
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/ee.2024.052594

ARTICLE

Short-Term Prediction of Photovoltaic Power Based on DBSCAN-SVM Data
Cleaning and PSO-LSTM Model

Yujin Liu1, Zhenkai Zhang1, Li Ma1, Yan Jia1,2,*, Weihua Yin3 and Zhifeng Liu3

1School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
2Key Laboratory of Wind Energy and Solar Energy Utilization Technology, Ministry of Education, Hohhot, 010051, China
3Production Management Department, Inner Mongolia Energy Power Generation Investment Group Co., Ltd., Hohhot, 010051,
China
*Corresponding Author: Yan Jia. Email: jia-yan@imut.edu.cn

Received: 08 April 2024 Accepted: 03 June 2024 Published: 11 September 2024

ABSTRACT

Accurate short-term photovoltaic (PV) power prediction helps to improve the economic efficiency of power stations
and is of great significance to the arrangement of grid scheduling plans. In order to improve the accuracy of PV
power prediction further, this paper proposes a data cleaning method combining density clustering and support
vector machine. It constructs a short-term PV power prediction model based on particle swarm optimization (PSO)
optimized Long Short-Term Memory (LSTM) network. Firstly, the input features are determined using Pearson’s
correlation coefficient. The feature information is clustered using density-based spatial clustering of applications
with noise (DBSCAN), and then, the data in each cluster is cleaned using support vector machines (SVM). Secondly,
the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.
Finally, different power prediction models are established, and the PV power generation prediction results are
obtained. The results show that the data methods used are effective and that the PSO-LSTM power prediction
model based on DBSCAN-SVM data cleaning outperforms existing typical methods, especially under non-sunny
days, and that the model effectively improves the accuracy of short-term PV power prediction.
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PV Photovoltaic
LSTM Long Short-Term Memory
DBSCAN Density-Based Spatial Clustering of Applications with Noise
PSO Particle Swarm Optimization
WPE Weather Prediction Error
SVM Support Vector Machine
ANN Artificial Neural Network
MLR Multiple Linear Regression
PL Power Law
RPL Rational Power Law
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NARXNN Nonlinear Auto-Regressive Neural Networks with Exogenous Input
LightGBM Light Gradient Boosting Machine
XGBoost Extreme Gradient Boosting
BP Back Propagation
IGWD Improved Grey Wolf Algorithm
ADASYN Adaptive Synthetic
GHI Global Horizontal Irradiance
DNI Direct Normal Irradiance
TEMP Temperature
RMSE Root Mean Square Error
MAE Mean Absolute Error

1 Introduction

In recent years, the global energy transition has placed a significant emphasis on the development
and utilization of solar energy, with PV power generation entering a phase of large-scale expansion
[1]. Various factors, such as solar radiation intensity, temperature, and air pressure, influence PV
power generation, leading to noticeable fluctuations, randomness, and instability in the power grid
[2,3]. The reliable and accurate prediction of PV power generation plays a crucial role in enhancing
operational coordination between solar energy and power systems. This, in turn, ensures a stable
energy supply, facilitates the efficient power scheduling of energy companies, optimizes the allocation
of power resources, and ultimately improves economic efficiency [4–6].

PV power prediction methods usually include direct and indirect methods. Among the indirect
methods, deep learning algorithms are widely used for PV power prediction due to their superior
ability to exhibit strong robustness and accuracy. These network architectures can dig deeper into the
evolutionary features of the time series to obtain more accurate predictions [7]. However, the perfor-
mance of a single model is still limited. Therefore, many scholars have improved the model structure
or introduced new mechanisms to enhance its performance, adaptive capability, and generalization.

