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ABSTRACT

With the current integration of distributed energy resources into the grid, the structure of distribution networks
is becoming more complex. This complexity significantly expands the solution space in the optimization process
for network reconstruction using intelligent algorithms. Consequently, traditional intelligent algorithms frequently
encounter insufficient search accuracy and become trapped in local optima. To tackle this issue, a more advanced
particle swarm optimization algorithm is proposed. To address the varying emphases at different stages of the
optimization process, a dynamic strategy is implemented to regulate the social and self-learning factors. The
Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal
solutions, thereby mitigating premature convergence in the population optimization process. The inertia weight
is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local
search abilities. The incorporation of the Pareto principle involves the consideration of network losses and voltage
deviations as objective functions. A fuzzy membership function is employed for selecting the results. Simulation
analysis is carried out on the restructuring of the distribution network, using the IEEE-33 node system and
the IEEE-69 node system as examples, in conjunction with the integration of distributed energy resources. The
findings demonstrate that, in comparison to other intelligent optimization algorithms, the proposed enhanced
algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.
Furthermore, it enhances the amplitude of node voltages, thereby improving the stability of distribution network
operations and power supply quality. Additionally, the algorithm exhibits a high level of generality and applicability.

KEYWORDS
Reconfiguration of distribution network; distributed generation; particle swarm optimization algorithm; simulated
annealing algorithm; active network loss

Nomenclature

m Opening and closing state of the segment switch
Rk Kth branch resistance value, k�

Uk Kth branch terminal voltage, kV
Pk Kth branch active power, kW
Qk Kth branch reactive power, kVar
U ‘

k Per unit value of the terminal voltage for the kth branch
Vi Voltage of the node i, kV
PDGi Distributed power access the active power of the node i, kW
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PLi Active power of the load in the node i, kW
QDGi Distributed power access node reactive power in the node i, kVar
QLi Reactive power of the load in the node i, kVar
Gij Real parts of the conductance between the node i and j
Bij Imaginary parts of the conductance between the node i and j
δij Phase difference angle of the voltage between the node i and j
Sk. max Maximum value of the accessible capacity on the branch, kVA
gk Network that satisfies the radial requirements
c1 Individual learning factor
c2 Group learning factor
xk

i Position of the particle i which is at the moment of k
vk

i Velocity of the particle i which is at the moment of k
Pk

best Historical optimal position at the moment of k
Gk

best Optimal position at the moment of k
Ei(k) Ith particle’s internal energy at the kth iteration
Eg Internal energy of the current population optimum
Tk Current temperature of the kth iteration

1 Introduction

In recent years, the substantial consumption of traditional fossil fuel resources and the continuous
growth of energy demand have made distributed generation an indispensable part of the power
system [1]. However, the output of distributed energy sources is characterized by volatility and
randomness, which significantly increases the uncertainty and complexity of the grid after integration,
thereby exerting a significant impact on power losses, node voltages, and power flow direction in the
distribution network [2].

Scientific and rational distribution network restructuring (DNR) can reduce the active power
losses of the entire distribution network system, avoid node voltage violations, and thus improve
the quality of electrical energy. The increasing number of scholars researching distribution network
restructuring has led to the consideration of numerous factors, resulting in the proliferation of
internal functions. As a consequence, the optimization problem becomes non-convex, non-linear, high-
dimensional, and subject to multiple constraints, greatly limiting the applicability of mathematical
methods and heuristic algorithms [3]. In recent years, distribution network restructuring methods
based on intelligent optimization algorithms have garnered significant attention from researchers.
In a previous work [4], an improved grey wolf algorithm was proposed, which introduced a wolf
named GAMMA to enhance population diversity. However, the addition of new dimension val-
ues to the original algorithm hinders the resolution of complex problems. To address the issue
of easily falling into local optima during the computational process of intelligent algorithms, a
modified Teaching-Learning-Based Optimization (TLBO) algorithm was proposed in reference [5].
This improved algorithm incorporated an adaptive teaching factor and introduced a “self-learning”
phase to enhance optimization efficiency. In reference [6], the method of undetermined coefficients
was employed to transform the dual-objective problem of network loss and voltage deviation into a
single-objective function for comprehensive optimization. Although this approach provides a more
comprehensive comparison to single-objective optimization results, the use of manually set weighting
coefficients cannot achieve unbiased selection of reconstruction results. In reference [7], the Analytic
Hierarchy Process (AHP) and the Linear Weighting Method (LWM) were introduced to determine
the weights of various indicators and achieve the transformation from multi-objective functions
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to a single-objective function. Despite the simplicity and computational efficiency of transforming
multi-objective problems into single-objective problems, the subjectivity of these methods hinders the
achievement of fully unbiased optimization for each objective.

