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ABSTRACT

A robust scheduling optimization method for wind–fire storage system distribution based on the mixed carbon
trading mechanism is proposed to improve the rationality of carbon emission quota allocation while reducing the
instability of large-scale wind power access systems. A hybrid carbon trading mechanism that combines short-
term and long-term carbon trading is constructed, and a fuzzy set based on Wasserstein measurement is proposed
to address the uncertainty of wind power access. Moreover, a robust scheduling optimization method for wind–
fire storage systems is formed. Results of the multi scenario comparative analysis of practical cases show that
the proposed method can deal with the uncertainty of large-scale wind power access and can effectively reduce
operating costs and carbon emissions.
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1 Introduction

In recent years, the combined pressure of environmental degradation and energy scarcity have
spurred rapid advancements in new energy power generation, particularly in wind power [1]. Antic-
ipated by 2030, China’s installed wind power capacity is forecasted to surpass 1.2 billion kilowatts,
constituting well over half of the nation’s overall energy capacity. Additionally, the country aims to
reduce its carbon dioxide emissions per unit of gross domestic product by over 65% relative to 2005
levels. Furthermore, the consumption of non-fossil energy in primary energy is expected to reach
approximately 25%, while forest stock volume is set to increase by 6 billion cubic meters compared to
2005 figures. Lastly, the combined installed capacity of wind and solar power is targeted to exceed 1.2
billion kilowatts [2]. However, as wind power generation grows, its unpredictability poses challenges to
the power supply’s flexible regulation capacity, complicating the adjustment to dynamic load changes.
The current predominant approach is the multi-energy complementary mode, primarily comprising
storage, fire, and water [3]. Pumping and storage stand out as the most effective control modes for
developing new energy systems now and in the future. Nevertheless, the urgent issue to address under
the coordination of a multisource power grid is how to mitigate the unpredictability of wind power
output effectively while simultaneously considering the low-carbon economy [4].

Research on new energy integrated power generation systems characterized by high permeability
has been extensively conducted domestically and internationally [5]. Jiang et al. [6] quantitatively
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outlined the flexibility requirements of these systems, using quantiles to ascertain the probabilistic
distribution intervals of the output from wind-solar power station clusters. Xu et al. [7–9] devised
two types of system optimization models with the aim of maximizing the integration of wind and
solar power while minimizing overall system costs. These models consider transmission factors and
incorporate demand response strategies within the northwest region. Li et al. [10] delved into the
power control methods of wind turbines, considering their potential role in power system frequency
modulation; they also explored reserve power regulation strategies for units under variable wind
speeds, presuming the use of a 5 MW unit model. Hou et al. [11] introduced a frequency response
model that considers renewable energy penetration, governor dead zones, and generation rate limits
and proposed a refined version of this model. Zhu et al. [12] quantitatively optimized the capacity
and control parameters of the energy storage system using a third-order virtual synchronous machine
control technique, thereby improving the system’s ability to handle power imbalances at various levels
of wind power penetration.

A novel hybrid stochastic/interval optimization technique for combined heat and power day-
ahead scheduling was proposed in [13]. Li et al. [14] proposed a paradigm for optimal day-ahead
scheduling. A dynamic power regulation margin model, which accounts for adjacent time periods
and is based on anti-peak regulation, was presented. Zhang et al. [15] detailed the construction of a
similar model considering inverse peak regulation. Furthermore, this study introduced a model that
integrates a battery energy storage system with a wind turbine termed wind turbine and battery energy
storage system and proposed a unique rolling optimization framework for the two-stage generation
planning market. Zhang et al. [16] proposed the distributed robust chance constraint model. Currently,
the primary goal of the adjustable power supply side, such as multi-energy systems, is to stabilize
the fluctuations and abrupt changes in wind power. A critical challenge is to mitigate further the
uncertainty of wind power in the electrical grid while leveraging its low-carbon advantages.

