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ABSTRACT

Analyzing the strain signal of wind turbine blade is the key to studying the load of wind turbine blade, so as to
ensure the safe and stable operation of wind turbine in natural environment. The strain signal of the wind turbine
blade under continuous crosswind state has typical non-stationary and unsteady characteristics. The strain signal
contains a lot of noise, which makes the analysis error. Therefore, it is very important to denoise and extract
features of measured signals before signal analysis. In this paper, the joint algorithm of ensemble empirical mode
decomposition (EEMD) and wavelet transform (WT) is used for the first time to achieve sufficient noise reduction
and effectively extract the feature signals of non-stationary strain signals. The application process of EEMD-WT
is optimized. This optimization can avoid the repeated selection of wavelet basis function and the number of
decomposition layers due to different crosswind conditions. EEMD adaptively decomposes the strain signal into
intrinsic mode functions, to judge the frequency of IMFs, remove the high-frequency noise components, retain
the useful components. The useful components are denoised twice by the wavelet transform, the components and
residual terms after the secondary denoising are reconstructed to obtain the characteristic signal. The EEMD-WT
was applied to process the simulating signals and measured the strain signals. The results were compared with the
results of the EEMD. The results showed that the EEMD-WT method has better noise reduction performance, and
can effectively extract the characteristics of strain signals, which lays a solid foundation for accurate analysis of
wind turbine blade strain signals under crosswind conditions.
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1 Introduction

The wind direction of natural wind is influenced by terrain, temperature and other factors. The
operation process of wind turbine is affected by different wind directions. [1,2]. The continuously
changing wind direction makes the load of the wind turbine blade change dynamically. The variable
load will cause damage to the blades. Therefore, the noise reduction and characteristic extraction of
blade strain signals during the operation are beneficial to improving the reliability of signal analysis,
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and have positive effects on accurately avoiding damage to wind turbines caused by extreme wind
direction changes and prolonging the service life of wind turbines.

The crosswind angle changed continuously from 0° to 45°. The measured strain signals showed
typical non-stationary and unsteady characteristics with the variation of crosswind angle. However,
there are few studies on blade strain signal processing under continuous crosswind condition, simple
methods such as taking average value and Butterworth low-pass filtering are mostly used, which
is extremely difficult to accurately analyze the influence of crosswind on strain [3]. Actual wind
turbine operation, on the other hand, in the process of the strain signal is affected by factors such as
environment, test system, with high frequency noise, the noise can make the original signal frequency,
amplitude distortion, make the analysis error, unable to guarantee the reliability of the strain analysis
results. Therefore, it is necessary to start with the processing method of the measured strain signal,
decompose and de-noise the signal and extract the characteristic signal [4].

In recent years, the methods used for non-stationary signal processing mainly include short-time
Fourier transformation (STFT), empirical mode decomposition (EMD), wavelet transform (WT),
local mean decomposition (LMD), etc. Li et al. [5] conducted wavelet processing on gear mechanical
vibration signals, analyzed the influence of the number of wavelet decomposition layers on the noise
reduction performance by selecting correlation thresholds. Lin et al. [6] used sym5 as the wavelet
function to decompose and reconstruct heart sound signals, achieving the purpose of noise removal.
Liu et al. [7] studied the signal decomposition and noise reduction of maglev gyro rotor by using the
method of local mean decomposition.

At present, the non-stationary signal processing methods are not limited to the above, more
methods are used to combine the above improved algorithm with other algorithms to make the signal
after noise reduction pure. Kaergaard et al. [8] considered the mode mixing effect of empirical mode
decomposition and the ability of neural network algorithm to de-noise efficiently, adopted the method
of combining ensemble empirical mode decomposition (EEMD) and neural network algorithm. The
combined algorithm could avoid mode mixing and achieve better de-noising performance. Zhao et al.
[9] proposed a method combining the least square mutual information algorithm and chaotic quantum
particle swarm optimization algorithm for signal decomposition in view of the mode mixing problem in
the decomposition of surface EMG signals. The least square mutual information algorithm calculates
the correlation between the intrinsic mode function, reduces the mode mixing, the chaotic quantum
particle swarm optimization algorithm improves the iteration rate. Jia et al [10] used the method of
combining grey criterion and ensemble empirical mode decomposition to reduce the noise of non-
stationary hob vibration signals.