This paper proposes a dynamic simulated annealing particle swarm optimization algorithm
(DSAPSO) that combines the advantages of simulated annealing (SA) and particle swarm optimiza-
tion (PSO) algorithms. By applying the Metropolis principle of the simulated annealing algorithm to
restrict the generation of local optima, and improving the velocity update method of the population,
the optimization process is balanced with different emphases in the earlier and later stages, leading to
enhanced optimization speed.

With network loss and node voltage deviation as objective functions, the Pareto principle is
employed in combination with fuzzy membership functions to achieve unbiased selection of multi-
objective reconstruction results. The IEEE-33 distribution system and IEEE-69 distribution system
are used as examples to demonstrate the effectiveness of the DSAPSO algorithm in the presence of
distributed power generation. The simulation results show that the DSAPSO algorithm exhibits good
convergence speed, avoids getting trapped in local optima, and possesses good generality.

2 Model Building
2.1 Objective Function

References [8,9] indicated that the fundamental concept of distribution network reconfiguration
involves altering the network topology through modifications to sectionalizing switches and tie
switches. The objective is to optimize network performance indicators. The objective functions
typically include minimizing active power loss, maximizing load balancing, and reducing the number
of switch operations. This paper focuses on minimizing active power loss and node voltage deviation
as the objective functions.⎧⎪⎪⎨
⎪⎪⎩

F1 = minPloss =
m∑

k=1

βkRk

P2
k + Q2

k

U 2
k

F2 = min Utotal =
m∑

k=1

| 1 − U ‘
k |

(1)

In the formula: m for the total number of branches in the distribution network, βk for the branch
contact switch or the opening and closing state of the segment switch, closed or broken corresponding
to 1 or 0, respectively; Rk and Uk are the kth branch resistance value and terminal voltage; Pk, Qk are
the kth branch active and reactive power. U ‘

k denotes the per unit value of the terminal voltage for the
kth branch.

For a multi-objective minimization problem,⎧⎪⎨
⎪⎩

minF = [f1 (x) , f2 (x) , . . . , fn (x)]
s.t.gi (x) = 0 i = 1, 2, . . . , K
hj (x) ≤ 0 j = 1, 2, . . . , R

(2)

In a multi-objective minimization problem, x denotes the solution vector in the solution space,
F represents the objective function vector, n is the number of objective functions, gi(x) represents the
general form of equality constraints, and hi(x) represents the general form of inequality constraints.
K and R denote the number of equality and inequality constraints, respectively.

In the solution space, comprising all feasible reconstruction plans, if for any two feasible solutions
a and x, each sub-objective function value of a is not inferior to the corresponding value of x, i.e.,
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fi(x) ≤ fi(a) (for i = 1, 2, . . . , n), and there exists i0 (i0 ∈ {1, 2, . . . , K}) such that fi(x) ≤ fi(a), then
solution a dominates solution x. If there is no feasible solution in the solution space that dominates a,
then solution a is regarded as a non-dominated solution of the multi-objective programming problem,
and all non-dominated solutions constitute the Pareto front of the problem’s solution set.

After obtaining the set of Pareto optimal solutions, we employ fuzzy membership degrees to
express the satisfaction of each Pareto solution with respect to the objectives. Furthermore, we utilize
these satisfaction values to identify the final set of compromise solutions. The function for determining
fuzzy membership degrees is presented below:

μi =

⎧⎪⎪⎨
⎪⎪⎩

1, fi < fimin

fimax − fi

fimax − fimin

, fimin � fi � fimax

0, fimax < fi

(3)

In the equation, μi represents the fuzzy membership degree corresponding to the i-th objective
function, while fimin and fimax represent the lower and upper bounds of the i-th objective function,
respectively.

2.2 Conditions of Constraint
(1) The node voltage constraint is shown in Eq. (4):

V min
i � Vi � V max

i (4)

Vi is the voltage of the node i; V max
i and V min

i are the upper and lower voltage limits of the node i.

