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ABSTRACT

To solve the problems of low precision of weak feature extraction, heavy reliance on labor and low efficiency
of weak feature extraction in X-ray weld detection image of ultra-high voltage (UHV) equipment key parts, an
automatic feature extraction algorithm is proposed. Firstly, the original weld image is denoised while retaining
the characteristic information of weak defects by the proposed monostable stochastic resonance method. Then,
binarization is achieved by combining Laplacian edge detection and Otsu threshold segmentation. Finally, the
automatic identification of weld defect area is realized based on the sequential traversal of binary tree. Several
characteristic analysis dimensions are established for weld defects of UHV key parts, including defect area,
perimeter, slenderness ratio, duty cycle, etc. The experiment using the weld detection image of the actual production
site shows that the proposed method can effectively extract the weak feature information of weld defects and further
provide reference for decision-making.
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1 Introduction

In the field of ultra-high voltage (UHV), the projects under construction and pending approval
will drive the development of equipment manufacturing, construction and installation, operation and
maintenance of the whole power equipment industry. Welding is one of the important processes of
UHV equipment key parts. The quality of UHV equipment is directly related to the safety performance
and work efficiency of the whole power grid. In the manufacturing process of UHV equipment
welded parts, welding is a complex process. The influence of various human and non-human factors
leads to the inevitable defects such as pores, cracks and slag inclusion [1]. Therefore, welding quality
inspection is very important. The automation of traditional welding quality inspection is not high,
and the inspection standards and process methods are difficult to be unified. Taking X-ray detection
as an example, the manual detection process is cumbersome and depends on experienced inspectors.
There are inevitable subjective differences in defect recognition, low efficiency and high cost [2,3].
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In addition, the missed inspection rate and over inspection rate can only be maintained at a certain
level, which is difficult to be further reduced, and the reliability of the product is not high. Due to
the particularity of products and the challenge of technology, it is urgent to develop automatic X-ray
welding quality detection and recognition technology for UHV key parts, so as to extract and segment
defect information from images quickly and effectively.

Scholars have made exploration and research in relevant aspects. Representative works include
Alwaheba et al. [4,5] applied scanning contact potentiometry for defects detection, and for determining
the location coordinates of defects in welded joints, Shen et al. [6] proposed water flooding segmen-
tation algorithm to weld defect detection, Chen et al. [7] extracted X-ray weld image defects based
on SUSAN algorithm, Li et al. [8] identified weld defects based on independent component analysis,
Yu et al. [9,10] extracted weld centerline based on pyramid sparse network, Abdelkader et al. [11]
considered the characteristics of low contrast, poor quality, and uneven illumination of X-ray images,
and studied weld defect extraction based on X-ray images. Ding et al. [12] proposed the wavelet soft
and hard threshold compromise denoising method, Patil et al. [13] proposed the techniques of local
binary pattern in which local binary code describing region, generating by multiplying threshold
with specified weight to conforming pixel and summing up by grey-level co-occurrence matrix to
extract statistical texture features, Boaretto et al. [14] extracted potential defects based on feedforward
multilayer perceptron with back propagation learning algorithm. In addition, there are relevant
research on weld feature extraction based on computer vision [15,16]. Although they have made some
achievements, there are still problems to be solved [17–19]. Weld defect detection methods are various,
but in the face of specific problems, it is still necessary to adapt measures to local conditions. For UHV
equipment weld quality inspection, X-ray inspection is one of the common inspection methods, and
inspectors usually judge the weld quality based on X-ray inspection images [20–23]. The automatic
extraction of weld defects based on radiographic inspection images is of great significance for the next
step to realize automatic evaluation of weld quality.

There are many reasons for the difficulty of extracting weak features from weld X-ray flaw
detection images, and the inevitable noise pollution is one of the reasons. The study of nonlinear
stochastic resonance system shows that an appropriate amount of noise can amplify weak signals
[24,25]. In recent years, the application research of stochastic resonance in fault diagnosis [26],
image processing [27,28] and other fields has expanded the engineering value of nonlinear stochastic
dynamics. In conclusion, the novelty of this work are as follows, in order to improve the accuracy
of weak defect feature extraction under noise background, we propose a monostable stochastic
resonance image denoising method to preprocess the noise reduction of weld X-ray flaw detection
image. Furthermore, in order to better preserve weak features, threshold segmentation is improved
based on edge detection. Through a series of image processing on the X-ray images of UHV key parts
to assist the process of welding quality detection, it is expected to improve the problem that weak
features are easy to be lost. In order to identify the weak defects in the welds of UHV key parts more
efficiently, this paper realizes the automatic extraction of defect connected region based on the first
order traversal of binary tree, and then designs and quantifies the characteristic parameters of weld
defects. To sum up, this paper provides an effective method to extract the weak features of weld X-ray
flaw detection image, and gives a series of processing flow. In addition, the processing results of this
method can provide reference for higher-level defect analysis.
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2 Image Denoising