The method of reference [8] can eliminate mode mixing, the combination with neural network
realizes the adaptation of wavelet transform. However, according to the analysis in this paper, the
noise reduction effect of wavelet neural network is not optimal. In reference [9], an optimized
complementary ensemble empirical mode decomposition (OCEEMD) method was proposed. Chaotic
quantum particle swarm optimization (CQPSO) was used to search for the optimal solution of the
standard deviation of Gaussian white noise to improve the iteration efficiency of CEEMD. The RMSE
of OCEEMD is smaller than that of CEEMD and CEEMDAN, OCEEMD has better noise reduction
performance. The method of reference [10] can achieve good noise reduction performance in most
cases, but the noise reduction performance is not good when the analog input SNR value is high.
Combined with the above non-stationary signal processing method and the two characteristics of the
measured strain signal including high-frequency noise interference and non-stationary characteristics,
in order to avoid mode mixing and accurately extract feature signals, in this paper, EEMD and WT
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are combined to EEMD-WT [11], compared with EEMD method. The above two methods are used
to process the wind turbine blade strain signal under continuous crosswind condition.

2 Basic Theory

EMD and WT are common methods for processing non-stationary signals, but the single
algorithm has some problems such as mode mixing and poor adaptability in practical use. In this
paper, EEMD and EEMD-WT algorithms are used to de-noise the strain signals, respectively.

2.1 Theory of Ensemble Empirical Mode Decomposition
EEMD takes EMD as the core. This algorithm inherits all the advantages of EMD, it does not

need to set the basis function in advance before decomposition, it has good adaptive characteristics.
The improvement of EEMD compared with EMD is that EEMD adds white noise to the signal to be
decomposed, so as to solve the problem of mode mixing. Because white noise has the characteristic of
uniform spectrum distribution, the signals of different time scales can be automatically decomposed
into appropriate reference scales during signal decomposition, then the intrinsic mode function (IMF)
after multiple decomposition is calculated on the whole average, so as to realize the mutual cancellation
of noises.

EEMD can be divided into the following steps [12]:

Step 1: Gaussian white noise n (t) with a spectral mean of 0 is added to the signal x (t) to be
decomposed, get the signaly (t):

y (t) = x (t) + n (t) (1)

Step 2: Find the maximum and minimum points in signal y (t), use cubic spline interpolation
function to perform data fitting for all maximum and minimum points, obtain the upper and lower
envelope lines emax (t) and emin (t) of signal y (t), find the mean m (t) of the upper and lower envelope:

m (t) = emax (t) + emin (t)
2

(2)

Step 3: Subtract the mean m (t) of the upper and lower envelope from the signal y (t):

h1 (t) = y (t) − m (t) (3)

Step 4: Check whether h1 (t) meets the two conditions of IMF. If not, take h1 (t) as the signal to
be processed and repeat the above steps until h1 (t) is an intrinsic mode function, denoted as:

c1 (t) = h1 (t) (4)

Step 5: After the first intrinsic mode function c1 (t) is decomposed from signal y (t), c1 (t) is
subtracted from y (t) to obtain the remaining value sequence r1 (t):

r1 (t) = x (t) − c1 (t) (5)

Step 6: Take r1 (t) as the new signal to be processed and repeat the above steps to obtain the
second, third and Nth intrinsic mode function successively, denoted as c1 (t) , c2 (t) , c3 (t) , . . . , cn (t).
This process can be stopped after meeting the preset stop criteria, and finally the remaining term rn (t)
of the signal to be decomposed is left.
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The stop criterion usually takes standard deviation parameter (SD) as the judgment criterion,
namely:

