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ABSTRACT

In recent times, the impact of typhoon disasters on integrated energy active distribution networks (IEADNs) has
received increasing attention, particularly, in terms of effective cascading fault path prediction and enhanced fault
recovery performance. In this study, we propose a modified ORNL-PSerc-Alaska (OPA) model based on optimal
power flow (OPF) calculation to forecast IEADN cascading fault paths. We first established the topology and
operational model of the IEADNs, and the typical fault scenario was chosen according to the component fault
probability and information entropy. The modified OPA model consisted of two layers: An upper-layer model to
determine the cascading fault location and a lower-layer model to calculate the OPF by using Yalmip and CPLEX
and provide the data to update the upper-layer model. The approach was validated via the modified IEEE 33-
node distribution system and two real IEADNs. Simulation results showed that the fault trend forecasted by the
novel OPA model corresponded well with the development and movement of the typhoon above the IEADN. The
proposed model also increased the load recovery rate by >24% compared to the traditional OPA model.
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Nomenclature

CHP Combined heat and power
DG Distributed generator
ESS Energy storage system
IEADN Integrated energy active distribution network
OPF Optimal power flow
PV Photovoltaic
SOC Self-organized criticality
α Temperature factor
η Energy transforming efficiency
θ Angle between the wind and the line
λ Heat transfer index of heat network pipes
μ Constant inflecting the line type
π Pressure matrix in the gas system
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ω Sub-objective function weights
A Topological structure of different energy systems
B Constant to reflect the temperature and efficiency of the compressor
Bij Conductivity of branch ij
D Line diameter
E System information entropy
F Power flow matrix
G Solar radiation intensity
Gij Conductors of branch ij
L Load type
m Number of energy coupling equipment
n Quantity of energy coupling equipment
P Combined component fault probability
Pfault Component fault probability
Pflow Operational failure probability
Pi Active power injected into node i
PPV Photovoltaic output power
p Pressure applied to the lines and poles
p Pressure matrix in the water system
Qi Reactive power injected into node i
Rmax Maximum typhoon velocity radius
r Distance between the study location and the typhoon center
S Source matrix
T Temperature
V i Voltage amplitude of node i
v Typhoon velocity
Z Compression factor constant
zi,t Fault situation on branch i at t

1 Introduction

In recent years, the frequency of extreme natural disasters, such as typhoons, has increased
as global climate change intensifies [1]. The grid component failures will influence the security of
the electricity grid caused by extreme natural disasters [2]. And the cascading fault from the initial
component failures has great impact on the security of the power grid [3]. Situations of widespread
electrical grid failures can significantly affect lives and the economy [4]. Integrated energy active
distribution networks (IEADNs) have gradually become a research hotspot in the development of
future energy networks owing to their multiple inter-coupled energy networks, as well as, extensive
distributed generators (DGs) [5]. Since IEADNs serve as a crucial link for electrical power customers,
their resilience under typhoons should be given adequate attention. Reducing damage due to extreme
natural disasters is critical, and improving the safety and stability of IEADNs with favorable resilience
is necessary [6].

IEADNs may have a relatively higher failure probability than power transmission networks due
to more complex structures and weaker support capabilities [7]. Component fault probability and
fault scenarios have been widely studied to discover methods for increasing IEADN resilience. These
measures include early warning systems [8], pre-disaster reinforcement [9], emergency response [10],
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and post-disaster recovery [11]. As the resilience foundation improves, fast and accurate prediction of
cascading IEADN fault development becomes highly critical.

Chen et al. [12] studied the dynamics of cascading failure iterating in a physical power distribution
network, and defined node criticality based on electrical and structural characteristics to locate the
network vulnerabilities. Liu et al. [13] analyzed the cascading failure risk of flexible interconnected
distribution systems based on the physical structure of flexible multi-state switches and uncertain
factors models. Bai et al. [14] modeled component damage due to extreme events and analyzed ADN
fault repair schemes. Wang et al. [15] proposed an inverse-community structure to intuitively identify
cascading fault risks and upgraded conventional modularity to quantify their characteristics in power
networks. Gao et al. [16] developed a novel model to study cascading failure in cyber-physical power
systems by considering the impact of voltage-related failures. Based on the interrelation analysis
between the references [12–16], these methods are mainly based on the pure power distribution network
and do not involve other form system so they cannot used in the IEADNs. In order to promote
the methods into more complicated systems, the cascading fault path of the IEADNs should be
investigated further.

