λ:

λ ∈ �
(

Ã
)

⇔ 1 ∈ �
(
δE (λI − A)

−1 D
)

(29)

To simplify the expression, define Aaux (λ) = E (λI − A)
−1 D as an auxiliary matrix. If 1 is an

eigenvalue of δAaux (λ) with left and right eigenvectors s and t, respectively, then λ is an eigenvalue of
Ã with left and right eigenvectors u and v, as shown in Eq. (30).

uT = sTE (λI − A)
−1 v = (λI − A)

−1 Dt (30)

Assuming that a change in kj_con by δ causes the insecure mode to fall within the small-signal
security boundary defined by Eq. (25), Ã denotes the characteristic matrix after the change in kj_con.
As shown in Eq. (29), Aaux (μbρb) will then have a real eigenvalue α = 1/δ. Therefore, solving for δ is
equivalent to finding ρ and α that satisfy:

α ∈ Λ (Aaux (μbρ)) Im (α) = 0 ρ ≥ 0 (31)

After obtaining ρb and αb:

λb = μbρb kb = kU + 1
αb

(32)

The order of Aaux which determined by E and D in Eq. (28), is r. Generally, r � nA, so iteration
methods such as the secant method can be used to calculate the eigenvalues of Aaux with different
values of ρ to find ρ and α that satisfy Eq. (31). In order to improve the time consumption, this study
streamlines the configuration of matrices E and D, thereby reducing the order of matrix Aaux [22].

3.2.2 Simplification of E and D

Suppose the amount of non-zero columns and rows in Y are denoted as s1 and s2, respectively.

When s1 ≤ s2, the indices corresponding to Y’s non-zero rows are defined as a = {
a1, a2, · · · , as1

}
,

denoted by D, and the information of non-zero row elements in Y is stored in E. The streamlined
configuration of E and D is:

Es1×nA (k, :) = YnA×nA (ak, :) D = [
Ia1

, Ia2
, · · · , Ias1

]
nA×s1

(33)

When s1 > s2, the indices corresponding to non-zero columns in Y are defined as b ={
b1, b2, · · · , bs2

}
, denoted by E, and the information of non-zero column elements in Y is stored in

D. The streamlined configuration of E and D is:

E = [
Ib1

, Ib2
, · · · , Ibs2

]T

s2×nA
DnA×s2

( :, k) = YnA×nA ( :, bk) (34)

Given that the control systems of each VSC operate independently, the mathematical equations
introduced by state variables from other VSCs do not include the control parameters of a certain VSC.
Therefore, s1 and s2 are typically significantly less than r, resulting in a significantly smaller order for
the auxiliary matrix formed by the improved method.
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3.2.3 Determination of Feasible Region

After obtaining the parameter boundary kb, the feasible range of k can be assessed through EPS
of λb with respect to k. The eigenvectors s and t, associated with the eigenvalue αb of Aaux, are computed
effortlessly, allowing dλb/dk can be derived from Eq. (35).

dλb

dk
= dσb

dk
+ j

dωb

dk
= ub · D · E · vb

ub · vb

(35)

The values of ub and vb can be obtained through Eq. (30). Subsequently, the feasible region of k is
determined as follows:{

k > kb if dξ (λb)/dk > 0

k ≤ kb if dξ (λb)/dk ≤ 0
(36)

where
dξ (λb)

dk
= − ω2

b(
σ 2

b + ω2
b

)3/2

dσb

dk
+ σbωb(

σ 2
b + ω2

b

)3/2

dωb

dk
(37)

3.2.4 Concrete Process

In conclusion, the steps for calculating the control parameter boundaries are outlined below:

First, calculate the matrix Y of A and form the matrices E and D according to Eqs. (33) or (34).
Then, calculate the sign of the imaginary part of λij and obtain intervals [ρi, ρi+1] where Im

(
λij

)
and

Im
(
λ(i+1)j

)
have opposite signs. Within these intervals, use the secant method to calculate ρb that satisfies

Eq. (31), and obtain λb and kb from Eq. (32). Lastly, the feasible range of k is computed by Eq. (36).

3.3 Secant-Based Method for Calculating Operating Parameter Boundaries
Due to the fact that changes in operating parameters affect power flow and the partial derivatives

of matrix A to certain operating parameters vary, the variation of A cannot be expressed by Eq. (26),
which makes the EPT-based method mentioned above ineffective. Consequently, this section intro-
duces a test function method for operating parameters to swiftly identify the security boundaries [13].