SD =
T∑

t=0

∣∣∣∣∣ |hk−1 (t) − hk (t)|2

h2
k−1 (t)

∣∣∣∣∣ (6)

The signal y (t) to be processed is decomposed into the sum of several intrinsic mode functions
and a residual term:

y (t) =
n∑

i=1

ci (t) + rn (t) (7)

2.2 Theory of Wavelet Transform
When the non-stationary signal is denoised by wavelet threshold, the following steps should

be experienced: 1© The appropriate wavelet basis function should be selected according to the
characteristics of signals, the wavelet system with orthogonality and compact support should be
generally selected; 2© To consider the appropriate number of decomposition layers, however, there is no
fixed empirical formula for the selection of decomposition layers, it is necessary to carry out repeated
tests and verification according to the characteristics of signals; 3© Select the threshold function, and
use the selected threshold form to process the detail component to achieve the effect of removing noise;

4© The signal is reconstructed to get the signal after noise reduction.

The wavelet coefficients obtained by soft threshold denoising decomposition have good continuity.
When the absolute value of the wavelet coefficients is greater than the set threshold, the threshold is
subtracted. When it is below the threshold, set it to zero. The relation of soft threshold is as follows:

ω =
{

sgn
(
ωj,k

) (∣∣ωj,k

∣∣ − λ
) ∣∣ωj,k

∣∣ ≥ λ

0
∣∣ωj,k

∣∣ < λ
(8)

λ is the critical threshold; ωj,k is wavelet decomposition coefficient; sgn (·) is a sign function; ω is
the wavelet coefficient after transformation.

2.3 Joint Noise Reduction Method of EEMD-WT
In the process of signal decomposition, EEMD can avoid mode mixing and has self-adaptability,

which can decompose the signal adaptively into several intrinsic mode functions and a residual
term. Wavelet can further filter the noise in the signal based on the algorithm of ensemble empirical
mode decomposition. Wavelet denoising algorithm firstly to determine the wavelet functions and
decomposition scale, in terms of the choice of wavelet basis function, the primary choice engi-
neering with orthogonality and compactly supported wavelet series, such as, dbn (n = 1, 2, . . . , 8),
symn (n = 1, 2, . . . , 8), coifn (n = 1, 2, . . . , 5). By comparing and analyzing the noise reduction results
of different wavelet basis functions and different decomposition levels, coif4 wavelet basis and four-
layer decomposition have better signal noise reduction performance. Therefore, the wavelet basis is
determined to be coif4. The joint denoising algorithm of EEMD-WT is used to decompose and de-
noise the strain signal. The process is as follows:

(1) The original signal Y (t) was decomposed by EEMD to obtain multiple intrinsic mode
functions (IMFs) and residual terms (r);

(2) Calculate the instantaneous frequency of each intrinsic mode function and judge the physical
significance of each layer of IMF according to the frequency;
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(3) If IMF is a noise signal, it is eliminated; If IMF at this layer is a useful signal, then ‘coif4’
wavelet is used to carry out wavelet decomposition and reconstruction, so as to further reduce
IMF noise at this layer and obtain IMF′;

(4) The useful signal IMF′ of each layer after wavelet decomposition and reconstruction is
reconstructed to obtain the signal after noise reduction.

To sum up, the joint noise reduction algorithm flow of EEMD-WT is shown in Fig. 1.

The original signal

EEMD decomposition

Instantaneous frequency analysis of
IMFs

Is the IMF within a reasonable
frequency range?