Bâra et al. [8] improved model prediction accuracy by embedding weather prediction errors into
a deep learning-enhanced stacked regressor approach, especially for off-grid inverters and large-scale
industrial PV plants, showing higher applicability and improvement, with MAE reductions ranging
from 10% to 23%. In addition, the study proposes adjustment factors based on feature engineering
and WPE to further optimize the prediction model to obtain more stable daily deviation ratios.
Zhang et al. [9] proposed a short-term power prediction method for distributed PV systems based
on Attention-LSTM and transfer learning. Migration learning enhances the generalization ability of
the Attention-LSTM model, which makes the proposed Attention-LSTM model still able to predict
the power effectively in the case of limited data. Yu et al. [10] proposed a new time-frequency
integrated converter for day-ahead photovoltaic power prediction. The model integrates four key
components of temporal attention, frequency attention, Fourier attention, and weather embedding
for in-depth analysis of PV power time series. Abdelhak et al. [11] used ANN and regression analysis
to predict the power output of PV modules and considered the effect of ambient conditions and
operating temperatures on the predicted outputs. The ANN model was able to accurately predict
the power output of the PV modules during the test period, and the MLR model failed to capture
system nonlinearities with lower accuracy; however, the nonlinear regression RPL and PL models
provided significantly better accuracy in predicting module power output. Gao et al. [12] proposed
NARX-LSTM-LightGBM forecasting framework is effective for short-term PV power forecasting.
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The combined model showed significant improvement in prediction accuracy under different weather
conditions compared to the separate models. Tan et al. [13] introduced a short-term PV power
prediction method that integrates the XGBoost model with the LSTM network model. Experimental
findings indicate that the combined XGBoost-LSTM model enhances prediction accuracy compared
to using a standalone model. Luo et al. [14] proposed a physically constrained LSTM network to
predict PV power accurately. The results show that the proposed PC-LSTM model has stronger
prediction capability and is more robust than the standard LSTM model for PV power prediction
for sparse data. The results show that the prediction performance of the hybrid model is better than
the single prediction model. Chen et al. [15] proposed a short-term PV power generation prediction
model based on adaptive K-means and LSTM by clustering the PV power generation of the original
training set and the prediction day using adaptive K-means, training the LSTM for each type of
data of the original training set, and training the LSTM for the trained PV power generation of the
original training set. LSTM, and combining the trained LSTMs. In the work by Ding et al. [16],
an innovative fusion model was introduced, amalgamating the wavelet decomposition technique
with a LSTM. The approach employs the wavelet decomposition technique to analyze historical
energy sequence data. Subsequently, the processed energy feature data is merged with weather data,
facilitating the incorporation of the LSTM learning model for feature-level fusion. Experimental
outcomes demonstrate the proposed model’s superior performance compared to both the BPNN and
LSTM across diverse seasonal and weather conditions. Xue et al. [17] proposed an IGWO based
on an improved adaptation coefficient as an elite backpropagation strategy to optimize the LSTM
forecasting model. Using IGWO to optimize the parameters of the fully connected layer of the LSTM,
an IGWO-LSTM combined model with better convergence speed solution efficiency and effective
avoidance of locally optimal solutions was built to predict solar power generation.

However, the attention to data processing in the above studies may be obscure, and good data
quality helps the prediction model to be more stable and improve the prediction accuracy. Ye et al. [18]
proposed a combined identification method for multiple anomalous data. Example analyses show
that the proposed method can be applied to detect a higher proportion of anomalous data and
effectively identify both continuous and discrete anomalous data, thus significantly improving the
linear correlation between irradiance and PV power generation. Ling et al. [19] used the ADASYN
algorithm to effectively reduce the imbalance problem caused by extreme meteorological features
in small sample sizes by rebalancing the dataset. The stability of the model prediction results after
ADASYN sampling is much higher than that before over-sampling, and the coefficient of variation
of the RMSE is significantly reduced, which indicates that the robustness of the model to extreme
meteorological features has been enhanced.

In summary, this paper adopts a new data processing method, combining DBSCAN clustering and
SVM detection of outliers for data processing, obtaining the optimal network structure and finding
the optimal hyper-parameters of the LSTM network through the global search capability of PSO, and
establishing the PSO-LSTM prediction model, which improves its training effect and generalization
capability. Finally, the results of different models are analyzed to verify the feasibility and superiority
of the proposed model.

2 Data Pre-Processing
2.1 Pearson Correlation Analysis

PV power output is primarily influenced by weather factors, and data obtained from PV power
stations often contain multiple meteorological features, some of which have a significant impact on
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PV power output (e.g., solar irradiance). In contrast, others have a small impact on PV output power
output (e.g., wind direction, barometric pressure, etc.), Therefore, meteorological factors that have
a significant impact on the PV power forecasting model were selected as inputs through Pearson’s
correlation coefficient.