Given the estimated value of the operating parameter k(i)
j_oper, with the superscript (i) indicating the

iteration number, this approach initially calculates the operating points by Eq. (15) and constructs
A(i) with parameters x(i)

|0| and k(i)
j_oper. Subsequently, it solves the nonlinear equations of order (nA + 1) in

the complex domain, as shown in Eq. (38), to calculate eigenvalues and their associated eigenvectors(
λ(i), v(i)

)
located on the locus of insecure mode.{

A(i)v(i) = λ(i)v(i)(
v(i−1)

)T
v(i) = 1

(38)

where v(i−1) represents the normalized eigenvector calculated by k(i−1)

j_oper.

The iteration halts once λ(i) falls within the small-signal security boundary, yielding the solution is
found. Alternatively, this method solves the third-order algebraic equations shown in Eq. (39) in the
real domain based on the secant method to estimate the new value k(i+1)

j_oper.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
σ (i) − σ (i−1)

)
/
(
k(i)

j_oper − k(i−1)

j_oper

) = (
σ

(i+1)

b − σ (i)
)
/
(
k(i+1)

j_oper − k(i)
j_oper

)
(
ω(i) − ω(i−1)

)
/
(
k(i)

j_oper − k(i−1)

j_oper

) = (
ω

(i+1)

b − ω(i)
)
/
(
k(i+1)

j_oper − k(i)
j_oper

)
ξ

(
λ

(i+1)

b

) = ξb

(39)
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where λ
(i+1)

b represents the eigenvalue corresponding to the intersection point with the security
boundary when the eigenvalue changes linearly with the operating parameter in the root locus diagram.

The method requires two sets of initial values,
(
k(0)

j_oper, λ(0), v(0)
)

and k(1)

j_oper, to begin. The initial
parameter values are the first set, and the second initial value, k(1)

j_oper, can be calculated by solving
the equation shown in Eq. (40) in the real number domain, based on the Newton method.⎧⎪⎨
⎪⎩

dλ

dkj_oper

∣∣∣∣
λ(0) ,k(0)

j_oper

= λ
(1)

b − λ(0)

k(1)

j_oper − k(0)

j_oper

ξ
(
λ

(1)

b

) = ξb

(40)

where the derivative term is the EPS used for locating the dominant parameters, which does not need
to be recalculated. Fig. 8 illustrates the specific process of the secant method.

Figure 8: Flowchart of secant-based method

3.4 Process of Parameter-Optimizing Strategy
The process of the four-stage parameter-optimizing approach proposed in this paper is detailed

in the flowchart presented in Fig. 9.

Figure 9: Flowchart of parameter-optimizing strategy
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Stage 1 (Correcting Stage): Load fluctuations are common, and changes in the main grid’s operat-
ing mode may cause variations in the AC system impedance. Considering the importance of accurate
system parameters for stability analysis, model parameters must be corrected first before any param-
eter tuning, which can be achieved using high-precision wide-area digital synchronized measurements
based on phasor measurement unit (PMU) and synchrophasor communication technologies [34,35].

Stage 2 (Locating Stage): All insecure modes are sorted in descending order based on their
maximum PFs, and the first mode is located as the dominant mode. Then, m dominant state variables
are determined based on normalized PFs, i.e., pUj_nor > 0.02, and corresponding d dominant parameters
are found next.

pUj_nor = pUj

nA∑
j=1

pUj

(41)

The relationship between dominant state variables and system parameters is detailed in Section 5.
Once the PEPSs are calculated, the dominant parameters can be adjusted sequentially in descending
order.

Stage 3 (Tuning Stage): The feasible region for the selected dominant parameter is rapidly
calculated based on parameter boundaries calculation, and a new parameter value is determined
within the secure range. Note that if the adjustment of all dominant parameters does not meet stability
requirements, i.e., j > s, local-parameter-tuning fails. In this case, the multi-parameter-tuning strategy
based on PSO, as proposed in Section 4, is used to adjust multiple parameters comprehensively to
improve system stability.

Stage 4 (Verification Stage): The system stability is rechecked using the updated parameter values
from Stage 3. If instability persists, revisit the initial step of Stage 2 and evaluate the newly identified
insecure modes. Alternatively, perform the PnP operation.