Du et al. [17] improved upon a risk assessment model by analyzing the energy system structural
vulnerabilities to forecast cross-space cascading faults in cyber-electric-gas systems. Chen et al. [18]
proposed a data-driven inter-regional interaction graph model to forecast cascading faults and oper-
ated high-risk components to deduce the outage load. Ma et al. [19] developed a stochastic cascading
failure model to simulate the response of renewable energy systems under extreme weather and assessed
island resilience. Yang et al. [20] proposed a risk assessment method using critical line sensitivities
and revealed that cascading failure risk increases when considering security-constrained generation
dispatch. Dai et al. [21] established an event-triggered hybrid system model to describe the dynamic
cascading failure process, integrating multiple physical responses, such as relay protection, frequency
regulation, and dispatching action. In light of the interrelation analysis between the references
[17–21], these methods are based on a large amount of data or have extensive calculations because
of stochastic simulation, and the models are mainly suitable for small-scale simulation and have
limited application scenarios. On the other hand, the ORNL-PSerc-Alaska (OPA) model relies on
power flow data and component fault probability, and has a relatively moderate data requirement to
satisfy calculation efficiency. The traditional OPA model focuses on pure power distribution networks
and rarely considers optimal power flow. By improving upon the OPA model, it is speculated that an
efficient IEADN cascading fault path prediction model can be developed.

Wang et al. [22] proposed a new energy park distribution robust scheduling model for water-
containing product-breeding greenhouses using Kullback-Leibler divergence. Tan et al. [23] introduced
a cooperative operation framework of the integrated rural energy system and proposed a novel
forecast-scenario-based robust energy management method to improve energy utilization efficiency
and reduce emissions. These methods, however, aim to improve the energy management strategy of
the electricity-heat and electricity-gas integrated energy systems and rarely consider more complicated
IEADNs including energy sources.

To address the above-mentioned gaps, in this study, we established a combined electrical-gas-
water-thermal energy system to devise an optimized power flow pathway for the OPA model to realize
cascading fault path prediction for IEADNs during typhoons. The main contributions of this study
are stated as follows:

1) We performed topology description and operation modeling for the IEADNs. The typical fault
scenario was chosen according to the component fault probability and information entropy.
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2) We proposed a methodology to forecast the IEADN cascading fault path based on the
improved double-layer OPA model. The upper-layer model was used to determine the fault
scenarios, while the lower-layer optimal power flow (OPF) model clarified the IEADN
operation state and provided data updates for the upper-layer model.

3) The effectiveness and suitability of the proposed approach were verified using the modified
IEEE 33-node distribution system and two real IEADNs through a comparative analysis
between the traditional and the double-layer OPA model. The performance of the proposed
model was tested for several thousands of variables and against uncertainties.

The rest of the article is organized as follows: In Section 2, we describe the IEADN operational
model construction process; in Section 3, we propose the improved double-layer OPA model for the
IEADNs and establish the model-solving method; the performance of the proposed approach for
different test cases is addressed in Section 4; and finally, the primary conclusions of the study are
summarized and stated, along with future objectives, in Section 5.

2 IEADN Model

This section studies the integrated energy active distribution networks (IEADNs) for their
operation model [24]. The IEADNs are mainly composed of electricity, gas, water, thermal, and
cooling systems, including the operational elements of each energy network and the coupling between
energy networks (Fig. 1).