The X-ray weld detection image of UHV key parts will inevitably be involved in electromagnetic
pulse and other interference noise in the acquisition process [29,30]. Weak defect features are usually
polluted by noise. If feature extraction is carried out directly, a lot of noise will also be mistaken
for defects, and the result is to reduce the accuracy of defect feature extraction [31]. Therefore, it is
necessary to denoise the X-ray weld detection image of UHV key parts. Classical image denoising
methods such as median filter, mean filter, Wiener filter and Gaussian filter, among which the
representative methods Gaussian filter is realized as follows.

2.1 Gaussian Filtering
In image processing, Gaussian filtering generally has two common implementation methods, one

is window sliding convolution, the other is through Fourier transform. Usually, when the amount
of calculation of window sliding convolution is very large, we will consider obtaining the image
spectrum through Fourier transform, and then use the transfer function to realize frequency domain
centralization.

g (x, y) = 1
2πσ 2

e− x2+y2

2σ2 , (1)

where σ Determines the width of the Gaussian function. The steps of Gaussian window sliding
convolution filtering are selecting Gaussian kernel, sliding window and convolution processing.

Traditional noise reduction methods such as Gaussian filtering often weaken the characteristics
of weak defects while removing noise, which is unacceptable for industrial defect detection with high
requirements. Therefore, an image denoising algorithm based on monostable stochastic resonance
processing is proposed next.

2.2 Image Denoising Based on Monostable Stochastic Resonance
As a nonlinear stochastic dynamic phenomenon, stochastic resonance has important theoretical

research significance and engineering application value. According to the beneficial principle of noise
[32], an adaptive monostable stochastic resonance image denoising method is proposed in this paper.
The system equation is as follows:
dx
dt

= a − bx3 + s (t) + N (t) , (2)

where a > 0, b > 0 are monostable system parameters, s(t) is image signal and N(t) is image noise.
Monostable system can excite stochastic resonance of step, pulse and other signals [33]. The steps of
monostable stochastic resonance image denoising are as follows: he operation steps are as follows:

(1) Image dimensionality reduction. The images were converted into one-dimensional information
using Hilbert scanning and normalized.

(2) Monostable stochastic resonance processing. stochastic resonance processing is combined
with optimization algorithms. Based on the Runge-Kutta algorithm, the optimal parameter
combination is obtained and the optimization result is obtained through a series of iterative
processing through the optimization algorithm within the value range of the parameters a
and b.

(3) Decoding. The processed signal is reconstructed into a two-dimensional matrix by inverse
Hilbert scanning. It is worth noting that the center of the signal is often biased after rescaled
monostable stochastic resonance processing. Here, we normalize the resulting matrix and scale
the signal to [0,1].
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(4) Compared to ground truth. The fitness function PSNR of the optimization algorithm is
obtained.

(5) Judgment. The program ends when the iterative conditions of the optimization algorithm are
satisfied.

(6) Obtain the final denoised image.

As shown in Fig. 1, the Gaussian filter denoising and the monostable stochastic resonance
denoising method in this paper are compared by denoising the real weld radiographic inspection
images with porosity defects, as shown in (c) and (d). For ease of comparison, the original reference
image and the simulated noise image are presented in (a) and (b) simultaneously.

(a) (b)

(c) (d)

Figure 1: Comparison noise reduction preprocessing results of the two methods. (a) Ground-truth,
(b) Noisy image to be processed, (c) Gaussian filtered image, (d) stochastic resonance denoised image

It can be seen from the figure that the denoising effect of the two methods is very significant.
However, since the core of Gaussian denoising is filtering, it also removes many weak defect features
while removing noise, which is not allowed in defect detection. In contrast, the monostable stochastic
resonance method utilizes noise to enhance weak stomatal defect information, removing the noise
while preserving the weak key features.