4 PSO-Based Multi-Parameter-Tuning Strategy

Due to the fact that some operating parameters, such as line impedance, cannot be adjusted
in most cases, and others, such as control station setpoints, are usually limited in adjustment, the
local-parameter-tuning strategy may fail. Thus, it becomes necessary to adjust multiple parameters
comprehensively to improve the small-signal stability.

A simple and rapid method for simultaneous adjustment of multiple parameters has not been
proposed yet. However, compared to traditional algorithms, metaheuristic algorithms, such as genetic
algorithms and PSO, demonstrate significant advantages in handling complex problems, which provide
effective solutions for multi-parameter-tuning. Considering that PSO, compared to other intelligent
algorithms, offers fast search speeds, high efficiency, and good convergence, this section proposes a
PSO-based multi-parameter-tuning strategy to enhance the system stability margin.

4.1 Design of Objective Function
To ensure that the system meets small-signal stability requirements, the objective function

expressed in Eq. (42) aims to optimize the minimum damping ratio among all modes.

min J = −ξmin (42)

where ξmin represents the minimum damping ratio among all modes. When ξmin > 0, the system is
stable, and as the damping ratio increases, the dynamic performance of the system, such as overshoot



3912 EE, 2024, vol.121, no.12

in response to small disturbances, improves. It is important to emphasize that when ξmin > 0.05, the
system’s stability margin meets the requirements proposed in this paper.

4.2 Selection and Boundary Determination of Adjustable Parameters
In most DC distribution systems, parameters such as line impedance and VSC filter parameters

cannot be changed during operation. Moreover, due to constraints from power flow and DG output,
the setpoints of the control station are limited in tuning. Although the PI parameters of converters
can be freely adjusted, most control parameters have minimal impact on any specific mode. Therefore,
before beginning multi-parameter-tuning, it is crucial to select parameters that significantly affect the
dominant mode from all adjustable parameters, which allows the dominant mode to rapidly move past
the security boundary and reduces the effect of parameter adjustments on system performances. This
paper employs the PEPS proposed in Section 3 to determine the parameters to be optimized, and the
detailed process will be introduced in the next section.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.95UDCref ≤ UDCref _0 ≤ 1.05UDCref

0.95Usmref ≤ Usmref _j ≤ 1.05Usmref

Prefmin_i ≤ Pref _i ≤ Prefmax_i

Qrefmin_i ≤ Qref _i ≤ Qrefmax_i

kj_con > 0

(43)

The boundaries of the parameters to be optimized are determined by various factors. For
voltage setpoints in control station setpoints, considering power flow constraints and power quality
requirements, fluctuations are limited within 5% [18]. For power setpoints in the control station,
limitations are imposed by DG output and VSC transmission capacity. Unlike related research
[16], this paper does not rely on empirical boundaries for PI parameters but only requires control
parameters to be greater than zero, avoiding unsuitable boundary values that affect tuning results.
Consequently, the constraints on the parameters to be optimized are expressed as Eq. (43).

4.3 Process of Multi-Parameter-Tuning Strategy
Fig. 10 shows the steps of the multi-parameter-tuning approach. After the failure of local-

parameter-tuning, it is necessary to determine the parameters to be adjusted first.

a) Although local-parameter-tuning has failed, we have identified dominant variables and the
PEPS of dominant parameters.

b) If the dominant variables do not include DC variables, calculate the PEPS for the setpoints and
control parameters corresponding to the VSCs introducing these dominant variables. Note that if the
PEPSs for adjustable parameters have already been computed during local-parameter-tuning, they do
not need to be recalculated in this step. Otherwise, calculate the PEPS for all adjustable parameters
because all VSCs significantly impact the DC system.

c) To rapidly drive the insecure modes across the security boundary, select parameters with
normalized PEPS of at least 0.1, i.e., χj_nor ≥ 0.1.

χj_nor = χj

χmax

(44)



EE, 2024, vol.121, no.12 3913

Figure 10: Diagram of the strategy for multi-parameter-tuning

With a parameters to be optimized identified, we can proceed with adjusting them based on
PSO. The boundaries for these parameters were provided in the last section. The detailed steps of
the algorithm are as follows:

1. Initialization

Randomly generate n particles within the feasible region of the adjustable parameters and assign
each particle a random initial velocity. Note that to accelerate the convergence of the PSO, a larger
boundary is set for the control parameters during initialization, but these parameters will not be
constrained by the boundary during the iterative process.