Pearson’s correlation coefficient [20], first proposed by the statistician Carl Pearson, is a statistical
indicator used to measure the degree of linear correlation between two (groups of) variables, x and y,
whose values are within the interval [−1, 1] with the following formula:

ρxy =

n∑
i=1

(xi − x) (yi − y)√
n∑

i=1

(xi − x)
2

√
n∑

i=1

(yi − y)
2

(1)

where n is the total number of samples; xi is the meteorological parameter at the ith time; x is the average
value of the meteorological parameter; yi is the PV output power at the ith time; y is the average value
of the PV output power.

After Pearson correlation analysis, as shown in Fig. 1, the GHI, DNI, and TEMP were selected
as inputs to the prediction model.

Figure 1: Heat map of correlation coefficients between meteorological data and PV power

The experimental data in this paper is obtained from the DKASC website in Australia, and the
selected data is from 1 January to 28 February 2019, as shown in Fig. 2. Since PV power generation is
intermittent, the period of the data selected in this paper is from 7:00 am to 19:00. The time interval
of data collection is 5 min, with a total of 133 data points per day, totaling 59 days and 8555 pieces of
data, of which 39 days are sunny days and 20 days are non-sunny days.



EE, 2024, vol.121, no.10 3023

Figure 2: Input feature data

2.2 DBSCAN-SVM Based Outlier Detection
In this paper, DBSCAN-SVM method is used to identify and detect abnormal data, as shown in

Fig. 3. DBSCAN [21] belongs to the density clustering algorithm, which defines the class as the largest
collection of density-connected objects, and the clustering is completed by constantly searching for
high-density core samples and expanding to get the largest collection in the sample space, The main
steps of DBSCAN are as follows:

(1) Define the neighborhood radius eps and the number of samples threshold min samples.
(2) Draw a sample p from the sample space that has not been visited yet;
(3) If sample p is a core sample, go to step 4; otherwise mark it as a noise sample or a boundary

sample of a class according to the actual situation and return to step 2; and
(4) Find all the density connected samples starting from sample p, constitute a cluster Cp (the

boundary samples of this cluster are all non-core samples), and mark these samples as visited;
(5) If all samples have been visited, the algorithm ends; otherwise return to step 2.

The clustering results are shown in Fig. 4.

Then, the obtained clusters are input to the SVM for outlier detection, OneClassSVM belongs
to a class of Support Vector Machines, which is robust to the presence of noise or outliers in the
detection of data, and is able to effectively detect outliers. The basic idea of OneClassSVM is to expect
to minimize the volume of the hypersphere and thus minimize the effect of the anomaly data. Fig. 5
shows the outlier detection results.

2.3 Normalisation
To handle the variations in the size range and unit of measurement of collected data such as power,

solar radiance, and temperature from the PV power plant, data normalization is essential to ensure
that these characteristic data share a consistent metric scale and prevent the impact of differing scales.
In this study, the maximum-minimum normalization method is employed, effectively mapping the
original data into the [0, 1] value domain [22–23]. The calculation formula for this normalization
method is as follows:
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X ∗
i = Xi − Xmin

Xmax − Xmin

(2)

where X ∗
i is normalised, Xi is the initial value, Xmax is the maximum value and Xmin is the minimum

value.
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Figure 3: DBSCAN-SVM outlier detection flow

Figure 4: Plot of DBSCAN clustering result
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Figure 5: Graph of outlier detection result

2.4 Indicators for Model Evaluation
This study employs two widely recognized metrics: the root mean square error (RMSE) and the

mean absolute error (MAE) to ensure a rigorous and objective evaluation of the prediction model.
These metrics are quantitative measures to assess the prediction model’s accuracy by quantifying the
errors between predicted and actual values [24]. The calculations are as follows:

RMSE =
√

1
n

∑n

i=1

(
y∗

i − yi

)2
(3)

MAE = 1
n

∑n

i=1

∣∣y∗
i − yi

∣∣ (4)

where y∗
i is predicted value; yi is real value; n is number of data.

