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ABSTRACT

With increasing renewable energy utilization, the industry needs an accurate tool to select and size renewable
energy equipment and evaluate the corresponding renewable energy plans. This study aims to bring new insights
into sustainable and energy-efficient urban planning by developing a practical method for optimizing the produc-
tion of renewable energy and carbon emission in urban areas. First, we provide a detailed formulation to calculate
the renewable energy demand based on total energy demand. Second, we construct a dual-objective optimization
model that represents the life cycle cost and carbon emission of renewable energy systems, after which we apply the
differential evolution algorithm to solve the optimization result. Finally, we conduct a case study in Qingdao, China,
to demonstrate the effectiveness of this optimization model. Compared to the baseline design, the proposed model
reduced annual costs and annual carbon emissions by 14.39% and 72.65%, respectively. These results revealed that
dual-objective optimization is an effective method to optimize economic benefits and reduce carbon emissions.
Overall, this study will assist energy planners in evaluating the impacts of urban renewable energy projects on the
economy and carbon emissions during the planning stage.
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1 Introduction

Cities are responsible for 67% of the global primary energy consumption and generate roughly
80% of the worldwide greenhouse gas emissions [1,2]. However, cities only cover 4% of the global land
surface, and over 50% of the world population resides in urban areas; this percentage is projected
to reach 60% by 2030. The development of cities, especially in some developing countries undergoing
rapid urbanization, brings numerous risks such as social instability, inadequate infrastructure, increas-
ing energy consumption, and environmental degradation. Implementing sustainable urban planning
and development in compliance with eco-city requirements is a trusted method to alleviate the above-
mentioned risks and improve the living conditions of millions worldwide.
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As a decisive factor for developing eco-cities, renewable energy is becoming increasingly important
in urban construction. Unlike fossil fuels, renewable energy is sourced from natural sources or
processes that are continuously replenished, such as biomass, geothermal heat, hydropower, solar
energy, tidal energy, and wind energy. Based on the data from [3], the share of electricity produced
from renewable sources has continuously increased in recent decades; in 2020, around 29% of the
global electricity was generated from renewable sources. On a global scale, hydropower is by far the
most prominent renewable source, while wind and solar power have been proliferating in recent years.

There are various methods to calculate the share of primary energy generated from renewable
sources in eco-cities or sustainable cities. The main objective of this study is to introduce the general
calculation methods for total urban energy consumption and renewable energy utilization, while
providing a detailed breakdown of the capital, operational, and maintenance costs in the eco-cities or
sustainable cities of China. The calculations and analysis were carried out at Qingdao Sino-German
Eco-park (QSGE), Shandong Province, China. Subsequently, the differential evolution method was
used to optimize the allocation of renewable energy.

The research presented in this paper also aims to provide new insights into sustainable and energy-
efficient urban planning by developing a practical method for optimizing renewable energy and carbon
emission in urban areas during the planning stage. The significances of this study are as follows: First,
it reveals the complex impact of multiple variables in a district energy system. Second, it develops
a model for evaluating the costs and carbon emissions of the energy system. Finally, the real-world
simulation results help in formulating future development policies and strategies.

The rest of this paper is organized as follows. Section 2 reviews and summarizes the literature
related to energy-system carbon emissions. Section 3 introduces the schematic of renewable energy
optimization and the formulation of renewable energy utilization. Section 4 shows how the renewable
energy optimization (REO) models were constructed. Section 5 presents the results of the case study
that employs a realistic REO model at QSGE. Section 6 concludes the paper and presents the
renewable energy implications.

2 Literature Review

An increasing number of studies have elucidated energy consumption, energy policies, and
environment pollution while considering carbon emission and economic growth. For example,
Usman et al. have determined the role of nuclear and renewable energy in reducing carbon footprint [4];
revealed the influence of industrialization, total reserves, and the expansion of financial, renewable,
and natural resources on the ecological footprint data from 1990 to 2019 in newly industrialized
countries [5]; and ascertained the impact of economic uncertainty, economic growth, and energy
consumption on environmental degradation in Middle Eastern and North African countries [6].
Guo et al. [7] systematically evaluated the effects of smart city construction on energy saving and
CO2 emission reduction by using a progressive difference-in-differences method, and demonstrated
the impact of economic growth and energy consumption on environmental degradation using
dynamic ARDL (DYNARDL) simulations [8]. In addition, previous studies [9,10] have elucidated
the environmental migration effects of air pollution at a micro-level, and determined the influence of
water quality and land use based on greenhouse gas dynamics in an urbanized river system.