Is a noise signal
N

Elimination of high
frequency components

Carry out wavelet decomposition and
reconstruction of IMF to obtain IMF'

Y

Restructure the IMF'

The signal after noise
reduction is obtained

End

Figure 1: EEMD-WT joint noise reduction algorithm flow

In this paper, the EEMD-WT method is based on the preliminary analysis of the reasonable
frequency range of the wind turbine blade strain signal. Judging the IMFs frequency obtained by
decomposition, IMFs greater than the reasonable frequency range are noise components, which are
removed, otherwise judged as useful IMFs, and wavelet denoising. Its advantage is that it avoids noise
reduction for useless IMFs and only performs wavelet noise reduction for useful IMFs. The efficiency
of signal noise reduction is improved, the noise reduction process is more reasonable.

3 Simulated Signal Tests
3.1 Construction of Simulation Signal

The joint algorithm of EEMD-WT can de-noise non-stationary signals. In order to verify the
feasibility and reliability of the algorithm, the simulation is carried out according to the time-frequency
characteristics of the measured strain signals. The simulation signals are decomposed and recon-
structed to obtain the characteristic signals, and the de-noising effect is evaluated. As the crosswind
angle changes continuously from 0° to 45°, the frequency and amplitude of the measured strain
signal decrease gradually, the strain variation trend in the whole crosswind condition is approximately
sinusoidal. Therefore, the ‘fmlin’ function is used to generate the linear frequency modulation signal
z(t), function c (t) = cos (0.15πt) is used to carry out amplitude modulation on z(t), so that the
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amplitude of the signal gradually decreases with time, the superposition signal d (t) = 250 cos (0.14πt)
makes the overall trend of the signal comply with sinusoidal change. The generated ideal signal is
sig (t) = 80 (z × c + d), the frequency of the ideal signal is between 18.75 and 6.25 Hz, as shown in
Fig. 2.

Figure 2: The ideal signal

According to the noise type of the measured strain signal, three types of noise are added to the
ideal signal: random noise generated by ‘randn’ function, cosine noise with frequency of 100 Hz, and
intermittent cosine noise with frequency of 50 Hz. Thus, the simulation signal is:

Y = sig + noise1 + noise2 + noise3 (9)

Simulation signal is shown in Fig. 3.

Figure 3: Simulation signal

3.2 Simulation Signal Processing
The results of EEMD and IMF instantaneous frequency of simulation signals are shown in Fig. 4.

As can be seen from Fig. 4b, the frequency components of IMF1 was disorderly. Fig. 4b clearly shows
that IMF2 contains 100 Hz frequency and other frequency components, which is difficult to obtain a
single frequency component by decomposition, 100 Hz is the main frequency of IMF2. The frequency
of IMF3 changes with time, the frequency intermittently appears 50 and 100 Hz, indicating that the
decomposed signal IMF3 has mode mixing, making the main frequency component of IMF 50 Hz and
a small amount of 100 Hz frequency, which is related to the intermittent noise added to the simulation
signal. The frequency of IMF4 is mainly 16.88 Hz. Since EEMD extracts a detail signal each time, the
component with the highest signal frequency is extracted first, the frequency of the remaining signal
is lower than all the extracted signal frequencies, that is, it is obtained by the filtering characteristics
of EEMD, then the frequency gradually decreases. The subsequent frequencies are 12.5, 8.125, 2.5
Hz, etc. Therefore, it can be judged that IMF4∼IMF10 is the intrinsic mode function containing the
characteristic components of the simulation signal.
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(a) IMF1~IMF10 (b) IMF's instantaneous frequency

Figure 4: Decomposition results and instantaneous frequency of EEMD

Joint denoising algorithm is based on EEMD to carry out wavelet secondary denoising. According
to the above analysis, IMF1–IMF3 has been judged as noise signal, wavelet is used to further de-
noise IMF4–IMF10. The results and instantaneous frequency of EEMD-WT combined de-noising
algorithm are shown in Fig. 5. By comparing the intrinsic mode functions corresponding to Figs. 4a
and 5a, the high-frequency components of IMF4 in Fig. 5a are filtered out after 2 s. By comparing the
instantaneous frequencies corresponding to IMF in Figs. 4b and 5b, it can be found that the noise in
IMF4 is greatly weakened.

