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ABSTRACT

An operating condition recognition approach of wind turbine spindle is proposed based on supervisory control
and data acquisition (SCADA) normal data drive. Firstly, the SCADA raw data of wind turbine under full working
conditions are cleaned and feature extracted. Then the spindle speed is employed as the output parameter, and the
single and combined normal behavior model of the wind turbine spindle is constructed sequentially with the pre-
processed data, with the evaluation indexes selected as the optimal model. Finally, calculating the spindle operation
status index according to the sliding window principle, ascertaining the threshold value for identifying the abnormal
spindle operation status by the hypothesis of small probability event, analyzing the 2.5 MW wind turbine SCADA
data from a domestic wind field as a sample, The results show that the fault warning time of the early warning model
is 5.7 h ahead of the actual fault occurrence time, as well as the identification and early warning of abnormal wind
turbine spindle operation without abnormal data or a priori knowledge of related faults.
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Nomenclature

SCADA Supervisory Control and Data Acquisition
PCA Principal Component Analysis
ELM Extreme Learning Machine
SVR Support Vector Machine Regression

1 Introduction

In recent years, the rapid expansion of wind power has assumed an increasingly prominent
position in the energy structure industry [1]. As a typical mechatronic product, the reliability of wind
turbine is particularly essential during the operation due to its function and structure increasing in
complexity with the continuously increasing unit capacity [2,3]. Direct drive wind turbines greatly
reduce the operation and maintenance costs of wind turbines by omitting the gearbox, meanwhile,
the reliability of the spindle draws numerous scholars’ attention, As a critical component inside wind
turbine, the spindle not only carries various loads on the wheel hub, but also transmits torque to
the rotor, which has an influential effect on the cumulative reliability of wind turbine. Therefore,
the operation state recognition and early warning of the spindle can effectively reduce the operation
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and maintenance cost and downtime of the wind turbine, which is of vital significance to the stable
operation of the wind turbine.

The approaches of wind turbine operational condition monitoring include vibration signal
monitoring [4], electrical signal monitoring [5] and SCADA data monitoring [6]. In terms of vibration
signal monitoring, reference [7] represented the vibration signal by multi-scale dictionary method
to effectively extract the vibration signal for condition monitoring of wind turbine drive train.
Reference [8] proposed a fault diagnosis strategy with excellent noise immunity through convolutional
neural network combined with random forest. As for electrical signal monitoring, reference [9]
developed an electromechanical model of a wind turbine with an integrated drive train fault model
based on electrical signals. Reference [10] employed a synchronous resampling algorithm to process
the non-stationary current signals for quantitative assessment of the wind turbine health status.
While the above researches require the installation of a large number of sensors for signal acquisition,
the failure of sensors not only reduces the reliability of the collected data, but also increases the
additional operation and maintenance costs. In addition, the electrical signal acquisition of failure data
information is usually weak, which generates significant inaccuracies in monitoring results. In recent
years, the wind turbine monitoring driven by SCADA data has gradually emerged as a research hotspot
in the field of wind turbines [11]. Reference [12] constructed a data-driven deep convolutional neural
network modeling framework for condition monitoring and performance prediction of wind turbines.
Reference [13] adopted support vector machine to train a fault classifier for early fault detection
and classification of bearings. Reference [14] employed LightGBM method to construct wind turbine
condition monitoring and fault recognition model by adding condition labels based on SCADA data.
Since the above researches require tagging a large amount of historical failure data, which is tedious
and time-consuming, and the SCADA system of in-service wind turbines exports few failure data,
which is difficult to be promoted and utilized in realistic monitoring of key wind turbine components.

Therefore, this work proposes a research method of wind turbine spindle operation status
recognition and early warning driven by SCADA data, which features status identification based
entirely on normally operating SCADA data without using any failure data. With the analysis of the
SCADA data from a domestic 2.5 MW direct drive wind turbine, the spindle speed is selected as the
output parameter for spindle operation status recognition, which focuses on extracting the relevant
feature parameters of spindle speed and establishing the prediction model to implement the spindle
operation status recognition and failure warning. In this work, Section 2 describes the SCADA data
and completes the related data pre-processing work, as well as establishes the spindle speed prediction
model. In Section 3, on the basis of interval estimation theory, the operating state index is applied
to determine the abnormal state threshold of wind turbine spindle operation, whereby the operating
status of wind turbine spindle is identified. In Section 4, this approach is employed in the recognition
and early warning analysis of the operating state of a 2.5 MW wind turbine main shaft in a domestic
wind farm. Section 5, summarizes the relevant conclusions obtained from this work.