3 Principles of PSO-LSTM Prediction Modeling
3.1 Particle Swarm Algorithm

PSO algorithm is inspired by the collective intelligence exhibited by birds in nature, and its
optimization search is implemented by simulating the foraging process of birds. As shown in Fig. 6,
During foraging, each bird lacks precise knowledge of the food’s location and can only perceive the
distance between the food and itself. However, individuals in the flock can share location information.
Birds employ a feeding strategy of first locating the nearest individual to the food within the flock and
then searching for possible food locations in its vicinity.

Suppose there is a population of m particles in a D-dimensional search space. Let the characteristic
information [25] at moment t be:

X t
i = [

xt
i1, xt

i2, · · · xt
iD

]T

V t
i = [

vt
i1, vt

i2, · · · vt
iD

]T

pt
i = [

pt
i1, pt

i2, · · · pt
iD

]T

pt
g = [

pt
g1, pt

g2, · · · pt
gD

]T

(5)

where X t
i is the position; V t

i is the velocity; pt
i is the individual optimal position; pt

g is the global optimal
position.
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Figure 6: Particle swarm algorithm illustrated

Then the velocity and position information of the particle at the moment t+1 is updated:{
vt+1

id = wvt
id + c1rt

1

(
pt

id − xt
id

) + c2rt
2

(
pt

gd − xt
id

)
xt+1

id = xt
id + vt+1

id

(6)

where i denotes the particle number; d denotes the dimension of the solution problem; k is the current
number of iterations; w is the inertia weight, regulating the search range of the solution space; c1 and
c2 are the learning factors, regulating the step size of the direction of flying to its own and the global
best position, respectively; r1 and r2 are random numbers uniformly distributed between [0, 1].

3.2 Leong and Short-Term Memory Networks
The Long Short-Term Memory (LSTM) is employed as an optimized recurrent neural network,

featuring a connected subnetwork within each neural module. Each subnetwork represents a storage
cell known as the LSTM cell, as depicted in Fig. 7. The LSTM cell comprises three gate units: an
input gate, a forget gate, and an output gate [26]. These gate units offer continuous read, write, and
reset operations to the memory cell, allowing it to dynamically adjust between different gates. This
functionality serves the purpose of maintaining both long-term and short-term memory of the input
data sequence.

The forgetting gate governs the impact of the previous moment’s cell state, c(t-1), on the current
moment’s cell state, c(t), deciding which information is retained and which is forgotten. In contrast,
input gates play a role in assimilating the current moment’s input, x(t), into the cell state c(t),
determining the incorporation of new information. The output gate oversees the influence of the cell
state, c(t), on the current output, h(t), in the LSTM network, regulating the extent to which the cell
state is transferred to the output. The computational procedure [27–28] is as follows:
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it = σ (Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ
(
Wxf xt + Whf ht−1 + Wcf ct−1 + bf

)
ct = ftct−1 + it tanh (Wxcxt + Whcht−1 + bc)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot tanh (ct)

(7)
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Figure 7: LSTM unit neural module [29]

In this context, let xt represent the input and ht denote the output. More specifically, ht corre-
sponds to the output of the input gate, f t signifies the output of the oblivion gate, ct denotes the state
of the cell at the current time point (t), and ot represents the output of the output gate. The parameter
matrices and bias terms associated with these processes are denoted by W and b, respectively.

3.3 PSO-LSTM Modeling
In the present research, the experimental platform employed is Jupyter Notebook, while Tensor-

Flow is chosen as the deep learning framework. The study focuses on developing the PSO-LSTM
prediction model, built upon the LSTM network model—a renowned architecture acknowledged for
its efficacy in time series analysis. To enhance the performance of the LSTM network, the study
harnesses the global search capabilities inherent in the particle swarm algorithm to identify optimal
hyperparameters. This approach ensures a thorough exploration of the parameter space, contributing
to the refinement of the LSTM model. Furthermore, the learning process is facilitated by the Adam
optimization algorithm, chosen to enhance both the convergence speed and stability of grid learning.
The strategic use of Adam optimization aims to optimize the training dynamics, improving efficiency
and reliability in the learning process. As shown in Fig. 8, the algorithm flow of the PSO-LSTM model
is as follows:

Step 1: Input historical PV power, solar irradiance, and temperature data.