The intrinsic mode functions of EEMD-WT joint algorithm and the residual terms of EEMD were
reconstructed to obtain the characteristic signals of simulation signals. The waveform comparison of
reconstructed signals, simulation signals and ideal signals of the two algorithms is shown in Fig. 6.
Green is the simulation signal, blue is the reconstruction signal of EEMD, red is the ideal signal, and
black is the reconstruction signal of EEMD-WT. By comparing the reconstructed signal waveform
of EEMD-WT and the simulated signal waveform, it can be seen intuitively that the joint algorithm
can eliminate signal noise to a large extent. Compared with the reconstructed signal waveform using
EEMD alone and EEMD-WT, EEMD-WT has better noise reduction performance. It can be seen
from the comparison between the time domain waveform of EEMD-WT reconstructed signal and
the simulation signal waveform that the signal can better reveal the real characteristics of the signal
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after EEMD-WT decomposition, screening and reconstruction. The correlation coefficient between
the reconstructed characteristic signal and the ideal signal is 0.9996, highly correlated.

(a) IMF4~IMF10 (b) IMF's instantaneous frequency

Figure 5: Decomposition results and instantaneous frequency of the joint algorithm

Figure 6: Comparison of reconstructed signals of the two algorithms

In the field of signal processing, signal-to-noise ratio (SNR), root mean square error (RMSE),
smoothness (R) and determination coefficient (DC) are often used as evaluation indexes of noise
reduction performance. SNR and RMSE focus on the details of signal, while R and DC focus on the
approximate information of signal. The larger SNR indicates the better noise reduction performance.
The smaller the root mean square error, smoothness and determination coefficient, the better [13,14].
In this paper, the above four indicators are selected to evaluate and compare the two noise reduction
results of simulation signals. The calculation results are shown in Table 1.

According to Table 1, the SNR of simulation signal is 22.79, and that of EEMD reconstructed
signal is 33.11. The SNR of EEMD reconstructed signal is 45% higher than that of simulation signal,
and that of EEMD-WT reconstructed signal is 57% higher. Both EEMD and EEMD-WT algorithms
have certain noise reduction performance. By comparing the four evaluation indexes of reconstructed
signals of EEMD and EEMD-WT algorithms, the combined algorithm has higher signal-to-noise
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ratio, smaller root mean square error, smoothness and determination coefficient of reconstructed
signals, EEMD-WT combined algorithm has better noise reduction performance.

Table 1: Comparison of EEMD and EEMD-WT denoising results

SNR RMSE R DC

Simulation signal 22.79 13.86 – –
EEMD 33.11 4.22 0.16 0.98
EEMD-WT 35.84 3.09 0.15 0.97

4 EEMD-WT Joint Algorithm Processing the Wind Turbine Blade Strain Signals

In this paper, the wind turbine blade strain experiment was carried out in the wind tunnel of the
Key Laboratory of Wind energy and Solar Energy Utilization Technology of Ministry of Education,
Inner Mongolia University of Technology. A three-blade horizontal axis wind turbine with a tower
height of 1.7 m and a diameter of 1.4 m was used in the experiment. S series airfoil blades are made
of wood. The rated wind speed of the wind turbine is 8 m/s, and the rated tip velocity ratio is 5. The
flow direction provided by the wind tunnel was unchanged. The experimental wind turbine tower
was installed on the dynamic yaw experimental platform developed by the research group. The servo
motor drove the wind turbine tower to rotate, the method of rotation of the wind turbine tower was
used to simulate the crosswind. In the experiment, the strain was measured by pasting two-axis strain
gauges, the spanwise and chordal strains of each measurement point were measured in two directions.
DH5953G stress test system was used to collect data, the computer was connected to DH5953G in
the way of wireless AP for data transmission. The accuracy of the stress test system is 0.5% ± 3 με,
the nonlinearity is less than 0.1%, the stability of the system is 1%/h, the time drift is less than 3 μV/h,
temperature drift is less than 1 μV/°C, to ensure the accuracy and accuracy of the experimental data.
The cross-wind angle changes continuously from 0° to 45°, the sampling frequency is 500 Hz. The
speed of the cross-wind angle change is defined as the crosswind angular velocity. Six crosswind angular
velocities are set in this test, namely 0.5°/s, 1°/s, 2°/s, 3°/s, 4°/s and 5°/s. The signal studied in this paper
is the strain signal at the blade root position with the crosswind angular velocity of 3°/s, which is used
to verify the effectiveness of EEMD-WT algorithm in noise reduction and feature extraction in the
wind turbine blade strain signals.