Concurrently, the incorporation of carbon trading mechanisms within new scenery-based power
systems has become a focal point of contemporary research. Lei et al. [17] devised a framework for
operating photothermal power plants and wind power systems that integrate carbon trading, melding
low-carbon approaches with market mechanisms. Jiao et al. [18] incorporated a stepped carbon trading
mechanism into the operational and scheduling phases of the system, applying a two-stage robust
optimization method to enhance output. Furthermore, Lu et al. [19] constructed a regional virtual
power plant that accommodated the green certificate-carbon trading mechanism and executed a two-
stage distributed resilient optimization schedule, informed by a stepwise carbon trading mechanism
within the ambit of a quota system.

Bhavsar et al. [20] developed an integrated source-load-storage optimization model incorpo-
rating a carbon trading mechanism aimed at minimizing the system’s operational costs. Addition-
ally, they introduced an optimization method that considers the implications of carbon trading.
Leng et al. [21] proposed an integrated energy co-optimization model that leverages a stepped carbon
trading mechanism and multi-energy demand response, encompassing cooling, heating, electricity,
and gas. Wei et al. [22] proposed a pricing model for electric vehicle agents within parking facilities,
designed in consideration of the carbon trading scheme.

The research underscores that the deployment of a carbon trading mechanism can effectively
reduce the carbon emissions of the joint system. However, carbon trading presents certain challenges,
such as the difficulty in assigning responsibility for carbon emissions and the limited eagerness
among stakeholders to participate in carbon emissions reduction. As a solution, this study proposes
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a distributed robust optimal scheduling approach, predicated on a hybrid carbon trading mechanism,
for wind-thermal-storage systems.

Considering the issues discussed, the study first constructs a hybrid step-by-step carbon trading
mechanism, targeting the dual objectives of minimizing costs and carbon emissions. This mechanism
integrates short-term and long-term carbon trading strategies. Subsequently, the study proposes an
advanced distributed robust optimization scheduling model, employing the Wasserstein metric to
establish a fuzzy set. The research culminates with an analysis of the effects of the distributed robust
scheduling approach and the hybrid carbon trading mechanism on the power system’s operational
costs, providing insights for reducing carbon emissions while ensuring system stability.

This review paper is structured as follows: Section 2 introduces the framework of a wind–fire
storage system considering a carbon trading mechanism. Section 3 presents a model for optimizing
the portfolio of wind turbines considering the uncertainty of their output power. Section 4 presents
a distributional robust optimization model based on the Wasserstein metric, Section 5 provides case
simulations and analyses, and Section 6 contains conclusions and future trends.

2 Framework for Wind–Fire Storage Systems Considering Carbon Trading Mechanisms
2.1 Framework Structure for Wind–Fire Storage Systems

Realizing low-carbon goals within wind-thermal-storage ecosystems is possible by meticulously
orchestrating the operational timetable of energy components. Comprising thermal generators, storage
mechanisms, and wind energy converters, the wind-thermal-storage configuration is illustrated in
Fig. 1. Through engagement with the broader market, this system integrates seamlessly with the power
grid and the carbon exchange market.

Figure 1: System architecture diagram

2.2 Reward and Punishment for Carbon Emission in Wind–Fire Storage Systems
In pursuit of the wind-thermal-storage system’s low-carbon targets, this research delves into the

system’s carbon emission incentive and disincentive framework, evaluating it within immediate and
extended timeframes.
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2.2.1 Short-Term Reward and Punishment Mechanism

This research embraces a carbon trading schema based on emission permits. With the maturation
of the carbon allowance market, electricity users are gradually integrated into it. Authorities commonly
employ a gratuitous approach to allocate initial carbon allowances to microgrids and additional
energy systems. Calculations of actual carbon emissions are inferred from established emission factors.
By utilizing emission permits issued by the government, the framework enables the enactment of
immediate and extended incentives and penalties to regulate carbon emissions. Within this context,
the wind-thermal-storage system functions as a singular entity in the carbon marketplace [23,24].
Formulas to compute the carbon emissions and allowances for this system hinge on factors, such
as the power generation and consumption of thermal units.
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where τ c
t represents the carbon emissions per unit of purchased electricity; Er
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carbon emissions and carbon emission allowances of wind-thermal-storage systems, respectively; Ebuy
t

represents the purchased electricity of wind–fire storage systems; EW
t is electricity generated by wind

turbines; ηbuy and ηre are the allocation of carbon emission allowances, determined on a per-unit basis
for renewable energy generation and the purchasing of electricity; Ebuy

i,t and Esell
i,t are carbon emission

allowances per unit of renewable electricity generation and per unit of purchased electricity; PESS
p is

purchased and sold electricity per unit, charging and discharging power of storage equipment; and N
indicates the number of wind–fire storage systems.