Step 2: Data preprocessing.

Step 3: Divide the experimental data into training data, validation data and test data.

Step 4: Initialize the PSO algorithm by taking the time window size in the LSTM model as the
optimization object.
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Step 5: PSO iteration; in each PSO iteration, perform the following steps for each particle:

1) Apply the sliding time window corresponding to the particle to the training data and use the
LSTM model for training and validation.

2) Determine the RMSE value of the fitness function to evaluate the performance of the LSTM
model within the present sliding time window.

3) Update the individual best position (best time window) and global best position (global best
time window).

4) Update the velocity and position of the particles to find a better time window in the search
space.

Step 6: After the PSO algorithm converges, select the global optimal time window as the optimal
parameter.

Step 7: Re-training the LSTM model using the optimal time window and output of PV power
prediction results.

Figure 8: Flowchart of PSO-LSTM model algorithm

4 Calculated Case Validation Analysis

This study develops three prediction models: the BP neural network, the LSTM network, and
the PSO-LSTM network. This division is applied separately to sunny and non-sunny day data. Such a
distribution strategy ensures a balanced representation of the dataset across these sets, enabling robust
training, effective validation, and reliable testing of the models under diverse weather conditions.
Finally, the superiority of each model is assessed by comparing the RMSE and MAE of the predicted
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and actual values. The model with lower RMSE and MAE values is considered superior. The model
parameter settings are shown in Table 1.

Table 1: Model parameter setting table

Model Setting

BP Number of BP neurons is 50; fully connected layer (1); output layer (m); epochs =
200; forecast time: 1 day in the future

LSTM Number of LSTM neurons is 50; fully connected layer (1); output layer (m); epochs =
200; forecast time: 1 day in the future

PSO-LSTM Sunny day: look back = 33; number of LSTM neurons is 50; fully connected layer (1);
output layer (m); epochs = 200; forecast time: one day in the future
Non-sunny day: look back = 29; number of LSTM neurons is 50; fully connected
layer (1); output layer (m); epochs = 200; forecast time: one day in the future

4.1 Data-Processing Impact Analysis
Based on the above proposed data processing method, it is introduced into the BP and LSTM

models for validation, and the validation results show the effectiveness of the data processing, as shown
in Fig. 9, the data processing reduces the RMSE of the models. Compared with the BP, the RMSE of
the DBSCAN-SVM-BP is reduced by 33.58% under sunny day and 26.46% under non-sunny day;
compared to LSTM, the RMSE of DBSCAN-SVM-LSTM is reduced by 18.24% in sunny day and
2.88% in non-sunny day.

Figure 9: Impact on the model after data processing
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4.2 Non-Sunny Day Prediction Results
The non-sunny day dataset was systematically employed to train three distinct models. Subse-

quently, the RMSE and MAE metrics were computed to assess the disparities between the predicted
values and their corresponding actual counterparts for each model. The prediction results are shown
in Figs. 10 and 11.

Figure 10: Plot of non-sunny day predictions vs. actual values for the four models

Figure 11: Plot of predicted vs. actual values for non-sunny day 13:30–18:00 for the four models

In Fig. 10, the LSTM prediction model’s prediction results align with the trend of the actual values.
However, the predicted values of the fluctuating segment are lower than the actual values under non-
sunny day. The RMSE is calculated to be 6.76% and the MAE to be 4.86%. The difference between
the prediction results of the PSO-LSTM prediction model and the actual values is reduced, and the
predicted values of the fluctuating segment are closer to the actual values, showing specific stability.
The predicted value of the PSO-LSTM prediction model is closer to the actual value and shows some
stability. The RMSE is calculated to be 6.44%, and the MAE is 3.39%. Finally, the predicted values
of the PSO-LSTM prediction model after DBSCAN-SVM data processing are closer to the actual
values, and the stability is improved. The calculated RMSE is 5.96%, and MAE is 3.26%. From 13:30
to 17:00, Fig. 11 shows that the DBSCAN-SVM-PSO-LSTM prediction model outperforms the other
two prediction models and shows some stability.