Renewable energy systems have garnered considerable attention recently since they can realize
environmental protection while generating low carbon emissions. Sun et al. [11] constructed a capacity
planning and optimization model to minimize the cost per unit power generated by utilizing wind and
photovoltaic power generation while taking into account environmental externalities. Hafez et al. [12]
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focused on the optimal planning, design, sizing, and operation of a hybrid renewable energy-based
microgrid to minimize the lifecycle costs and environmental emissions. Nam et al. [13] developed a
deep learning-based forecasting model for renewable energy scenarios by using the Korean energy
policy as a case study to guide sustainable energy policy. Zheng et al. [14] quantified the influence
of renewable energy generation on carbon emissions through a quantile regression model and path
analysis of inter-provincial panel data from 2008 to 2017 in China.

Since many of the optimization techniques used in district energy systems are in the operation
phase [15–17], the energy consumption, cost, environmental impacts, and optimization framework
have only been determined for the operation stage. However, the entire life cycle is rarely considered.

Multi-energy systems have the potential to reduce energy consumption, economic costs, and
carbon emissions. However, the environmental and economic advantages of these energy systems
are heavily dependent on their design, government policy, and operational strategy. Consequently,
methods and guidelines are needed for the optimal design and operation of such systems to fully
exploit their potential, while taking into account their life cycles [18].

This study focuses on the effectiveness of district renewable energy systems based on the economic
benefits and carbon emissions in the entire life cycle, analyzes the correlation characteristics between
energy consumption and carbon emissions, and provides a decision-making basis for China to
formulate urban low-carbon development policies.

3 Methodology
3.1 Schematic of Renewable Energy Optimization

The percentage of renewable energy was determined based on a series of standards and codes, such
as CASBEE for Urban Development (Institute for Building Environment and Energy Conservation
(IBEC), 2014) [19], BREEAM Communities (BREEAM, 2012) [20], and Assessment Standard for
Green Eco-District (MHURD, 2017) [21]. However, there is no single strategy for achieving the targets
associated with renewable energy systems at the urban level. In this study, an approach based on annual
cost (AC) and carbon emission was used to optimize the allocation of different renewable energy
systems at the planning stage; AC is the sum of the equivalent annual cost (EAC), operation cost, and
maintenance cost. Meanwhile, carbon emission refers to the number of greenhouse gases, specifically
carbon dioxide, emitted by a system during its entire life cycle, which includes the production,
transportation, installation, operation, and demolition of components. Fig. 1 illustrates a simplified
schematic of the renewable energy optimization configuration. Abbreviations and mathematical
symbols used in this paper as shown in Table 1.

• Step 1: Determine the renewable energy utilization rate based on local requirements. For
example, the California Renewables Portfolio Standard Program (Senate Bill 100) set a target
to achieve a renewable energy utilization rate of 50% and 60% by December 31, 2026, and
December 31, 2030, respectively [22].

• Step 2: Calculate the renewable energy demand based on total energy demand. All types of
energy sources, such as electricity, natural gas, HVAC, and domestic hot water, must be included.

• Step 3: Construct a dual-objective function model that represents the life cycle cost and carbon
emission of renewable energy systems, and use the differential evolution algorithm to solve the
optimization result.

• Step 4: According to the above-mentioned results, use the optimized proportions of different
renewable systems to calculate the minimum cost and carbon emission.