To better identify the image content in Fig. 1, we use a grayscale transformation to convert the
grayscale image to a pseudocolor image. As shown in Fig. 2, the defects in the original reference image
in subfigure (a) are also very weak. The pore defect feature in subplot (b) is completely immersed in
noise and indistinguishable, subplot (c) shows the result after denoising by Gaussian filtering, and
subplot (d) shows the result after denoising by the monostable stochastic resonance method. The
results show that the monostable stochastic resonance method enhances the weak stomatal features,
while the Gaussian filtering method weakens the weak stomatal features.
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(a) (b)

(c) (d)

Figure 2: Comparison noise reduction preprocessing results of the two methods (pcolor). (a) Ground-
truth, (b) noisy image to be processed, (c) Gaussian filtered image, (d) stochastic resonance denoised
image

Table 1 gives the values of the objective evaluation indexes PSNR and SSIM of the subgraphs in
Fig. 1. PSNR is an evaluation index based on the difference of corresponding pixels between the image
to be evaluated and the reference image. SSIM is an evaluation index based on structural similarity,
which is evaluated from three aspects of image brightness, contrast and structure. It can be seen from
Table 1 that based on the two objective evaluation indicators, the denoising effects of the two methods
are basically the same, and the monostable stochastic resonance denoising method is slightly better
than the Gaussian filtering method in general. However, from the comprehensive image information
and tabular data, it can be seen that the monostable stochastic resonance denoising method is more
competitive and has application prospects.

Table 1: Comparison of quantized denoising results between Gaussian filtering and the proposed
monostable stochastic resonance image denoising method

Noisy image Gaussian filtering The proposed method

PSNR 28.14 36.97 37.044
SSIM 0.47 0.84 0.96
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3 Threshold Segmentation

After image denoising, threshold segmentation is carried out next. The most commonly used
threshold segmentation method is Otsu threshold processing. After noise reduction, the image quality
has been improved, but sometimes there are still defects in the image that cannot be well distinguished
from the image background in threshold segmentation [34,35]. Therefore, this paper uses the edge
detection information of Laplace operator to improve Otsu threshold processing.

3.1 Otsu Threshold Segmentation
Otsu’s principle is to normalize and square the initial image first. Then determine an initial

threshold, divide the whole image into two categories: those greater than the threshold and those less
than the threshold, calculate the proportion of gray level and record it as P1 and P2, record the average
gray levels Q1 and Q2 at the same time, and record the average gray level of the whole image as Q. Then
calculate the inter class variance:

G = P1 (Q1 − Q)
2 + P2 (Q2 − Q)

2 , (3)

simplify,

G = P1P2 (Q1 − Q)
2 . (4)

Traverse the whole image and calculate the inter class variance of each pixel. The pixel with the
largest variance between classes is obtained, and its gray value is just the best threshold of the threshold
segmentation method determined by Otsu algorithm.

3.2 Laplace Edge Detection
Edge refers to the part of the image with the most significant change in local intensity, which

mainly exists between the target and background, region and region. It is usually detected by means of
first-order or second-order differentiation. In this paper, Laplace operator is used for edge detection.
After second-order differentiation, a steep zero intersection is generated at the edge of the image, which
can highlight the area where the intensity changes rapidly in the image. Note that the image pixel matrix
is I(x, y), then the Laplace operator L(x, y) is as follows:

L (x, y) = ∂2I
∂x2

+ ∂2I
∂y2

. (5)

3.3 Improved Otsu Threshold Segmentation Based on Edge Detection
Weld defects are usually much smaller than the background and make little contribution to the

histogram. If the direct threshold segmentation is used, the desired results may not be obtained
most of the time. Therefore, this paper considers the introduction of edge information in threshold
segmentation. Firstly, the edge with large gradient is selected to strengthen the separability of the
image, and then the threshold processing is carried out.

The steps of the improved algorithm are as follows: Firstly, the value of the template of the image
is calculated by an edge search method. Then, specify the threshold in percentage. In practice, since
there is noise in the calculated edge template values, the calculated values can be sorted, and a value
with a relatively high percentage (threshold value greater than the value below the percentage) can be
selected as the threshold value. Next, according to the specified threshold, the value of the image edge
in the first step is selected. The value of pixel points higher than the threshold is set to 1, and the value
lower than the threshold is set to 0, thereby selecting a binary image (template) of some edge points.
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Next, multiply the original image with the template just calculated to obtain a new image. Finally,
Otsu is used to segment the new image.

As shown in Fig. 3. Fig. 3a is the image to be thresholded, and it can be seen that there is a white
feature in it. Fig. 3b is the corresponding histogram of Fig. 3a. It can be seen from the figure that
the pixels occupied by the features contribute very little to the histogram. Fig. 3c is the result of direct
otsu threshold segmentation. Features are completely lost. Fig. 3d is an improved graph incorporating
edge information. Fig. 3e is the pixel distribution corresponding to Fig. 3d. Fig. 3f is the thresholding
result using edge refinement. Laplacian edge extraction enhancement is performed before threshold
segmentation. Threshold segmentation is more accurate when combined with edge detection.