Simultaneously, the initial position of each particle is set as the local optimal position, and the
objective function for each particle is computed. The particle with the smallest initial objective function
is set as the global optimal position.

2. Velocity Update

Update the particle velocities using the formula shown in Eq. (45).

v(i)
j = Φ

(
ω(i)

j v(i−1)

j + c1r1

(
pbest_j − k(i−1)

j

) + c2r2

(
gbest − k(i−1)

j

))
(45)

where⎧⎨
⎩Φ = 2∣∣2 − C − √

C2 − 4C
∣∣

C = c1 + c2

(46)

ω(i)
j =

⎧⎪⎨
⎪⎩

ωmin + (ωmax − ωmin)
J (i−1)

j − J (i−1)

min

J (i−1)
ave − J (i−1)

min

, J (i−1)

j ≤ J (i−1)

ave

ωmax, J (i−1)

j > J (i−1)

ave

(47)
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The constriction factors are employed to eliminate velocity boundary constraints and ensure the
convergence of the PSO. Since a larger inertia weight facilitates global search and a smaller weight
is more conducive to local search, adaptive inertia weight is introduced to enhance the optimization
capability and convergence speed of the PSO.

3. Position Update

Update each particle’s position based on the updated velocity from the previous step.

k(i)
j = k(i−1)

j + v(i)
j (48)

4. Update of Local and Global Optimal Positions

Calculate the objective function for the updated particles and compare it with the objective
function of pbest_j. If the current objective function exceeds the historical best value, update the local
optimal position and check if it also exceeds the global best value. If so, update the global optimal
position accordingly.

5. Termination of Iteration

The iteration terminates when the change in the global optimal value remains smaller than a
certain threshold or when the maximum number of iterations is reached.

5 Case Study

In this section, we build a digital four-terminal VSC-based DC distribution network to verify
the accuracy of the small-signal model presented in Section 2 and the effectiveness of the proposed
parameter-optimizing strategy. As shown in Fig. 11, this system includes a master station, a power
slave station, and two passive loads. Switches S1, S2 and S3 are used to simulate the plug-and-play
scenario of different stations. The distribution lines are considered to be identical, with nominal AC
and DC voltages set at 460 V and ±500 V, respectively. The maximum output power of the DG is
30 kW, while the minimum output power is 20 kW. Specific system parameters are listed in Table 1.

Figure 11: Configuration of the four-terminal DC distribution network
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Table 1: System parameters

System parameter Value

Master station
AC system (Rv_0, Lv_0, Cv_0) (Rs_0, Ls_0) (0.2 Ω, 10 mH, 200 μF) (1 Ω, 0.5 mH)

Control system

(
kp_0, ki_0

) (
kp1_0, ki1_0

)
(50, 900) (0.5, 20)(

kp3_0, ki3_0

) (
kp4_0, ki4_0

)
(5, 100) (5, 100)

Slave stationi

AC system (Rv_i, Lv_i, Cv_i) (Rs_i, Ls_i) (0.2 Ω, 10 mH, 200 μF) (1 Ω, 0.5 mH)

Control system

(
kp_i, ki_i

)
(50, 900)(

kp3_i, ki3_i

) (
kp4_i, ki4_i

)
(5, 100) (5, 100)

Loadj

AC system

(
Rv_j, Lv_j, Cv_j

) (
Rs_j, Ls_j

)
(0.2 Ω, 10 mH, 200 μF) (1 Ω, 0.5 mH)(

RL_j, LL_j

)
(11.8 Ω, 56 mH)

Control system

(
kp1_j, ki1_j

) (
kp2_j, ki2_j

)
(0.5, 5) (0.5, 5)(

kp3_j, ki3_j

) (
kp4_j, ki4_j

)
(5, 100) (5, 100)

DC system (RDC, LDC, CDC) (0.4 Ω, 1 mH, 2 mF)

5.1 Establishment and Verification of Small-Signal Model
A mathematical model of the system mentioned above, comprising 53 state variables and 6 input

variables as expressed by Eq. (49), is established in MATLAB. The linearized model can be represented
as Eq. (50).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x0 = [
ΔIsdq_0, ΔIvdq_0, ΔUsdq_0, ΔθPLL_0, ΔωPLL_0, Δz1_0, Δz3_0, Δz4_0