1468 EE, 2023, vol.120, no.6

Figure 1: Simplified schematic of the renewable energy optimization configuration, which involved
four steps

Table 1: Abbreviations and mathematical symbols used in the study

Nomenclature

Abbreviations
SHW solar hot water QSGE Qingdao Sino German Eco-park
SPG solar power generation AC annual cost
GSHP ground-source heat pump EAC equivalent annual cost
WPP wind power plant REO renewable energy optimization

Symbols

Qhw heat gain of the solar energy collection
system

Vm rated wind speed

η1 comprehensive conversion value CP wind energy utilization coefficient of
fan

H annual solar radiation at the horizontal
plane

ξ annual average effective utilization
hours of wind energy

Ahw total area of the solar system collector n number of periods
AEOPV annual energy output of solar power

generation
Cca capital costs for renewable energy

ε1 photoelectric conversion efficiency Com operation and maintenance costs for
renewable energy

Apv total area of solar photovoltaic panels CFtotal sum of the carbon emission
Qhp sum of heat and cold supply in winter

and summer
CEPro carbon emission of production

Qhe heat supply in winter CETra carbon emission of transportation

(Continued)
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Table 1 (continued)

Nomenclature

Symbols

Qre cold supply in summer CEIns carbon emission of installation
Khe annual operation electricity

consumption in winter
CEOpe carbon emission of operation

Kre annual operation electricity
consumption in summer

CEDeo carbon emission of demolition

AEOWP annual energy output of the wind
power plant

ζi unit cost

Pm rated output power Ai number of various types of renewable
utilization

n1 the number of wind turbine Khp operation electricity consumption both
in winter and summer

A rotor swept area C

‘

pri depreciation expense

ρ air density ζ

‘

original value of fixed assets and
equipment in the renewable energy
utilization system

3.2 Determining the Renewable Energy Utilization
The renewable energy sources discussed in this study include solar hot water (SHW), solar power

generation (SPG), ground-source heat pump (GSHP), and wind power plant (WPP). The primary
focus of the renewable energy utilization model is to determine the share of different renewable energy
since it governs the minimum cost and carbon emission.

SHW is a widely applied example of solar thermal utilization, and SHW systems are categorized
by their collector type, such as flat plate, vacuum tube, and heat pipe vacuum collectors. The heat gain
of the SHW system is calculated as follows:

Qhw = η1 · H · Ahw (1)

where Qhw is the heat gain of the solar energy collection system (MJ), Ahw is the total area of the
solar system collector (m2), H is the annual solar radiation at the horizontal plane (MJ), and η1 is
the conversion coefficient representing solar energy utilization. η1 is related to many factors, such as
the angle of solar collector, system heat loss rate, and solar elevation single, and is provided by the
equipment manufacturer.

SPG, which is one of the fastest-growing approaches to generating power, involves the conversion
of solar power into electricity through photovoltaics [23]. Although solar power has several appli-
cations, it has been used to generate electricity through photovoltaic cells in this study. The power
generated from the photovoltaic cells is calculated as follows:

AEOPV = ε1 · H · Apv (2)
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where AEOPV is the annual energy output for solar power generation (kWh), Apv is the total area of
solar photovoltaic panels (m2), and ε1 represents the photoelectric conversion efficiency. Similar to η1,
ε1 is a conversion coefficient whose value is provided by the manufacturer.

GSHP systems, which use rock and soil, groundwater, or surface water as low-temperature
heat sources, are reliable, cost-effective, safe, and environmental-friendly air-conditioning systems
composed of heat pump units, geothermal energy exchange systems, and building systems. The
coefficient of performance (COP) is a measurement of the efficiency of the ground-source heat system
[24]. For example, a heat pump with a COP of 3.0 can transfer three times the heat or cold energy into
the building when compared to its operational electricity consumption.

Meanwhile, Qhp is the annual conditioning energy generated by a GSHP system. It is the difference
between the supplied energy and the operational electricity consumption:

Qhp = (Qhe + Qre) − (Khe + Kre) (3)

The supplied energy includes the heat supply Qhe in winter and the cold supply Qre in summer, and
the operational electricity includes the GSHP electricity consumption in winter Khe and summer Kre.