(a) (b) (c)

(d)
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Figure 3: Comparison of the Otsu threshold segmentation and the improved Otsu threshold segmen-
tation. (a) The image to be segmented with a small feature, (b) the grayscale histogram of (a), (c) Otsu
segmentation result of (a), (d) the Laplacian edge enhancement result of (a), (e) the grayscale histogram
of (d), (f) Otsu segmentation result of (d)

In conclusion, the improved threshold segmentation method can better segment the detailed
features. It is precisely the detail features that are common in welds. Threshold segmentation combined
with Laplacian edge detection has advantages in preserving detailed features.

4 Feature Extraction

After preprocessing the X-ray weld detection image with noise reduction and threshold segmen-
tation, the defect features of the image are extracted. Feature extraction is based on connected regions.
As shown in Fig. 4a, with one pixel in the image as the center, eight pixels adjacent to the center pixel
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are defined as the connection area of the center pixel. Because the connection region is transitive, the
region represented by the defect can be recognized as a connected region.

(x-1,y-1)

(x-1,y)

(x-1,y+1)

(x,y-1)

(x,y)

(x,y+1)

(x+1,y-1)

(x+1,y)

(x+1,y+1)

(a) (b)

Figure 4: Schematic diagram of the shape characteristics of weld defects. (a) The connected area,
(b) defect circumscribed rectangle, where A and B are the major and minor axes of the smallest
circumscribed rectangle of the planar defect, respectively

4.1 Defect Area Identification
The connected area connected by defective pixels is the defective area. The identification of defect

region is based on the idea of binary tree preorder traversal, as shown in Fig. 5. First, select the
initial center pixel. Judge it. If the central pixel is 1, mark this pixel as a defect and start traversing
its surrounding pixels until all the surrounding pixels are traversed, and then update the central point.
If the pixel is 0, proceed directly to the next step, that is, update the center point. When all pixels are
traversed, the process ends.

4.2 Defect Feature Parameters Extraction
After identifying the defect connection area, the characteristic parameters are extracted for the

area, perimeter, fine length and interval duty cycle of defects such as slag inclusion, pores and cracks
in the welds of UHV key parts. The above characteristic parameters are selected and set according to
the relevant requirements of the industry standard NBT 47013.11-2015.

(1) Area of defect

The area of the defect area is equal to the pixels in the defect area. By directly calculating the
number of pixels in the defect area, the area of the defect area can be obtained. The area of defect area
is one of the important characteristics of defects. The hidden information of each defect area can be
further analyzed by the size of defect area.

(2) Perimeter of defect

The perimeter of the defect area is another important characteristic parameter of the defect area.
Although the perimeter of the defect area cannot directly reflect the size and shape of the defect, it
can be combined with the area of the defect area to get more information about the defect.

(3) Slenderness ratio of defect

The slenderness ratio is the length width ratio of the circumscribed rectangle in the defect area.
As shown in Fig. 4b, the minimum circumscribed rectangle of weld defect is given in the figure, and
the fine length of this defect area is the ratio of long axis A to short axis B.
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(4) Duty cycle of defect

The duty cycle of the defect area refers to dividing the area of the defect area by the area of its
smallest circumscribed rectangle. As also shown in Fig. 4b, the duty cycle of the defect area is the
number of pixels of the defect area divided by the area of its smallest circumscribed rectangle, that is,
the product of the long axis A and the short axis B.

i is the defect feature?

j is the defect feature?

All edges j are
traversed?

All pixels are
traversed?

Yes

No

No

Start

Yes

No
Yes

No

Yes

End

Selecting initial center
pixel i

Flaging defects

Updating edge pixel
j=j+1 of the center i

Updating center
pixel i=i+1

Figure 5: Flow chart of automatic identification of defect connected area

To sum up, the image processing of auxiliary feature extraction for weld X-ray detection of UHV
equipment key parts mainly includes three steps: image noise reduction, image threshold segmentation
and image feature extraction. The flow chart of specific operation is shown in Fig. 6.