Gas system

CHP

Active distribution network

Water system Thermal systemCooling system

Refrigeration Hydroelectric

Electric 
Boiler

Gas 
Turbine

Gas
Boiler

P2G

Figure 1: IEADN schematic representation

2.1 ADN Sub-Model
The operational model of an ADN providing electrical power supply can be expressed as [25]:⎧⎪⎨

⎪⎩
Pi = Vi

∑
j∈branchi

Vj

[
Gij cos δij + Bij sin δij

]
Qi = Vi

∑
j∈branchi

Vj

[
Gij sin δij − Bij cos δij

] , (1)

where Pi and Qi are the active and reactive powers injected into node i, respectively; V i and V j are
the voltage amplitude at nodes i and j, respectively; Gij and Bij are the conductors and conductivity of
branch ij, respectively; and branchi represents the set of branches connected to node i. DGs (mainly PV
and energy storage systems (ESSs)) are presented in ADNs to enhance the electricity supply reliability.
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The PV generator output power can be modeled as Eq. (2).

PPV . max (t) = G (t)
GN

1 + α (T (t) − T0)

1 + α (TN − T0)
PPV .N, (2)

where PPV .max(t) is the maximum output power of the PV; G(t) and GN are the solar radiation intensities
at time t and for the rated scenario, respectively; α is the PV temperature factor; T(t) and TN are the
temperatures at t and the rated scenario, respectively; T 0 is the reference temperature; and PPV.N is the
rated power of the PV. ESSs are used to smooth out the DG fluctuations and serve as backup power
sources. The operational state of an ESS can be expressed as Eq. (3).

SoC (t + 1) = SoC (t) + ηchLchΔt − 1
ηdis

PdisΔt, (3)

where SoC(t + 1) and SoC(t) are the states of charge at times t + 1 and t, respectively; ηch and ηdis are
the charge and discharge efficiencies, respectively; Pch and Pdis are the charge and discharge powers,
respectively; and �t is the time interval.

The IEADN system requires a large number of energy-coupling equipment. The coupling equip-
ment between the ADNs and the gas system mainly consists of power-to-gas (P2G) units, combined
heat and power (CHP) units, and gas turbines (Fig. 1). The CHP units primarily convert natural gas
into electrical and thermal power to be supplied to the grid loads. This process can expressed as Eq. (4).{

Pge = ηgeLge

Pgh = ηghLgh

, (4)

where Pge and Pgh are the output electrical and thermal power of the CHP, respectively; Lge and Lgh are
the gas loads converted into electricity and heat, respectively; and ηge and ηgh are the electricity and
heat transformation efficiencies, respectively. The energy exchange between the ADNs and the cooling
system occurs through refrigeration, with the operational model expressed as Eq. (5).

Pec = ηecLec, (5)

where Pec is the cooling power; Lec is the electrical load; and ηec is the transforming efficiency to cooling.

2.2 Gas System Sub-Model
The IEADN gas supply is based on pipeline transmission [26], which is composed of the

(i) pipeline flow model, expressed as{
AgFg + Sg − ∑

Lg = 0

Fg.ij = kij

(
π 2

i − π 2
j

)
πi > πj

, (6)

where Ag is the gas system topological structure; Fg is the pipe flow matrix; Sg and Lg are the gas
source and load, respectively; kij is a constant related to the internal diameter, length, efficiency, and
natural gas compression factor of the pipeline ij; and π i and π j are the pressures at nodes i and j,
respectively; and

(ii) compressor model, expressed as

Lcom = BFcom

[(
πi

πj

)Z

− 1

]
, (7)
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where Lcom is the compressor power for electricity consumption; B is a constant to reflect the
compressor temperature and efficiency; Z is the compression factor constant; and Fcom is the flow
through the compressor.

2.3 Thermal System Sub-Model
The IEADN thermal system uses water as the work mass [27], which includes the

(i) heat model, expressed as⎧⎨
⎩

Lhi = Cpmpi (Tsi − Toi)

Toj = (Tsi − Ta) e−λlij/(Cpmij) + Ta

, (8)

where Lhi is the thermal power at node i; Cp is the specific heat capacity of water; Tsi and Toi are the
water inflow and outflow temperatures at node i, respectively; Ta is the environmental temperature; λ

is the heat transfer index of the heat network pipes; lij is the length of pipe ij; and mi expresses the flow
of pipe ij; and

(ii) hydraulic model, expressed as

AwFw + Sw −
∑

Lw = 0, (9)

where Aw is the node-branch correlation matrix for island heat networks; Fw is the matrix describing
the water flow, Fij, in pipe ij; and Sw is the water source power.