]T

11×1

�u0 = [
ΔUDCref _0, ΔQref _0

]T

2×1

�x1 = [
ΔIsdq_1, ΔIvdq_1, ΔUsdq_1, ΔθPLL_1, ΔωPLL_1, Δz3_1, Δz4_1

]T

10×1

�u1 = [
ΔPref _1, ΔQref _1

]T

2×1

�x3 = �x2 = [
ΔIsdq_j, ΔIvdq_j, ΔUsdq_j, ΔILdq_j, Δz1_j, Δz2_j, Δz3_j, Δz4_j

]T

12×1

�u3 = �u2 = [
ΔUsmref _j

]
1×1

�xDC = [ΔUDC_0, ΔUDC_1, ΔUDC_2, ΔUDC_3, ΔIDC_01, ΔIDC_02, ΔIDC_13, ΔIDC_23]
T
8×1

(49)

Δẋ = A ·

⎡
⎢⎢⎢⎢⎣

Δx0

Δx1

Δx2

Δx3

ΔxDC

⎤
⎥⎥⎥⎥⎦ + B ·

⎡
⎢⎢⎢⎢⎣

Δu0

Δu1

Δu2

Δu3

0

⎤
⎥⎥⎥⎥⎦ (50)

A small disturbance is introduced, and the response curves of different state variables obtained
from the linearized model in MATLAB and the simulation model in PSCAD are plotted, as shown in
Fig. 12. The results obtained from PSCAD simulations and MATLAB numerical computations align,
ensuring the accuracy of proposed small-signal models.
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Figure 12: Response of different state variables to a small disturbance in MATLAB and PSCAD

5.2 Verification of Parameter-Optimizing Strategy
This section discusses two varieties of instability issues arising from plugging-in operations to

assess the proposed parameter-optimization strategy’s effectiveness. The parameters listed in Table 1
have been deliberately altered to induce small-signal instability in the system.

5.2.1 Case 1

In Case 1, the q-axis PI parameters of the current controller of Load 2 are changed to (5, 1800).
Initially, S1 and S2 are closed, while S3 is open. At a certain moment, VSC3 sends an insertion request
to the central controller, resulting in the closure of S3. After correcting the model parameters based
on measurement equipment results, the system has a sensitive mode λU = −37.45 ± j963.7, whose
damping ratio is 0.039. The steps for adjusting system parameters using the proposed strategy are as
follows:

According to Fig. 13, the state variables which have significant participation in λU are first
identified as ΔIvdq_3, ΔUsdq_3 and Δz4_3. The associated parameters for these variables are Rv_3, Lv_3,
Cv_3, Rs_3, Ls_3, Usmref _3, RL_3, LL_3, kp4_3, ki4_3 and UDCref _0, which can be found in Table 2. Then, calculate
the EPS, MEPS, and PEPS of λU for these parameters, and the comparison results of parameters with
high MEPS or PEPS are shown in Table 3. To assess the effectiveness of the new PEPS indicator, the
actual tuning ratio (ATR) of different parameters driving λU across the small-signal security boundary
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is determined by plotting the root locus. Fig. 14 shows that parameters with higher PEPS require fewer
changes to maintain system stability, whereas MEPS is erratic.

Figure 13: PF analysis in Case 1 Figure 14: Comparison of PEPS, MEPS, and
ATR

Table 2: Mapping of state variables to system parameters

State variables System parameter

Master
station

AC
system

ΔIsdq_0, ΔIvdq_0, ΔUsdq_0 Rv_0, Lv_0, Cv_0, Rs_0, Ls_0, UDCref _0, Qref _0

Control
system

ΔθPLL_0, ΔωPLL_0 kp_0, ki_0

Δz1_0, Δz3_0, Δz4_0

(
kp1_0, ki1_0

)
,
(
kp3_0, ki3_0

)
,
(
kp4_0, ki4_0

)

Slave
stationi

AC
system

ΔIsdq_i, ΔIvdq_i, ΔUsdq_i

Rv_i, Lv_i, Cv_i, Rs_i, Ls_i

Pref _i, Qref _i, UDCref _0

Control
system

ΔθPLL_i, ΔωPLL_i kp_i, ki_i

Δz3_i, Δz4_i

(
kp3_i, ki3_i

)
,
(
kp4_i, ki4_i

)