This study employs a step-type carbon emissions trading model to delineate the cost implications
associated with carbon trading, as detailed below:
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where Fc
t is the expression for the cost of carbon trading; λc

t is the base price of carbon trading; L is
the length of the carbon emission interval for carbon trading; and a is the growth rate of the carbon
trading interval. Eq. (4) represents the carbon trading cost of the wind–fire storage system. It shows
that a large amount of carbon emissions leads to high carbon trading costs [25–27].

2.2.2 Long-Term Incentive and Penalty Mechanisms

Given that the cost associated with the short-term carbon trading mechanism is relatively
invariant, it lacks appeal for certain carbon-emitting enterprises over the long haul. Consequently,
this study introduces a long-term incentive and disincentive framework, which is predicated upon the
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assessment of carbon emission reductions achieved by the wind-thermal-storage system, setting forth
a corresponding incentive and disincentive structure. Illustratively, adopting a daily cycle for carbon
assessment, this mechanism is scrutinized while keeping other parameters constant. Thus, within this
carbon assessment framework, the reduction of carbon emissions constitutes a dynamic process of
adjustment. Generally, curtailing carbon emissions is conducive to power trading, heightening the
emphasis on the cost of carbon emissions.

The wind-thermal-storage system’s cumulative carbon emissions during each evaluation period
serve as the metric for assessment. By leveraging the consumption and generation data of the system,
the carbon emissions can be scrutinized. Should the assessment metrics align with the anticipated
benchmarks within a given cycle, the subsequent cycle sees a decrement in the external selling price
and an increment in the purchasing price. By contrast, failing to meet the assessment standards leads to
noncompliance with the external trading prices. This engenders a long-term incentive and disincentive
regime for the carbon emissions of the wind-thermal-storage system, fostering a balance between
economic considerations and carbon emissions. The formula for adjusting the external purchase and
sale prices in the wind-thermal-storage system is delineated as follows:
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where λs
t and λb

t are the adjusted external purchase and sale price, respectively; λs,0
t and λb,0

t are the
unadjusted external purchase and sale price, respectively; εs and εb are tariff incentive and penalty
factor, respectively; Δλt is the difference between unadjusted external tariffs; γ real

Di and γ expect are the
actual and expected levels of the assessment indicator; Di is carbon emission assessment period.
Eqs. (5) and (6) guarantee the adjustment of external sales and external purchase prices of the grid
company, respectively; Eq. (7) defines the practical evaluation indexes of the wind–fire storage system;
and Eq. (8) expresses the difference between the unadjusted external sales price and the external
purchase price.

3 Optimization Model Accounting for Uncertainty in Wind Turbine Outputs
3.1 Wind Turbine Output Uncertainty Analysis

When the modeling procedure’s grid uncertainty is exclusively linked to the variance in the wind
turbine’s output capacity, this power discrepancy’s associated uncertainty dataset can be symbolized as
δ = {δ1, δ2, · · · , δK}. The quantifiable connection among the wind turbine’s actual output, the intended
output, and the turbine’s output deviation is expressed as follows:{

δw,t = prea
w,t − ppla

w,t

δw,t ∈ {δ1, δ2, · · · , δK} . (9)

In this context, K represents the quantity of power deviation samples originating from the wind
turbine generator (WTG) output. At time t, the actual power output of the wth WTG is denoted as prea

w,t,
whereas the anticipated power output is referred to as ppla

w,t. The difference between these two, known
as the output deviation power, is expressed as δw,t.
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3.2 Modeling of Unit Combinations Considering Wind Power Uncertainties
3.2.1 Objective Function