With an increase in the number of WPPs, the variability in the net power generated by all the
systems increases [25]. Most US manufacturers rate their turbines using the amount of power a
turbine can safely produce at a particular wind speed. This speed typically ranges between 10.5 and
16 m/s. An estimate of the annual energy output from a wind turbine (kWh/year) is the best way to
determine whether a particular wind turbine and tower will produce enough electricity for a particular
application. To obtain a preliminary estimation of the annual energy output from a particular wind
turbine, the following formulas were used:

Pm = 0.5n · CP · A · ρ · V 3
m (4)

AEOWP = ξ · Pm (5)

where AEOWP is the annual energy output for wind power plants (kWh), Pm is the rated output power
in kW (i.e., installed capacity of a wind power plant), n is the number of wind turbines, A is the sweep
area of the rotor (m2), ρ is the air density (kg/m3), Vm is the rated wind speed (m/s), CP is the wind energy
utilization coefficient of the fan (i.e., the power factor), and ξ is the annual average time required in
hours for effective utilization of wind energy that gives the equivalent operation time after conversion
to rated power.

4 Optimization models
4.1 Model of Economic Benefits

Some energy decision tools fail to consider the interaction between multiple technologies even
though they can behave synergistically, and such interactions can be particularly complex and not easy
to understand [26–28]. A straightforward technique that can accurately model integrated technologies
is particularly relevant when evaluating renewable energy technologies. Therefore, this study proposes
the functions of an optimization model that can minimize the life cycle cost and carbon emissions at
a particular renewable energy utilization rate.
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The objective function that minimizes the life cycle cost of renewable energy equals the sum of
capital costs as well as the operation and maintenance costs. The smaller the value of AC, the better
the cost-effectiveness of the renewable energy system. EAC and AC are calculated as follows:

EAC = Cca · i (1 + i)n

(1 + i)n−1 (6)

AC = EAC + Com (7)

where Cca and Com are the capital costs and the operation and maintenance costs incurred for renewable
energy production, i is the discount rate, and n is the number of periods.

4.2 Carbon Emission Model
Based on the theory of life cycle assessment, Xiang analyzed the factors influencing carbon

emissions from residential buildings [29]. According to Ren et al., China’s carbon emissions in cities
exert significant spatial spillover effects and agglomerate areas with high emissions [30]. Researchers
have proposed several different relationships between urbanization, energy consumption, and carbon
emissions. A previous simulation study implied that the impact of additional emergency costs on the
profit difference between the mixed energy strategy and traditional energy strategy is mediated by
carbon emissions [31].

In this study, carbon emission only refers to the carbon emissions released by renewable energy
facilities in their entire life cycle. The total carbon emission from renewable energy facilities for their
entire life cycle is calculated as follows:

CFtoal = CEPro + CETra+CEIns + CEOpe + CEDem (8)

where CFtotal is the total carbon emission released by renewable energy facilitates, which is the sum of
the carbon emission generated during production (CEPro), transportation (CETra), installation (CEIns),
operation (CEOpe), and demolition (CEDem).

4.3 Dual-Objective Optimization Functions
Several countries have explored new energy policies to reduce their carbon emissions, such as

carbon tax, carbon trading, and renewable energy utilization. Pei et al. used Chinese provincial data
from 2005 to 2015 to explore the impacts of corruption and energy efficiency on industrial carbon
emissions [32]. Yu and Tan were inspired by the definition of potential energy and formulated a
new concept named potential carbon. They concluded that potential carbon analysis could assist the
decision-making process related to energy source planning and meet energy demands within carbon
emission constraints [33]. Renugadevi et al. built an objective function to maximize green energy usage
while reducing operating costs and carbon emissions [34]. Kneifel studied the life cycle carbon emission
characteristics and the cost analysis of energy efficiency measures in new commercial buildings, which
not only saved money and energy but also reduced buildings’ carbon footprint by 16% on average [35].