2 SCADA Data Preprocessing
2.1 Data Cleaning

With a domestic wind field F24 wind turbine as the research object, and the total 54607 sets of
data from 0:00 on July 01, 2018 to 0:00 on July 01, 2019 selected as the original research data. The
SCADA original research data format is shown in Table 1.
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Table 1: Examples of original data in SCADA system

No. Time Power/(Kw) Wind speed/
(m·s−1)

Spindle speed/
(r·min−1)

Air temperature/(°C) . . .

1 00:00 1257 8.4083 14.7507 25.6158 . . .

2 00:10 1335.63 8.4203 14.7547 25.4162 . . .

3 00:20 1199.71 8.1536 14.7294 25.4131 . . .

. . . . . . . . . . . . . . . . . . . . .

In accordance with the wind speed-power characteristic curve and the distribution characteristics
of abnormal data, QM-DBSCAN method is utilized to exclude the abnormal data induced by extreme
weather, component failure, wind curtailment. QM-DBSCAN is a methodology for identifying and
cleaning wind speed-power data. It combines the quartile method (QM) and the density-based spatial
clustering of applications with noise (DBSCAN) to carry out the differentiated cleaning of abnormal
data according to the category and characteristics of wind speed-power data clusters. The cleaning
effect is shown in Fig. 1.

Figure 1: The wind speed-power scatter after data cleaning by the QM-DBSCAN method

As shown in Fig. 1, “•” indicates normal data and “×” represents abnormal data, where the
abnormal data of type A is caused by wind abandonment and power limitation, which is manifested
as one or more clusters of data parallel to the horizontal axis in the middle of the wind speed-power
curve. The anomalous data of type B is generated by extreme weather and unit component failure,
showing irregularly scattered points around the wind speed-power curve. By excluding 12,306 sets of
abnormal data by this method, the remaining normal data total 42,301 sets.

2.2 Data Normalization
SCADA system captures operating data for 10 min, which mainly comprises monitoring param-

eters of wind speed, output power and spindle speed, and these parameters have different dimensions
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and dimensional units. For eliminating the influence of dimensions between parameters, it is necessary
to normalize the monitoring data after cleaning. The formula is as follows:

x∗ = (xi − x)

/⎛
⎝

√√√√1
n

n∑
i=1

(xi − x)
2

⎞
⎠ (1)

In Eq. (1), xi denotes the i-th data in SCADA data, x is the average of SCADA data, and x∗

indicates the normalized data. The normalized data pattern is listed in Table 2.

Table 2: Normalization of SCADA data

No. Time Power Wind speed Spindle speed Air temperature . . .

1 00:00 0.5028 0.5334 0.7974 0.7585 . . .

2 00:10 0.5342 0.5346 0.7979 0.7522 . . .

3 00:20 0.4799 0.5083 0.7950 0.7521 . . .

. . . . . . . . . . . . . . . . . . . . .

2.3 Extraction of Features
Aiming at the characteristics of large volume, high dimensions and strong redundancy of the data

collected by wind turbine SCADA system, the feature extraction of the normalized SCADA data
is carried out to eliminate irrelevant parameters, proposing a feature selection approach combining
Spearman correlation coefficient and Principal Component Analysis (PCA). The spindle speed
indicates the operating state of the spindle, hence the spindle speed is adopted as the output parameter
to extract the operating parameters related to the spindle speed, where the Spearman correlation
coefficient is as follows:

r =
∑n

i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)
2 ∑n

i=1 (yi − y)
2

(2)

In Eq. (2), xi denotes the i-th operating parameters data in SCADA data, and x is the average
value of the operating parameters in SCADA data. yi denotes the data of the i-th spindle speed in
SCADA data, while x is the spindle average in SCADA data.

Since the operating parameters have a varying influence on the spindle speed, the correlation
coefficient between the output parameter spindle speed and the remaining 49 monitoring parameters
are calculated by using the method of Spearman correlation coefficient, and the monitoring parame-
ters with correlation coefficients above 0.6 with spindle speed are selected as the initial characteristic
parameters, the ranking results are summarized in Table 3.