The goal function integrates the predicted performance of thermal power plants, energy storage
systems (accounting for negative output during charging), and flexible loads over a 24-h period,
treating these as continuous choice variables. The daily operational state of thermal units is symbolized
by a binary decision variable, with the aim to minimize overall expenses under severe scenarios, thereby
creating a model adaptable to the fluctuations in wind turbine generation [28,29]. This model unfolds
in a dual-stage approach: at first, stage one determines the actual power yield from wind turbines
according to initial scheduling plans. Afterward, stage two revolves around revising the dispatch
plan for thermal plants, storage units, and interruptible loads, considering the realized wind power
output, seamlessly integrating carbon trading aspects into the dispatch strategy. The all-encompassing
objective is captured in Eq. (10).

min
{

F (x) + sup
p∈F

EP [f (x, δ)] + Ft
c_all

}
(10)

where F (x) signifies the initial-stage operational expense of the system, embodying the aggregate cost
in the absence of wind turbine variability considerations. By contrast, f (x, δ) symbolizes the secondary
stage scheduling cost, reflecting the readjustment costs incurred due to unpredictability in wind turbine
operations. P denotes the authentic probability distribution of wind power forecast deviations, while
F represents the fuzzy set associated with the probabilistic distribution of these deviations. Long-term
and short-term carbon trading costs are indicated by Ft

c_all.

a) Total cost of the first stage

F (x) = fthe + fcut + fbat (11)

Eq. (11) represents the cost of the first phase of the system, In the formula, fthe, fcut, and fbat are the
total costs of heat engine, interruptible load, and energy storage, respectively.
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(
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h,t + biPh,t + ci (13)

Eqs. (12) and (13) are the expression of the total cost of thermal power units. In the formula,
Ch,t

(
Ph,t

)
is the operating cost of the hth heat unit at time t, which can be fitted as a quadratic function

of Ph,t; Ph,t is the operating power of the hth thermal unit at time t. ai, bi, and ci are cost coefficients.
CO

h,t and CS
h,t represent start-up and shut-down costs, respectively.

fcut =
N∑

n = 1

T∑
t = 1

Cn,tPn,t (14)

Cn,t = anλt (15)

Eqs. (14) and (15) are the total cost expression of interruptible load. In the formula, Pn,t is the
load shedding amount of the nth bus at time t, Cn,t is the load shedding compensation price, an is the
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compensation coefficient, and λt is the time-varying electricity price.
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Eq. (16) is the total cost expression of energy storage. In the formula, Pdis
m,t and Pch

m,t are the discharge
and charging power of the mth energy storage system at time t, Kch

m,t is the charging cost coefficient,
Kdis

m,t is the discharge income coefficient, and η is the charging and discharging efficiency of the energy
storage system.

b) Total cost of the second stage
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Eq. (17) is the second stage cost of the system. In the formula, f δ

the, f δ

cut, and f δ

bat are the rescheduling
costs of thermal power units, interruptible loads, and energy storage in extreme cases, respectively.
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Eqs. (18) and (19) are the long-term and short-term carbon transaction costs in the second stage
of the system cost. Fc

t−2 represents the long-term carbon trading price. Ereal
long represents actual carbon

emissions over the period of long-term carbon trading.

An examination into the carbon evaluation scheme is conducted, contemplating a single day as
the evaluative period, with all other variables held constant. The modified external electricity price
resulting from this mechanism leads to a significant decrease in electricity trading costs, suggesting that
prior carbon emissions were interconnected with energy sharing advantages. However, compromising
on carbon reduction efforts can yield greater economic gains. Consequently, within the carbon
assessment framework, carbon mitigation unfolds as a dynamic adjustment procedure. In summary,
lowering carbon emissions proves advantageous to power trading, prompting increased awareness of
carbon expenses and more financial support to the generation sector.

3.2.2 Constraints

In the defined model, the following constraints should be met:

Power balance constraint
H∑
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where Ppla
w,t is the operating power of the hth WTG at time t, Pload

n,t is the load power.

Thermal power unit constraints

xu
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where Ph,max and Ph,min are the maximum and minimum output power, respectively. ρ is the hot-readiness
factor. The binary variable of the thermal turbine is expressed in vector form as x = (

xu
h,t, xo

h,t, xs
h,t

)T
.