(2) The tidal current constraint is shown in Eq. (5):

Pi + PDGi = PLi + Vi

n∑
i=1

Vj

(
Gijcosδij + Bijsinδij

)
Qi + QDGi = QLi + Vi

n∑
j=1

Vj

(
Gijsinδij − Bijcosδij

) (5)

PDGi is the distributed power access the active power of the node i; PLi is the active power of the
load in the node i; QDGi is the distributed power access node reactive power in the node i; QLi is the
reactive power of the load in the node i; Vi and Vj correspond to the voltage of the node i and node
j; Gij and Bij correspond to the real and imaginary parts of the conductance between the node i and
node j; and δij are the phase difference angle of the voltage between the node i and node j.

(3) The branch circuit capacity constraint is shown in Eq. (6):

P2
i + Q2

i � Sk. max (6)

Pi and Qi are the active and reactive power of the load at the branch i; Sk. max is the maximum value
of the accessible capacity on the branch.

(4) The power constraint of the Distributed Generation (DG) is expressed as Eq. (7):{
PDGmin < PDGi < PDGmax

QDGmin < QDGi < QDGmax

(7)

The variables PDGmin and PDGmax represent the minimum and maximum active power, respectively,
of the distributed generation (DG) connected to node i. Similarly, the variables QDGmin and QDGmax
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indicate the minimum and maximum reactive power, respectively, of the distributed generation (DG)
connected to node i.

(5) Network topology constraints

gk ∈ G (8)

In the reconstructed network structure, gk represents the network that satisfies the radial require-
ments, while G represents the collection of all such networks. During the reconstruction process, the
network structure must maintain a radial connected state, with the removal of loops and isolated
islands.

3 Algorithm of Reconfiguration
3.1 Particle Swarm Algorithm

Particle swarm algorithm as a heuristic intelligence algorithm is commonly applied to solve multi-
constrained optimization problems, and its main idea is to iterate through particles cooperating and
competing on the basis of mutual information sharing, and according to their respective velocities v.
The population as a whole searches in the solution space by referring to the position of the current
optimal particle, and the individual particles are updated using the individual optimal position and the
global optimal position in reference [10]. Each particle corresponds to a solution and an optimization
result. In one iteration, the particle completes the position and velocity update by Eqs. (9) and (10):

vk+1
i = ωvk

i + c1r1

(
Pk

best − xk
i

) + c2r2

(
Gk

best − xk
i

)
(9)

xk+1
i = xk

i + vk+1
i (10)

In the formula, w is the inertia parameter; c1 and c2 are the individual learning factor, group
learning factor, respectively; r1 and r2 is the uniformly distributed pseudo-random number in the
interval [0, 1]; xk

i is the position of the particle i which is at the moment of k; vk
i is the velocity of

the particle iwhich is at the moment of k, and Pk
best is the historical optimal position at the moment of

k for the particle i; Gk
best is the optimal position at the moment of k for all particles.

3.2 Dynamic Simulated Annealing Particle Swarm Algorithm
The simulated annealing algorithm is an algorithm proposed by Mitropolis’ research on the solid-

state annealing process, which requires setting an initial temperature according to the initial state of
the population in the initial stage of the iteration, and its optimization-seeking step is an iterative
process of alternating linear cooling and seeking new solutions. The core of this algorithm lies in the
Mitropolis criterion, which not only accepts the current optimal value in the solution process, but also
moves in the direction of the worse value with a certain probability, thus enhancing the ability to jump
out of the local optimal solution in the optimization search process [11,12]. Its expression is as follows:

pi (k) =
⎧⎨
⎩

1 ,

exp
(

−Ei (k) − Eg

Tk

) Ei (k) � Eg

, Ei (k) < Eg
(11)

T(k) =
{

E(Gbest)/ log(0.2),
T(k − 1)μ,

k = 1
k ≥ 1 (12)
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In the formula, Ei(k) denotes the ith particle’s internal energy at the kth iteration (the fitness of
the current particle); Eg denotes the internal energy of the current population optimum; Tk denotes
the current temperature of the kth iteration.

To address the problem that the particle swarm converges too fast in the early stage, the traversal
of the optimization space is not strong and thus it is easy to fall into the local optimum, and the search
accuracy is not high in the later stage. First, referring to the dynamic inertia weighting strategy in
reference [13]. The following improvements are made to the particle swarm algorithm:

c1 = c1 max − k (c1 max − c1 min)/kmax

c2 = c2 min − k (c2 min − c2 max)/kmax
(13)

c1 max, c1 min and c2 max, c2 min correspond to the maximum and minimum values of the individual
learning factor and the group learning factor, respectively. The parameters are set as c1 max = 2.50,
c1 min = 1.25, c2 max = 2.50, c2 min = 1.25. As the number of iterations increases, the individual learning
factor and the group learning factor decrease and increase respectively, which corresponds to the
gradual shift of the focus of the algorithm search from the overall traversal search to improving the
local refinement from the early to the late stage of the optimization search process.