5 Experiment and Results

The experimental verification is carried out with the weld X-ray detection image of UHV
equipment key parts on the production site. As shown in Fig. 7, weld defects include slag inclusion,
pores and cracks.
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Figure 6: Flow chart of weld defect feature extraction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: X-ray inspection images of defects in UHV key parts welds. (a) pores 1, (b) pores 2, (c) pores
3, (d) slag inclusions 1, (e) slag inclusions 2, (f) slag inclusions 3, (g) hot cracks 1, (h) hot cracks 2, (i)
hot cracks 3
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After the extraction of the defect area, the main body of the image is the weld defect. The image
denoising and threshold segmentation image processing are carried out for the defect position, and
the results are shown in Fig. 8. It can be seen that the noise reduction method based on monostable
stochastic resonance can adapt to the production field images of different color levels, and can enhance
and retain weak defects to a great extent. The haze of the field image will affect the image contrast,
but generally speaking, the X-ray image of the weld of UHV key parts can be processed into the result
of easily distinguishable defects through noise reduction and threshold segmentation.

(a)

(d)

(b)

(e)

(c)

(f)

(g) (h) (i)

Figure 8: Defect images after noise reduction and threshold segmentation

After obtaining a clear binary image with weak defects, the defect area, perimeter, slenderness ratio
and duty cycle are extracted. As shown in Fig. 9, the overall extraction result is good, but sometimes
there is excessive extraction. In Fig. 9b, a whole defect is extracted into three defects. At this point,
manual help is needed to judge the real defects and make further decisions.

The feature parameters automatically extracted from the defect area are shown in Table 2. The
defect grade can be set according to the characteristic parameters, and the defect severity can be further
evaluated.
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Figure 9: Automatic extraction results of weld weak defect features including slag inclusions, pores,
and cracks

Table 2: Quantitative parameter of the chosen weld defect characteristics

Defect number Area (piexl2) Perimeter (piexl) Slenderness ratio Duty cycle

Fig. 9a 1 16 9 1.12 0.61

Fig. 9a 2 6 6 1.25 0.59

Fig. 9a 3 5 5 1.03 0.66

Fig. 9a 4 64 29 1.19 0.69

Fig. 9a 5 18 10 1.05 0.63

Fig. 9a 6 13 8 1.35 0.52

Fig. 9a 7 7 7 1.02 0.61

(Continued)
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Table 2 (continued)

Defect number Area (piexl2) Perimeter (piexl) Slenderness ratio Duty cycle

Fig. 9a 8 1 1 1 1

Fig. 9a 9 4 4 1 1

Fig. 9a 10 2 2 2 1

Fig. 9a 11 1 1 1 1

Fig. 9b 1 793 295 2.58 0.71

Fig. 9b 2 2 2 2 1

Fig. 9b 3 2 2 2 1

Fig. 9c 1 236 103 1.89 0.75

Fig. 9d 1 90 34 1.06 0.77

Fig. 9d 2 95 36 1.54 0.63

Fig. 9d 3 389 122 2.04 0.6

Fig. 9e 1 378 212 1.93 0.67

Fig. 9e 1 297 191 1.64 0.86

Fig. 9f 1 1078 532 1.01 0.87

Fig. 9f 2 1278 693 1.24 0.74

Fig. 9g 1 976 492 4.19 0.56

Fig. 9h 1 1113 566 6.13 0.66

Fig. 9i 1 1028 522 6.99 0.61

Fig. 9i 2 1374 597 5.95 0.47

6 Conclusion

The low accuracy of weak welding seam defect identification of key components of UHV
equipment based on X-ray images is a long-standing problem. Traditional methods can no longer
meet the detection needs of higher requirements. In order to better identify weak defects, a series
of processing is performed on X-ray images, including image noise reduction based on monostable
stochastic resonance, and the improved threshold segmentation processing based on edge detection.
Finally, based on the pre-order traversal of the binary tree, the automatic identification of the defect
connected area is realized, and the characteristic parameters are set according to the industry detection
standard. The main features of weld defects are automatically extracted and quantified.

Compared with Gaussian filter which is the representative of traditional image noise reduction
methods, the proposed noise reduction method based on monostable stochastic resonance can better
retain weak features while removing noise. Compared with the classical Otsu threshold segmentation,
the improved Otsu threshold segmentation combined with Laplacian edge detection can better realize
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the segmentation of features and background. According to the industry standard NBT 47013.11-
2015, the area, perimeter, slenderness and interval duty ratio are selected as parameters, which solve
the problems of lack of dimension and low feature extraction efficiency for X-ray image defect feature
extraction of key components of UHV equipment.

The experimental results show that the method in this paper can accurately extract the weak weld
defect features and improve the weld quality detection accuracy. At the same time, the relevant results
provide a basis for subsequent decision-making such as the evaluation of weld defects, and significantly
improve the efficiency of weld quality inspection of UHV equipment key components. In addition, the
proposed method is not only suitable for X-ray weld inspection images, but also for other image detail
feature extraction under noise background.
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