With rational energy planning and scientific guidance, it is possible to effectively reduce carbon
emissions and energy costs associated with renewable energy utilization. However, in the present study,
it is insufficient to use a method that allocates different renewable energy resources while considering
life cycle carbon emissions and cost. Hence, a dual-objective optimization function that minimizes
both AC and CFtoal was proposed:

Minf1 (x) = MinAC = Min
(

Cca · i (1 + i)n

(1 + i)n−1 + Com

)
(9)
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Minf2 (x) = MinCFtotal = Min
(
CEPro + CETra+CEIns + CEOpe + CEDem

)
(10)

5 Case Study: Qingdao Sino German Eco-park
5.1 Description of the Project

To verify the above-mentioned model, QSGE was selected as the study area for testing the
consistency of renewable energy utilization and dual-objective optimization function. Subsequently,
some critical aspects were investigated as well.

The eco-park has an area of 11.6 km2 that faces South Korea, Japan, and North Korea across
the sea, with a planned floor area of 7.5 million m2. The land has been divided to serve different
purposes, including residential, commercial, industrial, and municipal applications; Fig. 2 shows the
zoning plan. Furthermore, QSGE won the Global Model of Green Building Industrial Park award
in 2018 and met most requirements for renewable energy applications. Fig. 3 shows the number and
proportion of different land use types in QSGE.

Figure 2: Zoning plan of Qingdao Sino-German Eco-park

Figure 3: Number and proportion of land use types

5.2 Load and Energy Consumption
To generate renewable and clean energy in the QSGE, a widespread energy net has been designed

that comprises a centralized system connected with different independent systems. This design
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optimizes the system for production, storage, and transport of energy, while allowing the application,
regeneration, and allocation of various energy resources.

Fig. 4 shows the proposed energy flow diagram of QSGE [36]. The energy supply-side of QSGE
includes natural gas, state grid power, and renewable energy, and equals 326,072.78 MWh according
to the conservation principle of mass and heat. The energy use-side includes all the building types
shown in Fig. 4. Meanwhile, loads associated with heating, cooling, domestic hot water, electricity,
and natural gas have also been considered.

Figure 4: Energy flow diagram of QSGE

5.3 Natural Resources and Calculation of Renewable Energy
5.3.1 Natural Resources

The data on local natural resources have been sourced from a software called WheatA wherein
the closest available test point is the Qingdao meteorological station (coordinates: 36°04′12.5′′N
120°19′16′′E). This station exhibits annual solar radiation of 4636.69 MJ/m2 and an annual average
wind speed of 3.55 m/s. Figs. 5 and 6 show the average monthly solar radiation and average monthly
wind speed from 2011–2020, respectively. For a geothermal heat pump, sand and stone must be a part
of the geology. At this site, weathered granite is found at 0–30 meters, sand and stone with a thermal
conductivity coefficient of 1.464 W/m are found at 30–120 m, and the average specific heat capacity is
1.847 × 103 KJ/m3. Therefore, QSGP is ideal for renewable energy utilization.
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Figure 5: Average monthly solar radiation from 2011–2020

Figure 6: Average monthly wind speed from 2011–2020

5.3.2 Calculation of Renewable Energy

Renewable energy is designed to account for 15% of the total energy consumption in the QSGE.
Fig. 4 shows that the total energy consumption of the project is 326,072.78 MWh, and the utilization
of renewable energy is 48,910.92 MWh (176 million MJ). Renewable energy is mainly sourced from
solar energy utilization, wind power generation, and the GSHP system.

Solar energy utilization includes SHW and SPG. According to Section 4.3.1, total solar radiation
H = 4636.69 MJ/m2·a. Since the solar energy collected throughout the year cannot be used up com-
pletely, the effective utilization coefficient is set at η1 = 0.80 and the photoelectric conversion efficiency
is ε1 = 0.15. By adding these values in Eqs. (1) and (2), Qhw is calculated to be 3709.35 Ahw MJ/y and
AEOPV is 695.50 Apv MJ/y.

According to Chinese conventions, this region is a ‘cold area’. The heating load in winter is
181.48 MJ/m2, and the cooling load in summer is 136.55 MJ/m2. The GSHP provides cooling or heating
to the floor area (Abu); the cumulative heating load of this system is Qhe = 181.48 Abu MJ/y, while the
cumulative cooling load is Qre = 136.55 Abu MJ/y.