Table 3: Spearman correlation coefficient

Feature name Correlation coefficient Feature name Correlation
coefficient

Wind speed 0.8784 Generator stator
V-phase temperature

0.7325

(Continued)
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Table 3 (continued)

Feature name Correlation coefficient Feature name Correlation
coefficient

Maximum wind speed 0.8497 Generator stator
U-phase temperature

0.6983

Maximum power 0.8208 Maximum vibration 2B 0.6676
Maximum power
factor . . .

0.8005 Maximum vibration 1A 0.6653

Minimum power 0.7861 Minimum power 0.6605
Minimum wind speed 0.7513 Maximum vibration

SSD
0.6463

Minimum power factor 0.7501

PCA is available within the feature extraction to retrieve further new variables that reflect the
original information of all variables and to eliminate redundant information among monitoring data
to enhance the prediction accuracy of the model. The feature value, contribution rate and cumulative
contribution rate corresponding to each principal component as shown in Table 4, where the feature
value refers to the variance of the principal component, and the contribution rate represents the
percentage of the original information preserved after the dimension reduction of the primary variable,
while the larger of the contribution rate indicates that more original variable information is preserved,
whereas the cumulative contribution rate is the sum of the cumulative contribution rate. With the
inclusion of 7 principal components, the cumulative contribution rate reached more than 98%, which
indicates that the new variables covered over 98% of the information of the original variables, thus
transforming the original 13 variables into linearly uncorrelated 7 new variables as the final input of
the prediction model.

Table 4: Results of principal component analysis

No. Feature value Contribution rate (%) Cumulative contribution rate (%)

Comp.1 1.4830 71.0989 71.0989
Comp.2 0.7138 16.4691 87.5680
Comp.3 0.4158 5.5900 93.1581
Comp.4 0.2357 1.7959 94.9540
Comp.5 0.2117 1.4490 96.4029
Comp.6 0.1753 0.9939 97.3969
Comp.7 0.1572 0.7985 98.1953

3 Construction of Prediction Model
3.1 Single Prediction Model

Extreme Learning Machine (ELM) is a novel single-hidden-layer feed-forward neural network
learning algorithm [15], which can accomplish the classification and regression of multiple complex
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tasks by setting fewer grid parameters in training process ELM network consists of input layer, hidden
layer and output layer. Its network topology is shown in Fig. 2.
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Figure 2: Topology of ELM network

The output function of the hidden layer is defined as follows:

fl (x) =
l∑

i=1

βihi (x) = h (x) β (3)

where x is the input to the neural network, β = [β1, . . . ,βl]T is the output weight between the hidden
layer of l nodes and m ≥ 1 output nodes, and h (x) = [h1 (x) , · · · , hl (x)] is denoted as the feature
mapping or activation function, which serves to map the data in the input layer from the original
space to the ELM feature space.

hi (x) = G (ai, bi, x) (4)

where ai and bi are the parameters of the feature mapping.

Support Vector Machine (SVM) is a machine learning method with supervision features that solve
classification and regression problems [16], In this work, Support Vector Machine Regression (SVR)
is employed to construct a loss function between the sample labels and the model prediction values to
minimize the loss function and determine the wind turbine spindle speed prediction model.

The SVR learning objective is to find the optimal hyperplane closest to all points at a given interval,
y = wTx + b, and its objective function and constraints are

min
w,b,ξ ,ξ∗

1
2

wTw + C
l∑

i=1

ξi + C
l∑

i=1

ξ ∗
i

s.t. wTφ (xi) + b − yi ≤ ε + ξi

yi − wTφ (xi) − b ≤ ε + ξi

ξiξ
∗
i ≥ 0, i = 1, 2, · · · , l

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

where w and b are the weight coefficients and bias coefficients for learning the optimal hyperplane,
respectively, C is the penalty factor, ξi and ξ ∗

i are the introduced slack variables, and ε is the given
interval.
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Elman neural network is a recurrent neural network with local memory units and local feedback
connections, which has more capability to deal with dynamically changing data [17], wherein the
undertake layer is a specific hidden layer, which receives feedback signals from the hidden layer and
then passes forward to the hidden layer through the output of neurons in this layer, completing the
local feedback connection and equipping the network with a memory so that the system has the ability
to make predictions on time series data, the structure of Elman neural network is shown in Fig. 3.
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Figure 3: Structure of Elman neural network

At time t the outputs H(t), C(t), and O(t) of the hidden, takeover, and output layers, as follows:

H (t) =f [ω1C (t) + ω2I (t − 1)] (6)

C (t)=H (t − 1) (7)

O (t) =g [ω3H (t)] (8)

in which I (t − 1) represents the input of the input layer at time t − 1 ω1, ω2 and ω3 are weights of
the take-up layer, input layer and hidden layer, respectively, whereas f (·) and g (·) indicate the transfer
functions of the neurons in the hidden layer and output layer.