Loadj

AC
system

ΔIsdq_j, ΔIvdq_j, ΔUsdq_j, ΔILdq_j

Rv_j, Lv_j, Cv_j, Rs_j, Ls_j, RL_j, LL_j

Usmref _j, UDCref _0

Control
system

Δz1_j, Δz2_j, Δz3_j, Δz4_j

(
kp1_j, ki1_j

)
,
(
kp2_j, ki2_j

)(
kp3_j, ki3_j

)
,
(
kp4_j, ki4_j

)
DC system

· · · , ΔUDC_i, · · · · · · , CDC_i, · · · , RDC_ij, LDC_ij, · · ·
· · · , ΔIDC_ij, · · · UDCref _0, Pref _i, Usmref _i, RL_j, · · ·

Table 3: Comparison of parameters with high MEPS or PEPS in Case 1

Parameter RL_3 Lv_3 Cv_3 UDCref _0 kp4_3 ki4_3

EPS 140.8 − j24.8 78.9 − j562.4 207.5 − j543.5 59.2 + j457 −196.2 + j221.6 85.5 + j70.0
MEPS 142.99 567.92 581.78 460.85 295.95 110.48

(Continued)
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Table 3 (continued)

Parameter RL_3 Lv_3 Cv_3 UDCref _0 kp4_3 ki4_3

PEPS 139.40 50.69 180.03 81.98 184.88 88.89
ATR 7.30% 12.40% 5.33% 12.29% 5.95% 11.83%

Fig. 15 illustrates the loci of λU when kp4_3 is increased and Lv_3 is decreased by the same proportion.
Note that tuning kp4_3 drives λU towards the security boundary faster than changing Lv_3. Compared
to Lv_3, kp4_3 has a larger PEPS and a smaller MEPS, indicating that PEPS more accurately describes
the impact of parameters on system stability than MEPS.

Table 3 indicates that the parameter with the largest PEPS is kp4_3, which should be adjusted first,
and the improved EPT-based method is used to obtain the feasible range of kp4_3. The structure of the
perturbation matrix Y is shown in Eq. (51), which has 6 non-zero elements. The structure of D and
E before improvement is expressed as Eq. (52), resulting in an auxiliary matrix Aaux of order 6. After
improving the construction method of D and E, the structure is as shown in Eq. (53), reducing the
order of Aaux to 2, which demonstrates that the introduced method effectively simplifies eigenvalue
calculation.

Y =

⎡
⎢⎢⎢⎢⎣

036×34 036×9 036×10

013×34

T1 0 0 0 T2 0 0 0 T3

011×9

T4 0 0 0 T5 0 0 0 T6

013×10

04×34 04×9 04×10

⎤
⎥⎥⎥⎥⎦

53×53

(51)

Dold = [T1I35, T2I39, T3I43, T4I35, T5I39, T6I43]53×6 Eold = [I37, I37, I37, I49, I49, I49]
T
6×53 (52)

D = [I37, I49]53×2 E =
[

02×34
T1 01×3 T2 01×3 T3

T4 01×3 T5 01×3 T6
02×10

]
2×53

(53)

Fig. 16 shows the eigenvalue loci of the coefficient matrix A as kp4_3 changes, where the feasible
range of kp4_3 can also be obtained. Table 4 compares the results and computational efficiency of
the two approaches, indicating that the EPT-based method provides greater accuracy and requires
less computational time. Table 5 shows the overall time taken for the parameter-optimizing strategy,
demonstrating that the proposed strategy can rapidly enhance the system’s stability margin.
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Figure 15: Comparison of root loci under differ-
ent parameter changes

Figure 16: Root loci of A as kp4_3 varies in Case 1

Table 4: Comparison results of different methods in Case 1

Method Result Time (s)

EPT-based method 5.2975 < kp4_3 ≤ 31.4557 0.368
Root loci 5.30 ≤ kp4_3 ≤ 31.45 3.204

Table 5: The time consumption of parameter-optimizing strategy in Case 1

Stage Time (s)