Also introduce the nonlinear time-varying inertia weights with logistic mapping in reference [14],
the expressions are as follows:

r (k) =
{

r (0) = rand (0, 1) ,
r ( k) = 4r (k − 1) (1 − r (k − 1)) ,

k = 1
k > 1 (14)

w (t) = r (k) wmin + (wmax − wmin) k
Kmax

(15)

In the formula, r(0) �= {0, 0.25, 0.75, 1}; the r (t) is the random number generated by the iteration.
wmax = 0.9, and wmin = 0.4.

To improve the particle swarm algorithm, the Mitropolis criterion of the simulated annealing
algorithm is introduced into the update of particles as follows:

Step 1: Generate an initial population and set parameters, such as the maximum iteration count,
search space, and search speed limits.

Step 2: Randomly assign initial positions and velocities to each particle.

Step 3: Update the values of c1, c2, and w using Eqs. (13)–(15).

Step 4: Iterate through particles using Eqs. (9) and (10) to optimize and record their fitness and
the swarm’s best position.

Step 5: Update the temperature based on the current iteration count using Eqs. (11) and (12).
Compare the current particle’s internal energy with the swarm’s best particle’s internal energy to
determine whether to accept the current best solution.

Step 6: Identify non-dominated solutions and store them in the Pareto solution set.

Step 7: Update the Pareto optimal solution set and select the particle with the highest satisfaction
degree as the global best particle using fuzzy membership degrees.

Step 8: Check if the maximum iteration count has been reached. If so, output the current best
particle; otherwise, return to Step 3.

The flow chart of DSAPSO algorithm is shown in Fig. 1.
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Figure 1: Flow chart of DSAPSO algorithm

4 Experimental Setup
4.1 Parameter Setting

The effectiveness and efficiency of the proposed algorithm in this paper are evaluated through
MATLAB simulation using the IEEE 33-node system. Fig. 2 illustrates the topology diagram of the
IEEE 33-node system, comprising 32 closed sectionalizing switches and 5 open tie switches. The
specific system parameters are as follows: the base voltage is 12.66 kV, the active power load is
3.715 MW, the reactive power load is 2.3 Mvar, and the base capacity is defined as 10 MVA. In the
DSAPSO algorithm, the population size is set to 30, the maximum number of iterations is 50, and the
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individual learning factor and swarm learning factor have maximum values of 2.5 and minimum values
of 1.25, respectively. The cooling coefficient is set to 0.95, while the inertia weight w has maximum and
minimum values of 0.9 and 0.4, respectively.

Figure 2: Topology diagram of the IEEE 33-node system

4.2 Validation of Algorithm Effectiveness
To verify the effectiveness of the proposed improved algorithm in solving the problem of

minimizing network loss, distribution network reconfiguration (DNR) is performed in the IEEE 33-
node system. Two scenarios are considered: one with the integration of distributed generation (DG)
of the same type, and another with DGs of different types. Table 1 presents the parameters for DGs
integration, while Table 2 displays the results of the network reconfiguration. Fig. 3 illustrates the
convergence characteristics of different algorithms when DGs of the same type are integrated, while
Fig. 4 shows the node voltage distribution after the integration of multiple DGs.

Table 1: Distributed generation integration status

Integration scenario Index Integration location Specific parameters DG type

1 S5–S6 P = 200 kW λ = 0.9 PQ-type wind
distribute generation

Same type DGs 2 S15–S16 P =1000 kW λ = 0.9 PQ-type wind
distribute generation

3 S24–S37 P = 800 kW λ = 0.9 PQ-type wind
distribute generation

Mixed type DGs 1 S8–S9 P =100 kW I = 10 A PI-type photovoltaic
distribute generation

2 S25–S26 P = 200 kW λ = 0.9 PQ-type wind
distribute generation

3 S30–S31 P = 100 kW
U = 12.66 kV

PV-type fuel cell
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Table 2: Distribution grid restructuring results after integration of DG

Integration scenario Types of
algorithms

Result of switch
disconnection

Network power
loss/kW

Minimum node
voltage/p.u.