3.2 Combined Prediction Models
Combined prediction models can effectively minimize the effectiveness of the random factors of

the singular prediction models, comprehensive the singular prediction models to further improving the
accuracy of prediction, Assuming that a prediction problem has n single prediction models, suppose
A indicates the predicted value of the combination model consisting of j single prediction models at
the i-th point (where, i = 1, 2, . . . , n; j = 1, 2, . . . , m), the entropy value method [18] is implemented
to construct the combination prediction model, as follows:

(1) Solving the relative error eij between the predicted and monitored values of the j-th prediction
model.

eij = ∣∣(yi − ŷij

)
/yi

∣∣ (9)

(2) Determining the weight of the relative error pij between the predicted and monitored values of
the j-th predictive model.

pij = eij

/∑m

j=1
eij (10)
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(3) Calculating the entropy value of the relative error gj between the predicted and monitored
values of the j-th prediction model.

gj = − 1
ln n

∑n

i=1
pij ln pij (11)

(4) Solving for the weights of each single prediction model wj.

wj = gj

/∑m

j=1
gj (12)

3.3 Selection of Prediction Model Parameters
A total of 42301 sets of normal SCADA data with seven characteristic parameters obtained after

data preprocessing as the input parameters of each prediction model carried out the construction work
of wind turbine spindle speed prediction models, by loading elmNNRcpp, E1071, RSNNS through R
language platform to construct ELM, SVR, and Elman prediction models. The specific step-by-step
flow of each model establishment as shown in Fig. 4.

Start

Data pre-
processing

Building the 
model

Model 
Prediction

Load elmNNRcpp , E1071, 
RSNNS packages

Load data

Divide into training set and 
test set by 10:1 ratio

Set the initial value range of 
each model parameter

Select MAPE , RMSE , MAE
as evaluation indexes

Select the minimum evaluation 
index as the optimal parameters 

of the model

Platform R

End

Figure 4: Process of prediction model construction

The optimal parameters of each model trained by the training set data are shown in Table 5.

After determining the optimal parameters of each model, the ELM, SVR, and Elman prediction
model weights in the combined model are calculated by Eqs. (9)–(12) with 0.4322, 0.1782, and 0.3895,
respectively.
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Table 5: Spearman correlation coefficient

Prediction models Parameter name Parameter setting

ELM nid 1000
actfun tribas
Init_weights Uniform_negative

Elman size 8
maxit 1000
learnFuncParams c(0.1)

SVR cost 5000
gamma 0.0005

3.4 The Evaluation Index of the Prediction Model
With the mean absolute percentage error (MAPE), root mean square error (RMSE), mean

absolute error (MAE) and coefficient of determination (R2) as evaluation indicators, the prediction
models were evaluated quantitatively to select the highest accuracy prediction model with the following
formulae:

MAPE = 1
n

∑n

i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (13)

RMSE =
√

1
n

∑n

i=1

(
yi − ŷi

)2
(14)

MAE = 1
n

∑n

i=1

∣∣yi − ŷi

∣∣ (15)

R2 = 1 −
n∑

i=1

(
yi − ŷi

)2
/ n∑

i=1

(yi − y)
2 (16)

In Eqs. (13)–(16), yi is the actual value, ŷi is the predicted value, y is the average value, and n is
the number of data sets, where MAPE, RMSE and MAE indicate the deviation and volatility of the
predictive and monitoring values, while the smaller the value, the higher the prediction accuracy of the
prediction model, and R2 indicates the reliability of the spindle speed variation with the value of [0,1].
The closer the R2 is to 1, then it indicates that the better interpretation of the input variables on the
spindle speed, and the higher accuracy of the model prediction. Since R2 has an exact range of values,
it is calculated by Eq. (16) that the R2 of ELM, SVR, Elman and combined prediction models are
0.9957, 0.9934, 0.9965 and 0.9972, respectively. With R2 of each prediction model exceeding 0.99, which
indicates that over 99% of the spindle speed can be determined by the seven characteristic parameters,
the prediction accuracy of all four models has high accuracy and favorable reliability.