Locating stage 4.343
Tuning stage 0.368
Verification stage 0.001
Total 4.712

Finally, adjust kp4_3 = 8 and recheck system stability. The red asterisks and circles in Fig. 17
represent positions of sensitive mode before and after tuning, respectively. It is clear that all eigenvalues
are within the security boundary after adjustment, proving the effectiveness of the parameter-
optimizing strategy. To further validate the tuning results, the plug-in operation of VSC3 before
and after adjustment is simulated in PSCAD, with the simulation curves shown in Fig. 18. The
figure shows significant improvement in the system’s dynamic performance after tuning. Note that
the oscillation frequency of the curves increases slightly, and the decay speed of the oscillations
significantly accelerates, which is consistent with the eigenvalue changes shown in Fig. 17.
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Figure 17: Comparison of eigenvalues before and after tuning

Figure 18: Curves of state variables in the simulations of the VSC3 plugging-in operations

5.2.2 Case 2

In this case, the AC filter inductor of VSC1 is Lv_1 = 2.5 mH, and it is assumed that the line
impedance and RLC parameters of the AC filters in this system are not adjustable.

Initially, S2 and S3 are closed while S1 is open. At a particular moment, VSC1 sends an insertion
request to the central controller, causing S1 to close. Based on the measurement equipment’s results,
the model parameters are corrected, i.e., equivalent active loads in VSC2 and VSC3 are changed to
RL_2 = RL_3 = 20 Ω. The system then has a sensitive mode λU1 = −89.61 ± j3658.7, whose damping
ratio is 0.034, and an unstable mode λU2 = 46.35 ± j2662.3.

Firstly, the dominant mode is determined through PF, which is identified as λU2. As shown in
Fig. 19, the dominant state variables in λU2 are ΔIsdq_1, ΔIvdq_1 and ΔUsdq_1, and their corresponding
dominant parameters are identified as Rv_1, Lv_1, Cv_1, Rs_1, Ls_1, Pref _1, Qref _1 and UDCref _0 from Table 2.
Then, their EPS, PEPS, MEPS, and ATR are calculated and evaluated in Table 6. The analysis indicates
that UDCref _0 exerts the greatest influence on system stability and should be adjusted first. Fig. 20
visually compares some parameters to assess the performance of the new PEPS indicator, confirming
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that, as in Case 1, PEPS provides a more precise characterization of parameter impacts on system
stability compared to MEPS.

Figure 19: PF analysis in Case 2 Figure 20: Comparison of PEPS, MEPS, and
ATR

Table 6: Comparison of EPS, MEPS, PEPS, and ATR for various parameters in Case 2

Parameter Rv_1 Lv_1 Cv_1 Rs_1 Ls_1 UDCref _0 Pref _1 Qref _1

EPS −33.3 −
j0.7

−710.8
− j370.6

82.6 −
j1514.2

−793.2
− j601.0

829.6 −
j1082.8

816.7 +
j8.1

−34.5 −
j173.4

−0.2 −
j1.3

MEPS 38.20 853.89 1466.04 957.33 1330.77 816.76 220.07 1.70
PEPS 38.20 748.91 40.75 782.42 701.95 816.11 26.80 0.12
ATR 471.25% 27.60% Fail 23.28% 19.82% 21.00% Fail Fail

The feasible region is determined using the secant-based iterative method due to UDCref _0 is an
operational parameter, and its accuracy is validated by the root loci shown in Fig. 21. Table 7 compares
the results and time consumption of both methods, showing that the secant-based iterative method can
determine the feasible range of UDCref _0 faster and more accurately.

However, the adjustment of UDCref _0 is limited by the voltage requirements of the DC distribution
network and cannot be less than 0.95 kV. Thus, tuning UDCref _0 alone cannot meet the small-signal
stability requirements. As shown in Fig. 9, the next step is to adjust Pref _1, which has the second-highest
PEPS. It is evident that adjusting Pref _1 also fails to bring the unsecure mode back to the secure region,
as shown in Table 6. Similarly, adjusting the subsequent parameter, Qref _1, also fails to meet the stability
requirements.

Therefore, the local-parameter-tuning fails, necessitating the use of the multi-parameter-tuning
strategy based on PSO proposed in Section 4 to meet the stability margin requirements. Since the
dominant state variables do not include DC variables and are all introduced by VSC1, the PEPS
of all control parameters, setpoints, and UDCref _0 in VSC1 are calculated to select the parameters for
adjustment. Note that the PEPS of UDCref _0, Pref _1, and Qref _1 has already been obtained during local-
parameter-tuning, so recalculation is unnecessary at this step. The PEPS and normalized PEPS of
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different parameters for λU2 are listed in Table 8, indicating that the parameters should be tuned are
UDCref _0, kp3_1 and kp4_1.