3 Modified OPA Model for IEADNs for Cascading Fault Path Prediction

The traditional OPA model is based on a blackout model, which adopts a sequence of linear
programs to describe the load shed induced by the power system cascading faults [28]. The proposed
modified OPA model, however, uses a two-layer structure (Fig. 2). The time-series-based upper-layer
model portrays the IEADN cascading fault path by updating the operating state of each component
at different moments. The power-flow-based lower-layer model calculates the power flow distribution
in accordance with the various IEADN component failures.

Upper Layer

Fault probability Fault scenario

Lower Layer

Optimized 
power flow data

OPF model of 
IEADNs

Fault constraints

Operation 
constraints

t = t + 1

Meteorological 
information

Power flow
data

F
ault location

Pi, Qi, Fg, Fw

Figure 2: Interactions between the upper and lower-layers of the modified OPA model
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Based on the extreme weather meteorological parameters, the IEADN fault probability generated
the typical fault scenario, which was set as the initial fault of the proposed OPA model (Fig. 3). Then,
the combined component fault probability, P, was obtained, and the faulty component was determined
until the extreme weather moved away from the IEADN.

Update the fault constraints 

t < tmax?

Initialize the typical fault
scenario

Start

End

Update the meteorological 
information and power flow data

Solve the optimal power flow 
model of IEADNs using Cplex

Calculate the fault probability

Update the operation state of the 
components

Y

N

Figure 3: Workflow of the proposed OPA model

3.1 Upper-Layer Model for Fault Scenario Selection
3.1.1 Component Fault Probability during Typhoons

Using the Batts model, the wind speed can be expressed as [29]

v =
{

vRmaxr/Rmax r ≤ Rmax

vRmax (Rmax/r)0.7 r > Rmax

, (10)

where v is the typhoon velocity, tangential in direction to the analog circle; Rmax is the typhoon radius
at its maximum velocity; vRmax is the maximum typhoon velocity; and r is the distance between the
study location of the typhoon location and its center point. The pressure applied on the lines, pl, and
poles, pp, can be calculated using the wind speed.

pl = √
p2

1 + p2
2 =

√(
v2

1.6
Dμ sin2

θ

)2

+ (qg)
2, (11)

pp = 0.7
v2

1.6
D0 + Dp

2
hp, (12)

where D is the line diameter; μ is a constant inflecting the line type; θ is the angle between the wind and
the line; q is the line mass; g is the gravitational acceleration; D0 and Dp are the top and root diameters
of the pole, respectively; and hp is the pole height.

From Eq. (13), the component fault probability, Pfault, due to the typhoon can be obtained as

Pfault = P [(p − pr < 0)] =
∫ pr

0

fp (r) dr, (13)

where f p is the component strength probability density; and p and pr are the components of bearable
pressure and real pressure p or pp. Furthermore, the operational failure probability, Pflow, caused by
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flow transgression can be defined as Eq. (14).

Pflow = I
εImax

, (14)

where I and Imax are the operation current and maximum current, respectively, and ε is the current
margin. To forecast the IEADN cascading fault paths under extreme weather, using Eqs. (13) and
(14), the combined component fault probability, P, can be defined as

P = 1 − (
1 − Pfault

) (
1 − Pflow

)
. (15)

3.1.2 Typical Fault Scenario during Typhoons

The IEADN information entropy, E, reflects the probability of a fault scenario occurrence,
computed using the combined component fault probability, P, as Eq. (16).

E =
∑

i∈Branch

(
1 − log2 pi,t

)
zi,t t ∈ Tw, (16)

and⎧⎨
⎩

Emin ≤ ∑
i∈ω

(
1 − log2 pi,t

)
zi,t ≤ Emax∑

t

zi,t ≤ 1
t ∈ T , (17)

where Tw is the typhoon duration above the IEADNs; and zi,t = 1 implies the occurrence of a fault
at branch i at time t (for each branch i, there exists at most one instance where zi,t = 1). Each fault
scenario corresponds to i zi,t vectors and an entropy, E.