Thermal power unit states, startups, and shutdowns are denoted by xu
h,t, xo

h,t, and xs
h,t, respectively. xu

h,t =
1 denotes that the system is in operating state, and xu

h,t = 0 denotes that the system is in nonoperating
state.

Wind turbine output power constraints

0 ≤ Prea
w,t ≤ Pmax

w (23)

where Prea
w,t is the actual output power of the unit, Pmax

w is the maximum output power.

Interruptible load constraint

0 ≤ Pn,t ≤ Pmax
n,t (24)

where Pmax
n,t is the maximum overload power of the nth node at moment t.

Energy storage constraints
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m,t ≤ Pmax

m,t (25)
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m,t (26)
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m,t −
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where Pmax
m,t is the upper limit of charging and discharging power, η is the charging and discharging

efficiency of the energy storage system.

Power flow security constraints
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l ≤ Pl,t ≤ Pmax

l (28)
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l
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where Pl,t is the line power of branch I at time t; Pmax
l and Pmin

l are the upper and lower limits of the
line power, respectively; Gl−h, Gl−w, Gl−m, and Gl−n are line-to-thermal, line-to-wind, line-to-storage, and
line-to-load electricity transfer allocation factors.

4 Distributed Robust Optimization Model Based on Wasserstein Metrics

The construction of fuzzy sets is central to the efficacy of the distributed robust optimization
(DRO) method, integral for the mathematical restructuring, resolution of the DRO model, and the
preservation of result conservatism. Utilizing Wasserstein metrics, these fuzzy sets aim to diminish
the discrepancy between dual probability distributions, thus allowing the empirical distribution,
inferred from historical data, to reflect the true probability distribution P more accurately—an
objective difficult to attain through mere historical data scrutiny. The model’s conceptual framework
is illustrated in Fig. 2.
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Figure 2: Flowchart of the proposed scheme

4.1 Data-Driven Preprocessing Method for Fuzzy Sets
Consider set δ = {δ1, δ2, · · · , δK} as the sample collection. Set P0 (δ) represents the ensemble of

comprehensive probability distributions pertaining to wind power forecasting errors. Function gr (δ)

is described as a segmented linear function, while γr denotes a segmented constant.

〈P ∈ P0 (δ)

δw,t ∈ δ

EP (δ) = 0

P
(
δmin ≤ δw,t ≤ δmax

) = 1

EP [gr (δ)] ≤ γr

〉
(30)

gr (δ) denotes a piecewise linear function that refines each component of the uncertainty set
through division into segments. Essentially, this function serves to expand the initial uncertainty set F,
simplifying the computational task of determining the actual deviation of the wind turbine’s output
power within these segmented intervals. As a result, it enables the retrieval of data that more accurately
reflects the true probability distribution, thereby reducing the conservativeness in the calculations.
Consequently, the fourth term in Eq. (30) can be rephrased as Eq. (31).

EP [gr (δ)] = EP

[
max

(
δw,t,r − Cw,t,r,0

)] ≤ γr (31)

Given that r signifies the quantity of partitions, r = 3, and Cw,t,r denotes the segment division
constant; an ancillary variable gr (δ) is introduced to serve as the maximum limit for σ , simplifying
the computation of gr (δ). Consequently, the initial fuzzy set F undergoes extension, giving rise to the
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augmented fuzzy set Q.

Q =

⎧⎪⎪⎨
⎪⎪⎩

PC ∈ P0 (δ, σ) :
(
δw,t,r, σw,t,r

) ∈ δ × σ

EPc (δ) = 0
PC

[(
δw,t,r, σw,t,r

) ∈ S
] = 1

EPC

(
σw,t,r

) ≤ γr

⎫⎪⎪⎬
⎪⎪⎭ (32)

S =
⎧⎨
⎩

(δ, σ) ∈ (δ, σ) : P
(
δmin ≤ δw,t ≤ δmax

) = 1
gr

(
δw,t,r

) ≤ σw,t,r

σw,t,r ≤ maxδw,t,r∈δ gr

(
δw,t,r

)
⎫⎬
⎭ (33)

Eqs. (32) and (33) denote extended fuzzy sets and two-dimensional sets, respectively. In this con-
text, Q defines a set of joint probability distributions of δ and σ , denoted by PC. The two-dimensional
set S illustrates the boundary of the two-dimensional variable

(
δw,t,r, σw,t,r

)
and the relationship between

δw,t,r and σw,t,r. Each variable will correspond to the corresponding constraints.