Based on Eq. (5), the annual energy output of WPPs is AEOWP. According to the statistical data
on wind power generation in China, ξ is 2095 h; hence, AEOWP is 2095 Pm kWh/y, which can be written
as 7542 Pm MJ/yr.
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5.4 Economic Benefits and Carbon Emissions
The optimization model provides an optimal solution that offers economic benefits and reduces

carbon emissions. To validate the applicability of the model, it is applied to QSGE and the results
obtained are satisfactory.

5.4.1 Calculation of Economic Benefits

Economic benefits analysis methods have been used to evaluate the AC and EAC of this project.
The EAC includes capital costs as well as annual operation and maintenance costs for various types
of renewable energy. The capital costs are estimated using the unit area cost as follows:

Cca =
4∑

i=1

Cca_i =
4∑

i=1

ζi · Ai (11)

where ζi and Ai represent the unit costs and areas associated with different renewable energy sources,
respectively.

According to the cost analysis of the renewable energy system construction in China, the capital
required for constructing the unit area of SHW, SPG, GSHP, and WPPs is ζ1 = $142/m2, ζ2 = $171/m2,
ζ3 = $71/m2, and ζ4 = $913/kW, respectively. Therefore, the total capital cost for utilizing different
renewable energy sources is as follows:

Cca = 142Ahw + 128Apv + 71Ahp + 913Pm (12)

Operation and maintenance costs are necessary and incurred by the recipient for maintaining and
operating a system; these include electricity expenses, maintenance costs, and depreciation expenses for
different renewable energy systems. For SHW, SPG, and WPPs, operation electricity costs are excluded,
and the annual maintenance cost is calculated as 1% of the initial investment. For GSHP, the annual
maintenance cost is calculated as 2.5% of the initial investment, and the operation electricity cost Cpri

is calculated according to Eq. (13).

Cpri = Khp · ζpri =
(

Qhe · 1
3.6

· 1
COPhe

+ Qre · 1
3.6

· 1
COPre

)
· ζpri (13)

where Khp is the electricity consumption of GSHP in winter and summer. Generally, the average heating
COPhe is 3.5 in winter, and the average cooling COPre is 4.5 in summer. The price of electricity ζpri is
$0.0857 per kWh. Qhe and Qre have been introduced in Section 4.3.2. Based on the above information,
the operation cost of GSHP is Cpri = 1.96Abu.

Depreciation expense refers to the cost of purchasing a fixed asset that has undergone depreciation
over time. This cost is added in the overall expense and calculated as follows:

C ′
pri = 1 − 0.04

n
· ζ ′ (14)

where C ′
pri is the depreciation expense; ζ ′ is the original value of fixed assets and equipment in a

renewable energy system, which usually equals 50% of the initial investment; and n is the time for
which depreciation occurs, which is usually 20 y for renewable energy utilization systems in China.

The operation and maintenance costs are shown in Table 2.



1476 EE, 2023, vol.120, no.6

Table 2: Operation and maintenance costs for various renewable energy utilization systems

Renewable energy source Electricity
charge

Maintenance
cost

Depreciation
expense

Annual total
cost

Solar hot water 0 1.42Ahw 3.4Ahw 4.82Ahw

Solar power generation 0 1.71Apv 4.1Apv 5.81Apv

Ground-source heat pump 1.96Ahp 1.78Ahp 1.7Ahp 3.48Ahp

Wind power plants 0 9.13Pm 21.9Pm 31.03Pm

Com = 4.82Ahw + 5.81Apv + 3.48Ahp + 31.03Pm

According to Eqs. (6), (7), and (12), the discount rate i is 10% and n is 20. Consequently, the
following formulae are obtained:

EAC = 16.68Ahw + 15Apv + 8.34Ahp + 107.24Pm (15)

AC = 21.5Ahw + 20.84Apv + 11.82Ahp + 138.28Pm (16)

5.4.2 Calculation of Carbon Emission

The carbon emissions generated during the entire life cycle of renewable energy systems refer to
emissions produced during the production, transportation, installation, operation, and demolition of
components. The proposed model was designed keeping in mind the overall carbon emission. Carbon
intensities and total average annual carbon emissions for SHW, SPG, GSHP, and WPPs are shown in
Table 3.