3.2 Lower-Layer Model for Optimal Power Flow
3.2.1 Objective Function

To improve the IEADN power flow under extreme events, the objective function, F , of the lower-
layer was modeled considering the flow transgression rate, energy coupling element utilization, and
load recovery rates of different energy networks as Eq. (18).

F = ω1

∑
ij∈Branch

Iij

εImax .ij

+ ω2

n∑
m=1

Pe.m

PeN.m

+ ω3

∑ n∑
m=1

Li

LiN

(18)

where ω1–3 are the weights of different sub-objective functions; m and n are the number and quantity
of the energy coupling equipment, respectively; and Li and LiN are the supplied and rated loads,
respectively.

3.2.2 Constraints of the Lower-Layer Model

1) Distribution network operation
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PG + PPV + PbranchAe + Pdis + ∑
Pco − Le − Lch = 0∑

Pco = Pge + Pwe − Lec

0 ≤ PG ≤ PG. max

0 ≤ PPV ≤ PPV . max

−Pbranch. max ≤ Pbranch ≤ Pbranch. max

0 ≤ Pdis ≤ Pdis. max

0 ≤ Le ≤ Le. max

0 ≤ Lch ≤ Lch. max

, (19)

where PG and PPV are the powers of the traditional generator and PV units, respectively; Pbranch is the
power flow in the branches; Ae is the ADN structure; Pco is the power of the coupling components; Le

is the electric load; and PG.max, PPV .max, Pbranch.max, Pdis.max, Le.max, and Lch.max are the maximum values of the
corresponding parameters.

2) Gas system operation

The gas network operation mainly satisfies the gas flow equation, gas load shedding constraint,
gas pressure constraint, and the pipe limit, and can be expressed as Eq. (20).⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AgFg + Sg − ∑
Lg = 0∑

Lg = δLg + Lge + Lgh

πmin ≤ π ≤ πmax

−Fg. max ≤ Fg ≤ Fg. max

, (20)

where �Lg is the gas load; π is the pressure at all the gas system nodes, with πmax and πmin being the
maximum and minimum values of π ; and Fg.max is the maximum pipe flow.

3) Thermal system operation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AwFw + Sw − ∑
Lw = 0∑

Lw = δLw + Lwe

pmin ≤ p ≤ pmax

−Fw. max ≤ Fw ≤ Fw. max

Lhi = Cpmpi (Tsi − Toi)

Toj = (Tsi − Ta) e−λLij/(Cpmij) + Ta

0 ≤ Lh ≤ Lh. max

Tmin ≤ T ≤ Tmax

, (21)
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where �Lw is the water load; p is the pressure at all the water system nodes, with pmax and pmin being
the maximum and minimum values of p, respectively; Lh is the matrix for Lhi, with Lh.max being its
maximum; and T is the matrix for Tsi and Toj; with Tmax and Tmin containing the maximum and
minimum values of T.

4) Cooling system

For the IEADNs, the cooling (air-conditioning) loads can expressed as Eq. (22).

0 ≤ Pec ≤ Pec.max, (22)

where Pec is the matrix for Pec, with Pec.max containing its maximum value.

5) Extreme events{
Ae.ij = 0 Pij > τ

Le.i. max = 0 Pi > τ
, (23)

where Ae.ij is an adjacency matrix element; Le.i.max is the maximum electrical load at node i; Pij and Pj

are the component fault probabilities for branch ij and node j, respectively; and τ is a random number.

In Eqs. (19)–(23), the inequalities are linear constraints and can be solved using exact algorithms
based on mathematical principles [30]. However, the equality constraints describing the power flow are
second-order cone constraints (SOCCs), which cannot be solved directly by using exact algorithms.
The second-order cone relaxation method was used to transform equality SOCCs into inequality
SOCCs [31]. After the transformation, the OPF model of the IEADNs could be solved via Yalmip
and CPLEX. CPLEX primarily uses a barrier optimizer that exploits a primal-dual logarithmic barrier
algorithm to generate a sequence of strictly positive primal and dual solutions to the given problem
[32]. Unlike heuristic algorithms that use stochastic generation and iterative optimization, the primal-
dual logarithmic barrier algorithm solves second-order cone problems by generating a Lagrangian
function and obtaining its maximum/minimum. This method is often better suited and advantageous
for large-scale problems [33].