4.2 Fuzzy Set Construction Based on Wasserstein Measure
To begin with, in engineering practice, δ cannot accurately derive the output by calculation.

However, the empirical distribution PK can be expressed from δ = {δ1, δ2, · · · , δK}, as illustrated in
Eq. (34).

PK = 1
K

K∑
k=1

dk (34)

where dk is the Dirichlet process of δK . This process pertains to K instances where wind power bias is
observed, with Q’s centroid being PK . The objective is for Q to encompass P to the greatest extent
possible. The dissimilarity between P and PK is assessed with the Wasserstein metric, under the
condition that P and PK must fulfill a specific association.

lim
K→∞

PK = P (35)

The definition of Wasserstein distance is as follows:

W (PK , P) = inf∏
{∫

‖ξK − ξ‖
∏

(dξK , dξ)

}
. (36)

The fuzzy set Wδ based on the Wasserstein measure can be expressed as{
Wδ = {P ∈ Q : W (PK , P) ≤ R1 (K)}
limK→∞ R1 (K) = 0 (37)

In the context where the fuzzy set Wδ, defined by the Wasserstein metric, serves as a conceptual
center with parameter PK and a radius denoted as R (K), integrating a confidence level of 1/4 enables
regulation of the conservativeness in the optimization outcomes of the DRO model.

4.3 Strongly Dual Transformation
Reformulating the objective function for optimization necessitates the application of a robust

binary conversion to effectively restructure the distributionally robust segment. This transition is
articulated in Eq. (38), subsequently facilitating its integration with the broader minimization strategy
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to address the problem with optimal efficiency.

EP[f (x, δ)] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
λ≥0

[λ · R1 (K) + 1
K

K∑
k = 1

vk

s.t.

⎧⎨
⎩

f (x, δmax) − λ · (δmax − δk) ≤ vk

f (x, δmin) + λ · (δmin − δk) ≤ vk

f (x, δk) ≤ vk

(38)

The quadratic constraints within Eq. (38), established through robust dyadic transformations
of the objective function, exhibit constraints when faced with a substantial sample size. vk and the
quadratic constraints increase with K, resulting in substantial computational expenses when dealing
with large sample sizes. The following mathematical strategy is employed in the study to address this
issue:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inf
λ∈R

[
λ · R1 (K) + 1

K

K∑
k=1

f (x, δk)

]

s.t.
{

f ′ (x, δmax) ≤ λ

−f ′ (x, δmin) ≤ λ

(39)

Eqs. (38) and (39) satisfy the following relationship:

inf
λ≥0

[
λ · R1 (K) + 1

K

K∑
k = 1

vk

]
≈

inf
λ∈R

[
λ · R1 (K) + 1

K

K∑
k = 1

f (x, δk)

] (40)

Here, f ′ (x, δmax) represents the derivative of f with respect to δ. Eqs. (40) and (39) provide an
approximate upper limit for Eq. (38). Notably, Eq. (39) maintains a stable number of quadratic
constraints without increase in vk, even as the value of K grows, rendering the computational process
efficient and yielding consistent optimization outcomes.

5 Case Simulation and Analysis
5.1 Base Data

The upgraded IEEE 6 bus system was utilized as the experimental platform to authenticate
the DRO strategy for unit commitment, with an emphasis on the unpredictability of wind turbine
generation. Fig. 3 depicts the layout of the upgraded IEEE 6 bus system.