Fig. 7 shows the original strain signal and spectrum of the wind turbine blade under continuous
crosswind condition. As shown in Fig. 7a, the amplitude and frequency of the original signal strain
change over time, showing non-stationary characteristics, as the crosswind angular velocity changes at
a uniform speed of 3°/s. With the increase of the crosswind angle, the strain amplitude and frequency
of the original signal decrease gradually. Fig. 7b shows the spectrum of the strain signal. The initial
frequency value of the signal is between 8 and 9 Hz, then the frequency gradually decreases, so the
overall frequency of the strain signal is less than 9 Hz. In this paper, EEMD and EEMD-WT methods
were used to de-noise and extract characteristic signals of the strain signal.

As shown in Fig. 8a, the original signal was decomposed by EEMD to obtain 11 layers of IMFs
and one residual term. Compared with Figs. 8a and 8b, the instantaneous frequency of IMF1 was
disorderly, which was caused by high-frequency noises such as vibration of wind turbine during
operation. The frequency of IMF2 and IMF3 is between 40 and 50 Hz, this is the interference from
the power noise and the natural frequency interference of the first mode shape. The instantaneous
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frequency of IMF4 is about 9 Hz, this is the frequency produced by a wind turbine blade rotating one
turn, it is basically consistent with the ideal initial frequency obtained from the tip velocity ratio. As the
crosswind angle increases, the signal frequency gradually decreases, according to the decomposition
principle of EEMD, the frequencies of IMF5∼IMF11 are lower than 9 Hz, IMF4∼IMF11 are useful
signals. Therefore, IMF1∼IMF3 is judged as noise component, and wavelet denoising is carried out
for IMF4 to IMF11.

Figure 7: The original strain signal and spectrum measured at 3°/s blade root position

(a) IMF1~IMF11and residual (b) IMF's instantaneous frequency

Figure 8: Decomposition results and instantaneous frequency of EEMD
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Fig. 9a shows the IMF denoised by EEMD-WT, and Fig. 9b shows the instantaneous frequency
of IMF. Compared with the instantaneous frequency in Figs. 9b and 8b, the noise of each layer is
reduced. Fig. 9c shows the comparison of the original signal, the reconstructed signal of EEMD and
the reconstructed signal of EEMD-WT. Green is the original signal, red is the reconstructed signal
of EEMD and blue is the reconstructed signal of EEMD-WT. By comparing the two reconstructed
signal waveforms with the original signal waveforms, the noise in the original signal has been filtered
to a certain extent, but it is still not clear which algorithm has better noise reduction performance. The
evaluation index is used to evaluate the noise reduction results of the two algorithms.

(a) IMF4~IMF10                           (b) IMF's instantaneous frequency

(c) Comparison between original signal and noise reduction results of different algorithms

Figure 9: Comparison of EEMD-WT processing results and noise reduction results of different
algorithms

The ideal signal cannot be obtained during the experiment, so smoothness and determination
coefficient are taken as evaluation indexes of noise reduction performance, the results are shown in
Table 2.
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Table 2: Index comparison of denoising results of measured strain signals

R DC

EEMD 0.07 0.57
EEMD-WT 0.06 0.55

Two indexes, smoothness and determination coefficient, prove that the processing result of
EEMD-WT joint noise reduction algorithm is better than that of EEMD.