4 Case Study
4.1 IEADNs Based on the Modified IEEE 33-Node System

We established an IEADN (Fig. 4) based on the modified IEEE 33-node system [34] and compared
it with the 7-node gas system [35] and the modified 32-node thermal system [36]. The test case was
modeled on a PC with Intel Core i7-9700 CPU 3.00 GHz and 16 GB memory, with MATLAB 2020a
used as the testing environment. A CHP unit was connected to node 7 as the gas load, which provided
electrical and thermal power to nodes 14 and 23 of the electrical and thermal systems, respectively.

The Batts model simulated a typhoon attack on the IEADNs, with Rmax and V max set to the initial
values of 50 km and 144 km/h, respectively. The IEADN fault probability during the day was obtained
(Fig. 5). Over 90% of the fault scenarios caused by the typhoon event exhibited 60 ≤ E ≤ 120. When
the fault occurred at branches 11, 12, 19, and 21, we obtained E = 80.24 and determined the maximum
probability density (Fig. 6).

According to Fig. 5, for t = 00:00–10:00, the IEADNs were in a normal operational state. From
t = 11:00, the typical fault scenario was taken to be the initial fault state (Fig. 6). The cascading fault
path, predicted using the improved OPA model, spread according to the movement of the typhoon
(Fig. 7). As the typhoon moved towards nodes 29–31, the branches in between were damaged.
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Figure 4: IEADNs based on the modified IEEE 33-node system
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Figure 5: Fault probability distribution for the IEADN nodes
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Figure 7: IEADN cascading fault paths at t = (a) 11:00; (b) 12:00; and (c) 13:00

The modified double-layer OPA model was compared to the traditional OPA model in terms of
typhoon response and load recovery. In the network reconfiguration of the proposed OPA model, the
contact switches on branches 33, 34, and 35 were connected to recover the outage loads at nodes 8, 19,
and 20 (Fig. 8). The traditional model did not reflect this process and the loads were not recovered.

(a) traditional model
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Figure 8: IEADN network structure during the typhoon at t = 11:00 using the (a) traditional and (b)
improved OPA models

Detailed values of the IEADN load recovery rates were obtained (Fig. 9; Table 1). Minimum
recovery rates of 53% and 42% were observed for the proposed and traditional OPA models,
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respectively, at t = 12:00 and 18:00. Simultaneously, a 26.2% performance enhancement was observed
for the proposed OPA model compared to the traditional one.
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Figure 9: IEADN load recovery rates for the traditional and proposed OPA models

Table 1: IEADN load recovery rate values at t = 11:00

Node Load recovery rate

Traditional OPA model Proposed OPA model

16 91.67% 100%
17 90% 100%
18 83.3% 100%
19 0 100%
20 0 100%

4.2 IEADN for Practical Large-Scale Hydroelectric Units
To verify the effectiveness of the proposed OPA model for practical systems, we established an

IEADN with a 98-node distribution system based on the actual distribution network in a city for
large-scale hydroelectric units (Fig. 10). The hydraulic sub-system consisted of 10 hydroelectric units
(Table 2).

Using the meteorological information for the typhoon (Table 3) and the wind speeds at each
IEADN node during the day (Fig. 11), we inferred that nodes 8, 9, 67, 68, and 70–75 were the most
affected. Node 8 experienced a maximum wind speed of 69 km/h at 09:00–11:00; it was the first node to
peak, and hence, was established as the typhoon starting coordinate. As the typhoon path was farther
away from nodes 1–7 and 90–100, these locations experienced relatively lower wind speeds, which was
consistent with the typhoon model.
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Figure 10: IEADN based on a real distribution network for large-scale hydroelectric units