The system is designed for a 24-h dispatch cycle with hourly sectionalization and consists of six
buses and seven spurs. Bus 1 is designated as the balancing bus, and three thermal units are assigned to
buses 1, 2, and 6, the first of which serves as the main generator and the last two as standby generators.
The specific parameters of these units are listed in Tables 1 and 2. The system also has two wind
turbines on buses 1 and 3. At the same time, energy storage units are strategically deployed on the
same buses to complement each turbine, ensuring that each turbine has a dedicated standby energy
storage unit. The parameters are obtained by capacity optimization configuration. This configuration
minimizes wind energy wastage and reduces overall system expenditure by providing auxiliary power
during thermal turbine downtime for maintenance.
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Figure 3: Improved IEEE 6 bus system

Table 1: Unit parameters

Technical parameters Unit 1 Unit 2 Unit 3

Maximum unit output (MW) 600 300 150
Minimum unit output (MW) 180 90 45
Carbon emissions (KG/kWh) 0.72 0.75 0.79
Coal consumption factor c 786.8 451.32 1049.50
Coal consumption factor b 30.42 65.12 139.6
Coal consumption factor a 0.226 0.588 0.785

Table 2: Parameters of energy storage equipment

Investment cost O&M cost

Cost per unit of power
(yuan/kW)

Unit energy cost (yuan/kWh) O&M cost per unit of
electricity (yuan/kWh)

3000 3000 0.05

5.2 Scenario Selection
In anticipation of the forthcoming day’s load conditions and guided by the optimization objec-

tives, the scheduling algorithm and model are designed to facilitate scheduling optimization through
the modulation of each unit’s output. This entails calibrating the output levels of thermal and wind
power units, along with energy storage devices, to align with the subsequent day’s load requirements
and fulfill the optimization goals. Subsequently, forecasts for the next day’s load and wind power are
generated, acknowledging the time-varying and cyclical patterns of power loads and the unpredictable
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nature of wind power. Leveraging the predicted load profile and optimization objectives for the next
day, the scheduling algorithm and model adeptly orchestrate scheduling optimization by fine-tuning
the outputs of the respective units. Such adjustments are calibrated to cater to the imminent day’s load
demands while striving to meet the optimization objectives.

5.2.1 Power Load Forecasting

In this study, the PSO-RNN method is used to forecast the power load. Before establishing the
PSO-RNN prediction model, some historical data must be processed in advance to filter out some
errors and abnormal data so as not to affect the accuracy of the power load prediction.

The power load data of a power company in Liaoning from September 2020 to September 2021
are selected as the historical data needed for prediction, and the real historical data from 1 September
2020 to 31 August 2021 is used as the training set, the data in September 2021 are used as the test
set, and PSO-RNN is used to predict the load size. A neural network is used to predict the load size;
the inertia factor and learning parameter are set to 0.7 and 0.08, respectively; the initial number of
particle swarms is 100; the maximum number of iterations of particle swarms is 1000; and simulation
and training are conducted on the historical data.

5.2.2 Prediction of Wind Power Generation Power

Renewable wind energy offers pollution-free, limitless, and cost-effective attributes, making it an
appealing resource. Its expansion, with more wind turbines installed, aims to enhance forecasting for
better power scheduling. The PSO-RNN method continues to play a role in wind power prediction.
This section employs actual hourly average wind power generation data from a wind farm in the
Liaoning region, spanning from 1 September 2020 to 31 August 2021, as the training dataset, while
September 2021 data serves as the testing set. Training iterations are capped at 3000, with a learning
rate of 0.015 and a precision level of 0.00001.

Figs. 4 and 5 reveal that for WTGs, during the period of 0:00–6:00, when the wind power is large,
the power system load is small; during the period of 8:00–12:00, when the power system load is large,
the wind power is low, indicating that WTGs have a strong anti-peak shunting. This result shows that
wind turbines have strong anti-peaking characteristics.

Figure 4: Forecasted electricity load consumption profile
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Figure 5: Predicted wind power curve

5.3 Analysis of Simulation Results
The confidence level for the fuzzy set within the distributionally robust optimization framework is

established at 0.95 to ascertain the benefits of integrating a carbon trading mechanism and to evaluate
the impact of uncertain parameter volatility on the overall cost. Four different scenarios are delineated
as in Table 3.