Table 3: Average annual carbon emissions generated during the entire life cycle of renewable energy
utilization systems

Type Carbon intensity [37] Total average annual carbon emissions

Solar hot water 12.05 CO2/kWh 12.05Ahw Kg CO2

Solar power generation 20 g CO2/kWh 3.86Apv Kg CO2

Ground-source heat pump 56.11 kg/m2 56.11Ahp Kg CO2

Wind power plants 11 g CO2/kWh 23.05Pm Kg CO2

From Eq. (8), CFtotal = 12.05Ahw + 3.86Apv + 56.11Ahp + 23.05Pm.

5.4.3 Optimization and Constraints

The objective functions of the optimization model are used to minimize both AC and CFtotal:

Minf1 (x) = MinAC = Min
(
21.5Ahw + 20.84Apv + 11.82Ahp + 138.27Pm

)
(17)

Minf2 (x) = MinCFtotal = Min
(
12.05Ahw + 3.86Apv + 56.11Ahp + 23.05Pm

)
(18)
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Energy conservation is calculated to be 176 million MJ by using the following formula: Qhw +
AEOPV + Qhe + Qre + AEOWP. That is, 3709.35Ahw MJ + 695.50Apv MJ + 318.03Ahp MJ + 7542Pm MJ
= 176 million MJ.

The following boundary constraints were applied to the QSGE:

0 m2 ≤ Ahw ≤ 9600 m2

0 m2 ≤ Apv ≤ 321993 m2

0 m2 ≤ Ahp ≤ 1758748 m2

0 kW ≤ Pm ≤ 18000 kW

5.5 Solution Method of Dual-Objective Function and Optimization
5.5.1 Solution Method of Dual-Objective Function

The differential evolution algorithm [38,39] has been used previously to solve the dual-objective
functions Min f 1(x) and Min f 2(x). In general, this algorithm is mainly used to solve global
optimization problems with continuous variables.

Fig. 7 shows the flow chart of the differential evolution algorithm. First, a population is randomly
generated, and a difference vector of two individuals is randomly selected from the population as the
random change source of the third individual. Second, the difference vector of the third individual is
weighed and added according to certain rules to generate a mutation individual; this entire process is
called mutation.

Figure 7: Flow chart depicting the differential evolution algorithm

Third, the mutation individuals and a predetermined target individual are mixed to generate test
individuals; this process is called crossover. Finally, if the fitness value of the test individual is better
than that of the target individual, the test individual will replace the target individual in the next
generation; otherwise, the target individual will be preserved. This process is called selection.

In the evolution process of each generation, each vector is regarded as the target individual once.
Through continuous iterative calculations, the algorithm keeps the good individuals, eliminates the
bad ones, and guides the search process to obtain a globally optimal solution.
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By using the Geatpy package in Python, differential evolution is used to solve this problem, and
the main results are as follows:

(1) The independent variables converge to the same value when objective functions f 1 (x) and
f 2 (x) reach their minimum values; that is, Ahw converges to 9600 m2, Apv converges to 6663 m2, Ahp

converges to 0 m2, and Pm converges to 18,000 kW.

(2) The minimum value of f 1 (x) and f 2 (x) is $2,834,117 and 556,299 kg CO2, respectively, as
shown in Figs. 8 and 9.

Figure 8: Solution graph of f 1 (x) obtained using the differential evolution algorithm

Figure 9: Solution graph of f 2 (x) obtained using the differential evolution algorithm

5.5.2 Comparative Analysis of Optimization

The energy consumption and renewable energy demand for the urbanization of the study area
are presented in Section 4.2. The baseline model used in this case was prepared by the urban planner
during the design stage. The baseline model contains the types and percentages of each renewable
energy source. The comparison and analysis results of the baseline and optimized models are shown
in Table 4.
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Table 4: Comparative analysis of different renewable energy sources in the baseline and optimized
models