Table 2: Hydroelectric unit parameters

Unit number Node number Rated power

H 1 29 0.4250 MW
H 2 37 0.8 MW
H 3 54 1 MW
H 4 76 2.3 MW
H 5 77 2 MW
H 6 78 2 MW
H 7 80 0.3150 MW
H 8 85 0.3150 MW
H 9 87 0.7150 MW
H 10 88 0.975 MW
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Table 3: Typhoon meteorological information

Typhoon meteorological information Value

Coordinates of typhoon center (4.33 ± 0.5 km, −4.47 ± 0.5 km)
Speed of the typhoon center 8.3 km/h
Direction of the typhoon movement WbN40°
Maximum wind speed 100 km/h
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Figure 11: Wind speeds at each IEADN node

The fault probability computation for each IEADN node (Fig. 12) revealed an upward trend for
branches 8 and 9, with an increase from 0% to 70% at 06:00–10:00, consistent with the wind speeds at
these locations. At ∼15:00, branches 45–55 experienced a very high fault probability, for a wind speed
of ∼90 km/h. After simulating a typhoon attack on the IEADNs with the initial coordination in the
range of (4.33 ± 0.5 km), (–4.47 ± 0.5 km), we computed the E-values for each fault scenario.
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Figure 12: Fault probability at each IEADN node
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The E-value probability density for 90% of the fault scenarios was distributed in the range of
3484.0–3487.0. Based on the simulation results, for the fault in branches 9 and 10, we computed E =
3485.5 for the typical fault scenario. Compared to the 33-node-based IEADN, the nodes and branches
of the IEADN for large-scale hydroelectric units were found to be more decentralized, verifying the
efficiency of the proposed model for larger IEADNs (Fig. 13).
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Figure 13: Cascading fault paths for the IEADNs at t = (a) 16:00 and (b) 18:00
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For the proposed OPA model, the coupling equipment utilization rate reached up to 0.60 for
all periods, with a minimum value of 0.76 (Fig. 14). In contrast, for the traditional OPA model, the
minimum coupling equipment utilization rate was ∼0.58. This confirmed that during the IEADN
operation process, the modified OPA model was more capable of using the energy coupling equipment
to withstand extreme events compared to the traditional one.
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Figure 14: IEADN coupling equipment utilization comparison

For the modified OPA model, the load recovery rate was >0.90, but it remained <0.80 for the
traditional model (Fig. 15). It was worth noting that the IEADNs with higher numbers of coupling
equipment had a better load recovery rate compared to the 33-node-based IEADN, further confirming
the practical applicability of the proposed model.
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Figure 15: IEADN load recovery rate comparison

To test the performance of the proposed model for several thousands of variables, the IEADNs
were expanded to a system with 196 nodes and 195 branches. The voltage, phase angle, load point active
and reactive powers, coupling equipment output power, and the power transformed at the branches
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composed a total of 1059 variables. The cascading fault path predictions for the expanded IEADNs
revealed that the initial faults were mainly centered at nodes 117, 118, 130, 131, 164, 176, 192, and 193
(lower right-hand corner of Fig. 16). As the typhoon traversed, the faults were transferred to nodes 10,
48, 71, 75, 110, 111, 148, 149, and 150 (central part of Fig. 16), consistent with the typhoon movements.
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Figure 16: Cascading fault paths of the expanded IEADNs at t = (a) 09:00 and (b) 16:00

4.3 IEADNs Based on Concentrated Distribution Networks
To verify the proposed model for practical IEADNs with more concentrated structures, along

with large-scale DGs and energy systems, we constructed a model based on the actual industrial park
(Fig. 17; Table 4). We then simulated a typhoon (–8 km, –5 km) attack on the established IEADN
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structure (nodal wind speeds shown in Fig. 18). During the attack, nodes 5–15 and 55–60 were the
most affected, with wind speeds >60 km/h. The maximum wind speed observed at node 53 was vRmax

= 89 km/h at 09:00–11:00. Meanwhile, as the typhoon was farther away from nodes 15–25, the wind
speed at these locations was <50 km/h.
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Figure 17: IEADN structure based on the industrial park