With the parameters to be optimized identified, the PSO is used to tune these parameters
based on the objective function expressed in Eq. (42). The optimization results are shown in Table 9.
Fig. 22 illustrates the eigenvalues before and after adjustment, with red asterisks and circles indicating
the positions of the unsecure modes before and after optimization, respectively. It is clear that all
eigenvalues are within the secure region after adjustment, indicating that the system meets the stability
margin requirements. The minimum damping ratio among all modes is 0.083, indicating good small-
signal stability. Table 10 shows the overall time consumption of the parameter-optimizing strategy,
revealing that although the multi-parameter-tuning stage is relatively time-consuming, it can still
stabilize an otherwise unstable system rapidly. On the powerful central controller, this strategy would
be even faster.

Figure 21: Root loci of A as UDCref _0 varies in
Case 2

Figure 22: Comparison of eigenvalues

Table 7: Comparison results of various methods in Caes 2

Method Result Time (s)

Root loci UDCref _0 ≤ 0.78 kV 0.721
Secant-based method UDCref _0 ≤ 0.7899 kV 0.068

Table 8: PEPS and normalized results of adjustable parameters introduced by VSC1

Parameter UDCref _0 Pref _1 Qref _1 kp_1 ki_1 kp3_1 ki3_1 kp4_1 ki4_1

PEPS 816.11 26.80 0.12 0.02 1.2e−5 649.49 1.69 129.85 1.55
χj_nor 1 0.033 1.5e−4 2.4e−5 1.5e−8 0.796 0.002 0.159 0.002
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Table 9: Optimization results

Parameter UDCref _0 kp3_1 kp4_1

Original value 1 kV 5 5
Optimization results 0.95 kV 5.573 0.4647

Table 10: The time consumption of parameter-optimizing strategy in Case 2

Stage Time (s)

Locating stage 3.728

Tuning stage
Local-parameter-tuning 0.061
Multi-parameter-tuning 28.658

Verification stage 0.001
Total 32.448

To further assess the performance of the multi-parameter-tuning strategy mentioned above,
the process of DG insertion before and after parameter adjustment is simulated in PSCAD, with
the simulation curves of different state variables shown in Fig. 23. It is noteworthy that the multi-
parameter-tuning changes the operating parameters, altering the power flow of the system. To better
observe the influence of parameter optimization, some state variable curves are shown as changes
relative to their equilibrium points. It is clear that the previously unstable system can return stable
after multi-parameter adjustment.

Figure 23: Curves of state variables in the simulations of the DG plugging-in operations

5.2.3 Effectiveness and Robustness of PSO for Multi-Parameter-Tuning

In order to demonstrate the effectiveness and assess the robustness of the PSO algorithm for
multi-parameter-tuning, several runs were carried out with different initial populations. The iteration
process is shown in Fig. 24. The objective values consistently converge to similar values across all runs,
confirming the algorithm’s robustness and high computational accuracy.
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Figure 24: Convergence curve of PSO algorithm

The computation time of the PSO algorithm is significantly influenced by the initial population.
Therefore, Fig. 24 presents the average time consumption across all runs to represent the algorithm’s
computational time.

6 Conclusion

The digital DC distribution system, leveraging advanced digital technologies, offers significant
advantages in terms of controllability and integration of DG and energy storage units. However,
due to the presence of numerous power electronic devices, its stability issues become prominent
during the PnP process. Therefore, based on digital technology, this paper proposes a four-stage
parameter-optimizing strategy to rapidly enhance the system’s stability margin. The entire process of
this approach is illustrated within a digital four-terminal DC distribution system, with the VSC’s PnP
operation simulated in PSCAD to confirm both the efficacy and efficiency of the proposed method.
The primary conclusions drawn from this study are:

• The results in Case 2 demonstrate that the multi-parameter-tuning strategy mentioned above
can effectively improve system stability when local-parameter-tuning fails.

• The results in Tables 4 and 7 show that the method utilizing EPT for determining control
parameter boundaries and the secant-based approach for assessing operating parameter limits
are faster and more accurate than drawing root loci.

• The simulation results in Figs. 18 and 23 demonstrate the effectiveness of the proposed
parameter-optimizing strategy, while the results in Tables 5 and 9 validate the rapidity of the
strategy.
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