Type of renewable
energy

Share of renewable
energy

Annual energy
supply, MJ

Annual cost,
USD

Annual carbon
emission, kg
CO2

Baseline renewable energy planning configuration

Solar hot water 11.56% 20,353,741.5 117,973.62 66,120.10
Solar power
generation

8.84% 15,564,625.85 466,379.30 86,383.11

Ground-source
heat pump

4.76% 8,380,952.381 311,489.03 1,478,650.56

Wind power plants 74.84% 131,700,680.3 2,414,512.47 402,506.06
Total 100% 176,000,000.00 3310354.42 2,033,659.83

Optimized renewable energy planning and allocation

Solar hot water 20.23% 3,5609,760.00 206,400 115,680
Solar power
generation

2.63% 4,634,240.00 138,856.92 25,719.18

Ground-source
heat pump

0.00% 0.00 0.00 0.00

Wind power plants 77.13% 135,756,000.00 2,488,860 414,900
Total 100.00% 176,000,000.00 2,834,116.92 556,299.2

Fig. 10 shows the share of renewable energy in the baseline and optimized models. For both
models, the largest share of renewable energy is produced by WPPs (74.83% and 77.13% for the baseline
and optimized models, respectively). The proportion of SHW increased significantly after optimization
(from 11.56% to 20.23%). Meanwhile, the proportions of SPG and GSHP systems were reduced (from
8.84% to 2.63% and from 4.76% to 0%, respectively).

Figure 10: Proportions of different renewable energy sources in the baseline and optimized models
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Fig. 11 shows the amount of energy generated by each renewable energy source. Fig. 12 compares
the results of different renewable energy variables. The total area of the SHW collector Ahw was
increased from 5487.15 to 9600 m2, the total area of solar photovoltaic panels Apv was reduced from
22,379.05 to 6663 m2, the floor area of GSHP Abu was reduced from 26,352.71 to 0 m2, and the installed
capacity of WPPs Pm was increased from 17,462.3 to 18,000 kW.

Figure 11: Amount of energy supplied by different renewable energy sources

Figure 12: Comparison of different renewable energy variables

Figs. 13 and 14 compare the ACs and annual carbon emissions before and after optimization.
After optimization, AC was reduced by 14.39% (from $3310,354.42 to $2834,116.92) and the annual
carbon emission was reduced by 72.65% (from 2,033,659.83 to 556,299.18 kg).

Figure 13: Comparison of annual costs associated with the baseline and optimized models
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Figure 14: Comparison of annual carbon emissions associated with the baseline and optimized models

6 Conclusions

In the context of climate change and increasingly severe ecological problems, district energy sys-
tems with high carbon emissions are unsustainable. This study proposes a novel method that considers
costs and carbon emissions to optimize the energy system, select and size renewable energy equipment,
and evaluate corresponding renewable energy plans with high flexibility. This proposed model is
predicted to play an important role in promoting low-carbon sustainable development in China and
other countries in the world. Accordingly, the following conclusions have been established:

• This study elucidates the method used to optimize a design and dispatch model, which
minimizes the life cycle costs and carbon emissions of renewable energy systems at a given
renewable energy utilization rate. The study findings can be used to reduce the carbon emissions
in urban areas and facilitate China’s low-carbon policy.

• This study also reveals the effect of SPG, SHW, GSHP, and WPPs on the carbon emissions of
district energy systems, which are mainly influenced by indicators such as energy consumption,
building area, energy costs, and emission factors.

• A case study was conducted in Qingdao, China, to demonstrate the impact of the proposed
optimization model. Compared to the baseline model, AC was reduced by 14.39%, and annual
carbon emission was reduced by 72.65%. These results prove that dual-objective optimization
is an effective method to optimize economic benefits and reduce carbon emissions. This study
will assist policy makers in Qingdao to introduce renewable energy-related policies, including
those that increase photovoltaic power generation and promote solar hot water applications.

However, this study has some limitations, which we hope to address in the future. For example,
the impact of optimizing carbon emissions generated by renewable energy systems on other pollutants
such as SO2, NOx, and PM2.5 has not been discussed, and the effect of demolishing and restoring
existing traditional district energy systems on costs and carbon emissions is not conveyed.
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