The ultimate purpose of the wind turbine blade strain signal denoising is to extract strain
characteristic signal and obtain the relationship between strain and continuous crosswind variation.
In the case of cross wind velocity is constant, the strain amplitude and frequency with the change of
crosswind angle, as shown in Fig. 9c, with the increase of crosswind angles, strain decreases, general
and cannot directly reflect the changes of amplitude and frequency. Therefore, the frequency needs to
be reflected through time-frequency diagram, and the characteristic signal should be de-trended first
to avoid the influence of trend on frequency. As the crosswind angle changes continuously from 0° to
45°, the crosswind angular velocity deflects at an angular velocity of 3°/s, and the working time is 15 s.

The detrended characteristic signals are shown in Fig. 10a, the strain changes periodically. The
reason is that under crosswind conditions, the axial induced speeds of blades rotating to different
azimuth angles are different, resulting in different loads on blades rotating one circle, which shows
periodic strain changes. With the increase of the crosswind angle, the periodic characteristics after the
5000th sampling point are gradually blurred, because the strain signal is similar to the noise signal, it
is difficult to separate the strain signal from the noise signal. With the increase of the crosswind angle,
the strain amplitude gradually decreases, which is because the centrifugal load decreases as the blade
rotation speed decreases with the increase of crosswind angle.

(a) De-trended map

(b) Time-frequency energy spectrum

Figure 10: Detrended signal and time-frequency energy spectra

Fig. 10b for the time-frequency energy spectrum diagram, represents the changing relationship
between frequency and time, the initial signal frequency is 8.553 Hz, it is basically consistent with
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the ideal initial frequency obtained from the tip velocity ratio, frequency along with the increase of
crosswind angle became smaller, this is because with the increase of the crosswind angle, the blade
speed decreases and the time for the periodic change of strain becomes longer.

The reconstructed signal processed by EEMD-WT joint algorithm is strain characteristic signal,
which can reflect the change of strain amplitude and frequency with the crosswind angle. The EEMD-
WT algorithm in this paper is applied to other crosswind angular velocities set in this experiment:
0.5°/s, 1°/s, 2°/s, 4°/s and 5°/s. EEMD-WT algorithm shows feasibility, adaptive and effectiveness in
strain signal processing of the wind turbine blade.

5 Conclusions

In this paper, EEMD-WT joint algorithm was used to de-noise and reconstruct the strain signals of
the wind turbine blade under crosswind condition, the noise of the measured signal has been filtered
to a large extent. Refactoring to obtain the characteristics of the signal more accurately reflect the
blade strain along with the change and the change law of crosswind angle, improve the reliability of
the follow-up for blade strain signal feature extraction.

(1) EEMD and EEMD-WT algorithm are used to process the noise reduction and reconstruction
of the simulation signal. The feature signal reconstructed by EEMD-WT algorithm has
obvious noise reduction performance and is highly correlated with the ideal signal, which
verifies the feasibility of the joint algorithm to process non-stationary signals.

(2) The feasibility of EEMD and EEMD-WT algorithms in processing the strain signals of the
wind turbine blade is verified. By comparing various evaluation indexes of noise reduction
performance, EEMD-WT algorithm has better performance in processing strain signals of the
wind turbine blade in crosswind condition.

(3) After EEMD-WT processing the strain signal of the wind turbine, the noise in the recon-
structed characteristic signal is greatly weakened, the initial frequency of the characteristic
signal is basically consistent with the ideal initial frequency, so the characteristic signal can
accurately reflect the change of strain signal frequency and amplitude with the crosswind
angle. It is of great significance to explore the variation characteristics of blade strain under
continuous crosswind.
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