4 The Principle of Recognition of Spindle Operation Status
4.1 Operating State Index

Due to the strong randomness of wind speed, temperature and other environmental factors during
the operation of wind turbines, for avoiding the false alarms caused by larger instantaneous error, the
sliding window model is adopted to process the data, the window width is set to N, and the root mean
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square of the change in the predicted value of the spindle speed relative to the monitored value and
the monitored value is considered as the operating state index [19], and the calculation formula is as
follows:

C (N) =
√√√√∑N

i=1

(
yi − ŷi

)2

∑N

i=1 (yi)
2

(17)

where yi and ŷi respectively indicate the actual monitored and predicted values of the spindle speed. The
operation state index can quantify the deviation degree of the wind turbine spindle from the normal
operation state. Operation state index is smaller to indicate that the spindle operation is closer to the
normal operation status, and vice versa, the more deviated from the normal operation status.

4.2 Early Warning Threshold
It is known that the operation state index C(N) is constantly greater than or equal to 0, On the

basis of the theory of interval estimation in statistics, if P {0 ≤ C (N) ≤ Cth} = 1 − α is satisfied, [0,
Cth] is regarded as a confidence interval with confidence for the operation state index C(N),Thus, the
confidence upper limit Cth is expressed as

Cth=C + σ√
n

tα(n−1) + 3σ (18)

where C is the mean value of the state index C(N) during normal operation of the wind turbine spindle,
σ indicates the standard deviation of the statistical calculation of the operating state index, n represents
the total number of samples of the state index during operation of the wind turbine spindle, while α

serves as the set small probability value.

In accordance with the small probability principle, with 1−α as the confidence level, the operation
status indicator has a very small probability of being greater than the confidence upper limit, hence
when C(N) > Cth, the wind turbine spindle operation status is evaluated to be abnormal, and the
confidence upper limit is regarded as the threshold value here. After establishing the spindle speed
prediction model by the normal SCADA data, according to the principle of spindle operation status
identification, the sliding window width N is set to 10 and the increment q is 1. The spindle operation
status index is calculated by Eq. (17) and taken as 0.05 on the basis of the small probability principle,
and then the warning threshold is calculated according to Eq. (18). In this work, an early warning is
granted when the operation state index exceeds the threshold Cth for three times in a row or more.

5 Case Analysis

This work is implemented to recognize the spindle speed status of a domestic wind farm 2.5 MW
wind turbine with a cut-in wind speed of 3 m/s, a rated wind speed of 10.7 m/s, a cut-out wind speed
of 25 m/s, and a rated power of 2500 KW using one year of SCADA historical monitoring data of the
wind turbine.

5.1 Determination of the Optimal Prediction Model
By establishing an effective spindle speed normal behavior data-driven model to obtain the

residuals that reflect the spindle operation status, the spindle speed ELM, SVR, Elman and Combined
normal behavior models are respectively established with R language software in conjunction with the
normal data obtained after pre-processing, and the optimal spindle speed model is determined by
evaluating indexes MAPE, RMSE, MAE and R2 as follows:
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(1) Dividing the 42301 sets of normal data by 10:1 to obtain the training set, test set.

(2) Establishing the spindle speed prediction model with R language, determining the initial
parameter range of each model, through MAPE, RMSE, MAE to opt for the optimal parameters
of each model, the prediction effect of each single model is shown in Fig. 5.

(a) Prediction effect of ELM model

(b) Prediction effect of SVR model

(c) Prediction effect of Elman model
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Figure 5: Prediction effect of single model

As shown in Fig. 5, each single model’s spindle speed monitoring value basically overlaps with the
predicted value, with the predicted value minus the actual monitoring value as the residual value, where
the residual maximum of ELM model in Fig. 5a is −0.1816, that is, A (672, −0.1816), the residual
maximum of SVR model in Fig. 5b is 0.1051, namely B (3566, 0.1051), the residual maximum of
Elman model in Fig. 5c is 0.0832, which is C (2911, 0.0832), and the residual maximum of each single
model The mean values of residuals are −0.0002, 0.0021, and 0.0062, correspondingly.