Table 4: Model parameters for the concentrated IEADN structure

Unit Number of
nodes

Rated power/capacity

PV 1 22 16.45 MWp
PV 2 26 2.79 MWp
PV 3 28 6.16 MWp
PV 4 31 0.71 MWp
ESS 1 21 0.19 MW/1.87 MWh
ESS 2 22 6.00 MW/36.00 MWh
ESS 3 26 0.40 MW/1.00 MWh
ESS 4 28 1.50 MW/3.00 MWh
CCHP 45 28.80 MW
Cooling load 1 9 0.15 MW
Cooling load 2 22 0.73 MW
Cooling load 3 31 0.20 MW

At t = 00:00–03:00, node 35 experienced wind speeds of 58 km/h, and the fault probability reached
a maximum value of 0.79 (Fig. 19). Meanwhile, the maximum fault probabilities for nodes 1–10,
52, and 53 occurred between 11:00–20:00. Similarly, when branches 26, 49, and 54 were found to
experience the typical failure scenario, we computed E = 3527.5.
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Figure 19: Fault probability density for the concentrated IEADN nodes

The typhoon began affecting the concentrated IEADN structure from 05:00 onwards (Fig. 20).
Although node 35 had a high fault probability at t = 00:00–03:00, no multi-fault scenarios were
observed. The cascading fault had an apparent tendency to spread from left to right on the grid,
similar to the typhoon movement path. Additionally, by analyzing the number of faults, it could be
concluded that the IEADNs with more concentrated structures are easily influenced by the typhoon.

Under the proposed OPA model, the intraday full-time load recovery rate reached up to 0.93 com-
pared to only 0.75 for the traditional model (Fig. 21). The load recovery rate improved significantly
throughout the operation process, reaching a maximum value of 24% and illustrating the excellent
performance of the proposed OPA model. The cooling load operation state of the concentrated
IEADN structure had two apparent instances of decrease at 16:00 and 19:00–20:00. This phenomenon
was owing to the proposed OPA model being built to prioritize electrical load recovery. As a result, the
cooling load powers were deliberately controlled. Hence, the proposed OPA model could effectively
repair faults by prioritizing electrical loads and slightly decreasing the cooling load (Fig. 22).
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Figure 20: Cascading fault paths for the concentrated IEADN structure at t = (a) 13:00 and (b) 19:00
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Figure 21: Load recovery rate comparison for the concentrated IEADN structure
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Figure 22: Cooling load operation state comparison for the concentrated IEADN structure

To handle uncertainties and analyze model sensitivity, we simulated more typhoon attacks in the
range of (−8.0 ± 0.5 km, −5.0 ± 0.5 km) on the IEADNs. Each line in Fig. 23 represents a fault
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probability curve under a typhoon. The influenced nodes under each typhoon in the abovementioned
range were highly consistent. The nodal fault probabilities exhibited differences due to the range and
the speed of the typhoons. The above simulations verified the robustness of the proposed model.
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Figure 23: Fault probability comparison at each IEADN node under different typhoons at t = (a)
15:00 and (b) 17:00

5 Conclusions

In this study, we proposed an improved OPA model to predict IEADN cascading fault paths
during typhoons. We established the modified OPA model and its solution scheme, and tested its
validity and practical applicability in comparison to the traditional OPA model. The major conclusions
of this work are summarized as follows:

1) The proposed OPA model can effectively forecast the IEADN cascading fault paths, accurately
corresponding to typhoon development and fault probability features. The changes in multiple
faults at different instances were clarified.

2) The novel OPA model was validated for different types of IEADNs. The IEADNs with
concentrated structures are more likely to be influenced by typhoons. By using the improved
OPA model, the IEADNs with large energy systems can more effectively repair faults.

3) The improved OPA model outperforms the traditional one in terms of increased coupling
equipment utilization (by 31%) and load recovery rate (by >24%) of the IEADNs. This model
achieves favorable cooperative recovery.

Consequently, the validity and suitability of the proposed model are demonstrated for practical
conditions. Future works will be aimed at analyzing resource synergy and optimal allocation methods
for multiple energy systems to enhance IEADN resilience.
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