No DGs integration Initial state S33, S34, S35, S36, S37 202.52 0.9131

Same type DGs

Before DNR S33, S34, S35, S36, S37 109.62 0.9356
MPSO S7, S10, S12, S16, S28 96.88 0.9802
EP-PSO S7, S9, S14, S28, S32 92.46 0.9759
DSAPSO S7, S9, S14, S32, S37 89.43 0.9798

Mixed type DGs
Before DNR S33, S34, S35, S36, S37 169.29 0.9183
GA-QPSO S7, S9, S14, S31, S37 113.55 0.9337
DSAPSO S6, S10, S13, S16, S28 111.83 0.9407

Figure 3: The convergence characteristics curves of different algorithms

According to Table 2, when integrating the same type of distributed power generation, the
reconstructed and optimized system exhibits an increase in the minimum node voltage. The EP-
PSO algorithm proposed in reference [15] results in active power losses of 92.46 kW, while the
MPSO algorithm proposed in reference [16] yields 96.88 kW and the DSAPSO algorithm proposed
in this paper achieves 89.43 kW. Fig. 3 illustrates the convergence characteristics curves of the three
algorithms in the context of integrating the same type of distributed power generation. The algorithm
proposed in this paper converges after 12 iterations, whereas the MPSO algorithm in reference [16] and
the EP-PSO algorithm in reference [15] require 19 and 16 iterations, respectively. Given the complexity
of the solution space and computational workload in the integration of distributed power generation
into the distribution grid restructuring problem, there is a risk of encountering local optima during the
optimization process. The algorithm proposed in this paper enhances its ability to escape local optima
by restricting the movement direction of the population using the Metropolis Principle, resulting in
lower fitness values.
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Figure 4: Comparative analysis of convergence iterations for different algorithms over 30 runs

After running for 30 iterations, Fig. 4 depicts the comparison of iteration performance among
three algorithms. In this study, our proposed algorithm achieved lower iteration counts in 25 out of 30
runs compared to the other two particle swarm optimization (PSO) algorithms. Our algorithm had an
average iteration count of 15, whereas the other two algorithms had average iteration counts of 19 and
21. These results demonstrate a significant improvement of 21.05% and 28.57% in average convergence
iterations compared to the other PSO algorithms, attributed to the dynamic learning factor control
strategy used in our algorithm, consequently enabling faster convergence to the desired state.

Based on the data presented in Fig. 5, it is evident that integrating multiple types of DG units has
significantly improved the system’s overall voltage level. However, Table 2 reveals that despite these
improvements, the active power loss remains at 169.29 kW, indicating an insufficient enhancement.
Therefore, network reconfiguration is still necessary. By utilizing the GA-QPSO algorithm proposed
in Reference [17], the active power loss is reduced to 113.55 kW after reconfiguration, resulting in
a loss reduction rate of 32.92%. The lowest node voltage is measured at 0.9337 p.u. Implementing
the algorithm from this paper for reconfiguration leads to a decrease in network loss from 169.29
to 111.83 kW, with a loss reduction rate of 33.94%. The lowest node voltage measures 0.9407 p.u.
Consequently, the performance of the proposed algorithm is superior. Additionally, as depicted in
Fig. 5, both reconfiguration algorithms significantly enhance node voltage. Notably, the method
presented in this paper not only improves the lowest node voltage but also ensures a more uniform
voltage distribution throughout the system.
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Figure 5: Voltage profile for IEEE-33 system before and after DNR with multiple DG accessing

4.3 Verification of Algorithm Efficiency
The performance of the Dynamic Simulated Annealing Particle Swarm Optimization (DSAPSO)

algorithm in addressing the multi-objective reconfiguration problem of the distribution network,
considering the presence of various types of distributed generation sources, is verified. Four different
types of distributed generation sources are selected and integrated into the IEEE-33 node model based
on the parameters provided in reference [18]. The objective functions for the distribution network
reconfiguration aim to minimize active power loss and node voltage deviation. Table 3 presents the
parameters and characteristics of the integrated distributed generation sources. The reconfiguration
results are shown in Table 4, while the node voltage profiles are depicted in Fig. 6.