Table 3: Setup of four different scenes

Scenes Stepped carbon trading mechanism DRO

Scene 1 × ×
Scene 2 × �
Scene 3 � ×
Scene 4 � �

Following optimization calculations, the system’s capacity is judiciously determined by modeling
security constraints under extreme conditions during the dispatch process, leveraging enhanced
distribution robust optimization techniques. Conversely, given that thermal power units exhibit more
stable output than wind power units, the inherent volatility of wind power precludes the use of
static scheduling methods. Consequently, energy storage devices are implemented to comply with the
operational security constraints of the system. With the minimization of generation costs serving as
the objective function and factoring in the cost of generation for each unit aligned with the daily load
curve, the results of the system’s optimization scheduling are delineated below:

Figs. 6–9 show the output optimization results of the system for each of the four different
scenarios. The figure illustrates that Scenario 1 experiences considerable wind abandonment between
0:00 and 9:00. Conversely, Scenario 4, as proposed in this study, achieves a substantial decrease in wind
abandonment, concurrently adhering to the system’s security constraints. The findings indicate that the
robust optimization scheduling approach for the wind–fire storage system, which incorporates a hybrid



EE, 2024, vol.121, no.11 3431

carbon trading mechanism, is secure and cost effective. Given that the system dispatch employs a
refined optimization method, which considers the most adverse conditions of wind power fluctuation,
it can handle all projected system scenarios. Consequently, altering additional parameters is not
needed, with adjustments confined solely to the output of thermal units and wind power generation.

Figure 6: Scenario 1 unit output optimization results

Figure 7: Scenario 2 unit output optimization results

5.4 Analysis of Different Scenarios
The emission reduction benefits of different scenarios are compared and analyzed by constructing

scenario simulations under four scenarios, in which the carbon transaction cost is used as a measure
of low carbon. The cost of each of its parameters for different scenarios is shown in Table 4.
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Figure 8: Scenario 3 unit output optimization results

Figure 9: Scenario 4 unit output optimization results

Table 4: System operation in various scenarios

Scenes Carbon emissions/t Wind abandonment
cost/ten thousand
yuan

Carbon trading
cost/ten thousand
yuan

Total running
cost/ten
thousand yuan

1 45,175.64 24.78 252.23 429.18
2 42,979.38 6.47 238.82 420.26
3 43,112.03 7.58 239.64 420.11
4 42,887.08 5.71 238.26 419.15
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Neglecting the cost of energy storage while pursuing the low-carbon goal, Scenario 4 of this
study further introduces DRO based on stepped carbon trading, achieving a considerable reduction
in carbon emissions by 5.15% compared with Scenario 2, showing the remarkable efficacy of stepped
carbon trading in reducing emissions. In terms of enhancing the efficiency of new energy use, Scenario
4 reduces the wind abandonment cost by RMB 18,700 compared with Scenario 3 and by RMB 191,000
compared with Scenario 1 while considering stepped carbon trading, thus remarkably enhancing the
utilization rate of wind power generation; in terms of the overall economic operating cost of the
system, Scenario 4 reduces the cost of wind power generation by 6.38% compared with Scenario
1 and by 6.24% compared with Scenario 2. 6.24% of the cost. Overall, the above results verify the
remarkable effectiveness of the hybrid carbon trading mechanism proposed in this study and the
improved distributional robust optimal scheduling in the practice of low-carbon economic scheduling.

6 Conclusion

In this paper, a distributed robust low-carbon scheduling model of a wind-thermal-storage system
considering the influence of carbon trading mechanism is proposed. The main innovations include a
hybrid carbon trading mechanism and a distributed robust scheduling model with improved fuzzy set
representation. Through simulation verification, the following conclusions are drawn:

(1) Introducing hybrid long-term and short-term carbon trading reduces the operating cost of the
wind-thermal storage system and the amount of wind curtailment.

(2) Compared with the traditional method to solve the uncertainty problem, the improved
distributionally robust optimal scheduling in this paper considers both economy and stability.

(3) Through simulation verification, the fuzzy set preprocessing method proposed in this paper
can obtain more economical optimization results with a smaller sample size and larger space to reduce
conservatism.
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