(3) The entropy value methodology was employed to determine the weights of the single prediction
models in the combined prediction model, and the predictive efficiency of the combined model as
shown in Fig. 6.
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Figure 6: Prediction effect of combined model

As can be seen from Fig. 6, the residual value of the combination model has a maximum of
−0.0841 at point D, namely D (673, −0.0841), with a mean residual value of 0.0027, in which the
maximum value of the residual of the combined model is 0.0974 and 0.0765 respectively less than the
maximum value of the residual of the ELM and SVR single models, while compared with the Elman
single model increased by 0.0009. In addition, as the mean value of residuals increased by 0.0025 and
0.0006 when compared with ELM and SVR model, whereas the mean value of residuals decreased by
0.0035 compared with Elman model, hence the optimal model is not evaluated by the maximum value
of residuals and the mean value of residuals, and the prediction accuracy of each model needs to be
further verified.

(4) Adopting the evaluation indexes MAPE, RMSE, MAE and R2 to evaluate the models, with
the comparison of the evaluation indexes of each model shown in Table 6.

Table 6: Comparison results of each model index

Prediction model MAPE RMSE MAE R2

ELM 0.4704 0.0212 0.0140 99.5749%
SVR 0.6825 0.0241 0.0197 99.3358%
Elman 0.4665 0.0174 0.0131 99.6529%
Combined model 0.4568 0.0157 0.0105 99.7171%

As shown in Table 6, the combined model is optimum compared with the single model of ELM,
SVR and Elman. Where MAPE is reduced by 0.0136, 0.2257, and 0.0097, depending on each single
model. RMSE is respectively decreased by 0.0055, 0.0084 and 0.0017 compared with the single model.
MAE is separately reduced with the single model by 0.0035, 0.0092 and 0.0026. R2 improved by
0.1422%, 0.3813% and 0.0642%, compared with the singular model.

(5) The combination model is determined as the optimal prediction model.

5.2 Identification of Spindle Running State
Set the sliding window width N as 10, increment q as 1 to calculate C(N), and then take α as

0.05, according to the small probability principle, the confidence level is 99.95%, based on Eq. (13) to
calculate Cth as 0.5660. The SCADA monitoring data of the unit for 10 days before the occurrence of
fault is selected as the abnormal condition test data, and the SCADA monitoring data of the unit for
10 days of normal operation is selected as the normal condition test data. After normalizing the test
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data into the combined model for prediction, when C(N) is continuously above the threshold value
of 0.5660 for three or more times, it is judged as an abnormal state. The identification results of the
spindle speed operation state index during the spindle operation of the unit are shown in Fig. 7.

Figure 7: The result of spindle speed operation state index identification

As shown in Fig. 7a, the spindle speed operation status index of this set is 0.4563 at the maximum
value within the normal state test data set, and the whole are below the threshold value of 0.5660,
so that the spindle confined in the normal operation state. In Fig. 7b, the results obtained from the
abnormal state test data set containing the spindle fault data of the wind turbine are illustrated. The
spindle speed operation state index of the wind turbine continuously breaks the threshold value and
emits an early warning at the 1384th data point of the data set, and later breaks the threshold value and
continues to be higher than the threshold value at the 1418th data point, in which the spindle of the
wind turbine fails and is consistent with the actual fault data, It indicates that the failure alert time of
the monitoring method in this work is 5.7 h earlier than the actual failure occurrence time, which can
achieve the purpose of identifying and alerting the abnormal state of wind turbine spindle operation.

6 Conclusions

In order to address the difficulty of collecting fault data from in-service wind turbine SCADA
system, this work proposed a research approach for wind turbine spindle operation status driven
entirely by SCADA normal data. At first, the QM-DBSCAN process is employed to clean the SCADA
raw data and extract the feature parameters with the spindle speed as the output parameter. The
next, ELM, SVR, Elman and combined prediction models were constructed based on the R language
platform, and the combined prediction model was obtained as optimal with evaluation indexes
MAPE, RMSE, MAE and R2, whereby MAPE was reduced by 0.0136, 0.2257 and 0.0097 compared
with each single model. RMSE was reduced by 0.0055, 0.0084 and 0.0017, correspondingly. MAE
decreased respectively by 0.0035, 0.0092 and 0.0026. R2 increased separately by 0.1422%, 0.3813%
and 0.0642% from the single model. At the last, the spindle operation status early warning threshold is
computed and verified with actual SCADA data based on the assumption of small probability events.
Such system can detect potential failures and alert in advance, which has implications for wind turbine
spindle running condition recognition and maintenance.
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