Table 2 is a comprehensive comparison table of RMSE and MAE for non-sunny day. The results
indicate that, under non-sunny conditions, compared to the LSTM network predictions, the PSO-
LSTM network exhibited a 3.45% decrease in RMSE and a 30.25% decrease in MAE. The results also
showed that the data was processed by DBSCAN-SVM and then trained again using the PSO-LSTM



EE, 2024, vol.121, no.10 3031

model, which resulted in an improvement of 7.45% in RMSE and 3.83% in MAE. In addition, the
model was also compared with Transformer.

Table 2: Comparison of overall RMSE and MAE on non-sunny day

Predictive modelling RMSE MAE

LSTM 6.76% 4.86%
PSO_LSTM 6.44% 3.39%
DBSCAN-SVM- PSO-LSTM 5.96% 3.26%
DBSCAN-SVM- Transformer 5.47% 3.14%

4.3 Results of Sunny Day Prediction
Figs. 12 and 13 show the differences exhibited between the various models under sunny day. The

PSO-LSTM model predictions are closer to the real values, and the data are processed by DBSCAN-
SVM, which further improves the PSO-LSTM model outputs. The calculated RMSE and MAE are
shown in Table 3.

Figure 12: Plot of sunny day predictions vs. actual values for the four models

Figure 13: Plot of predicted vs. actual values for sunny day 10:00–17:00 for the four models

Table 3 presents the RMSE and MAE of the three prediction models for sunny day. Compared to
the LSTM network predictions, the PSO-LSTM network demonstrates a 14.01% decrease in RMSE
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and a 10.3% decrease in MAE. Notably, the PSO-LSTM prediction model exhibits a relatively modest
improvement compared to the LSTM model under favorable weather conditions.

Table 3: Comparison of overall RMSE and MAE on sunny day

Predictive modelling RMSE MAE

BP 2.77% 1.62%
LSTM 2.64% 1.94%
PSO-LSTM 2.27% 1.74%
DBSCAN-SVM- PSO-LSTM 2.06% 1.21%

The results also showed that the data was processed by DBSCAN-SVM and then trained again
using the PSO-LSTM model, which improved RMSE by 9.25% and MAE by 30.4%.

4.4 Physical Site Validation
The effectiveness of the PSO-LSTM prediction model is evaluated through comparative analysis

with the Inner Mongolia PV plant model. Fig. 14 compares the error part of the model prediction
results with the prediction results of the actual on-site power plant, and the comparison results show
that the PSO-LSTM prediction model has excellent stability. The effectiveness of the PSO-LSTM
prediction model is evaluated through comparative analysis with the Inner Mongolia PV plant model.

Figure 14: Comparison of the error component of the model prediction results with the actual site
prediction results

5 Conclusion

In this study, a PSO-LSTM PV power prediction model based on DBSCAN-SVM is developed.
The model’s vulnerability to anomalies is mitigated by DBSCAN-SVM data preprocessing, which
proves that good data quality impacts the model. In addition, the global search capability of particle
swarm optimization is utilized to optimize the hyperparameters of LSTM, which improves the
accuracy of the LSTM prediction model. The main conclusions are as follows:
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(1) The method of data processing was applied to the BP and LSTM models for validation, and
the accuracy of the models was improved after data processing, proving the effectiveness of
data processing.

(2) The rapid fluctuation of solar irradiance during non-sunny days leads to significant changes
in PV power generation, and the proposed PSO-LSTM power prediction model has superior
stability performance and higher prediction accuracy. Secondly, the DBSCAN-SVM processed
data are fed into the model for training, and the prediction results are improved, with the
RMSE reduced by 7.45% and the MAE reduced by 3.83%. The PSO-LSTM power prediction
model shows better stability when the PV power generation remains stable on a sunny day.
The data processed by DBSCAN-SVM improves the prediction accuracy of the model, with a
reduction of 9.25% in RMSE and 30.4% in MAE.

(3) The prediction accuracy of the model developed in this paper is improved when compared to
existing prediction models for actual field sites.

In the future research, we will continue to improve the DBSCAN-SVM data processing method
and continue to optimize the proposed PSO-LSTM prediction model for comparison with advanced
model algorithms. Considering the actual situation of PV power fields, meteorological factors such
as PV panel temperature and cloudiness can be subsequently introduced into the model to further
improve the accuracy of PV power prediction.
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