Table 3: Multiple DGs integration status

Index Integration location Specific parameters DG type

1 S4–S5 P = 200 kW PQ(V)-type wind distribute generation
2 S17–S36 P = 300 kW, I = 50 A PI-type photovoltaic distribute generation
3 S25–S26 P = 300 kW, V = 0.98 p.u. PV-type steam turbine
4 S30–S31 P = 100 kW, cosϕ = 0.9 PQ-type wind distribute generation

Table 4: Distribution grid restructuring results after integration of multiple DGs

Types of algorithms Result of switch disconnection Network power loss/kW Node voltage
deviation

Before DNR S33, S34, S35, S36, S37 112.52 1.6670
HDQPSO S7, S9, S14, S32, S28 96.88 1.1241
DSAPSO S9, S14, S16, S28, S33 92.46 0.7043
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Figure 6: Voltage profile for IEEE-33 system before and after DNR with multiple DG accessing

The results presented in Table 4 indicate that the system’s network losses have reduced to
64.39 kW, achieving a reduction of 42.77% compared to the original network. Furthermore, the overall
node voltage deviation has decreased from 1.6670 to 0.7043, representing a reduction of 57.7%. In
comparison to the HDQPSO algorithm’s results obtained in reference [18], the algorithm proposed
in this paper exhibits significant advantages in terms of network losses and node voltage deviation.
Additionally, Fig. 6 illustrates that the proposed algorithm for network restructuring effectively
improves the minimum node voltage from 0.9341 to 0.9680 p.u., enhancing not only the overall node
voltage level but also the uniformity of voltage distribution, resulting in improved voltage stability.

4.4 Verification of Algorithm Generality
To evaluate the DSAPSO algorithm’s effectiveness in addressing network restructuring issues in

distribution systems, simulations were performed using the IEEE 69-node system. The distribution
system, depicted in Fig. 7, comprises a total of 73 branches, including 5 tie lines, with a rated voltage
of 12.66 kV. The system’s active power load is 3802.2 kW, while the reactive power load is 2694.6 kVar.
Within the DSAPSO algorithm, the population size was set at 30, with a maximum iteration count
of 50. The individual and social learning factors were assigned maximum and minimum values of 2.5
and 1.25, respectively. Additionally, a cooling coefficient of 0.95 was employed, alongside an inertia
weight (w) range of 0.9 to 0.4. Table 5 provides a comprehensive overview of the network restructuring
outcomes, presenting relevant comparisons with similar findings from other scholarly sources.

Based on the data presented in Table 5, the implementation of the algorithm proposed in this
paper resulted in a significant reduction in the network losses of the system, decreasing from 224.14 to
99.75 kW. Furthermore, this algorithm effectively decreased the voltage deviation at the nodes from
2.872 to 1.948, and increased the lowest node voltage from 0.910 to 0.942. In contrast, in the study
referenced as reference [19], an improved harmony search algorithm was employed for the reconstruc-
tion of the IEEE-69 node system. A comparative analysis between these approaches demonstrates
the algorithm proposed in this paper’s successful optimization of the network restructuring problem
within the IEEE-69 node system. Therefore, it exhibits a high level of universality.
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Figure 7: Topology of IEEE-69 node network

Table 5: Results of the IEEE-69 node system reconfiguration

Types of
algorithms

Result of switch
disconnection

Network power
loss/kW

Node voltage
deviation

Minimum node
voltage/p.u.

Before DNR 69, 70, 71, 72, 73 224.14 2.872 0.910
Reference [19] 14, 58, 61, 69, 70 101.55 1.962 0.941
DSAPSO 14, 56, 61, 69, 70 99.75 1.948 0.942

5 Conclusions

This paper addresses the problem of distribution network restructuring considering the integration
of distributed energy resources. A combined optimization algorithm based on Simulated Annealing
(SA) and Particle Swarm Optimization (PSO) is proposed. To overcome the issue of PSO getting
stuck in local optima, the Metropolis criterion is introduced to allow particles to move towards poorer
solutions with a certain probability, thereby enhancing their ability to escape local optima during the
optimization process. Additionally, an improved dynamic learning factor is employed to enhance the
global convergence speed of the optimization.

Furthermore, inspired by Pareto principles, a fuzzy membership function is used to combine the
network losses and voltage deviations as objective functions. The results are then selected without
discrimination. The effectiveness, efficiency, and universality of the proposed DSAPSO algorithm are
validated through case studies conducted on the IEEE-33 and IEEE-69 distribution network systems.
The findings demonstrate that the DSAPSO algorithm can efficiently obtain the optimal network
topology in a shorter time, reducing network losses and improving overall node voltage levels.
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