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ABSTRACT

At present, the large-scale access to electric vehicles (EVs) is exerting considerable pressure on the distribution
network. Hence, it is particularly important to analyze the capacity of the distribution network to accommodate
EVs. To this end, we propose a method for analyzing the EV capacity of the distribution network by considering the
composition of the conventional load. First, the analysis and pretreatment methods for the distribution network
architecture and conventional load are proposed. Second, the charging behavior of an EV is simulated by combining
the Monte Carlo method and the trip chain theory. After obtaining the temporal and spatial distribution of the EV
charging load, the method of distribution according to the proportion of the same type of conventional load among
the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network. By
adjusting the EV ownership, the EV capacity in the distribution network is analyzed and solved on the basis of
the following indices: node voltage, branch current, and transformer capacity. Finally, by considering the 10-kV
distribution network in some areas of an actual city as an example, we show that the proposed analysis method can
obtain a more reasonable number of EVs to be accommodated in the distribution network.
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1 Introduction

With the establishment and growing popularity of strategic objectives such as carbon peaking and
carbon neutralization worldwide, as well as the proposal of relevant concepts such as green power grids
and green energy consumption, intelligent and sustainable modes of transportation, including electric
vehicles (EVs), are being actively promoted [1]. The promotion and application of EVs can play an
important role in ensuring national energy security and mitigating the greenhouse effect [2]. However,
because EVs use electricity as their only power source, their wide penetration and large-scale access
to the power grid may lead to problems such as node voltage out-of-range, transformer overload, and
increased network loss, which are not conducive to the safe and stable operation of the distribution
network [3,4]. Therefore, analyzing the EV capacity of the current distribution network is important
not only for the planning of the power grid, so as to better serve the public, but also for supporting
local governments in formulating EV development plans.
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EV charging load forecasting is the basis for analyzing the EV charging capacity of the distribution
network, and researchers have conducted numerous studies in this regard. By analyzing the charac-
teristics of the temporal distribution of the EV charging load, a Monte Carlo simulation method was
used to predict the EV charging load after fitting the probability distribution of the last trip end time
and daily mileage of the EV [5,6]. Further, the Poisson distribution model was proposed to analyze the
aggregation characteristics of charging loads at EV charging stations. This method considers only the
temporal characteristics of EV charging loads and is suitable only for centralized charging scenarios
such as shopping mall parking lots, optical storage charging stations, and highway charging stations;
it is not suitable for decentralized charging scenarios [7,8]. In addition, the probability distribution
of the spatio-temporal characteristics of each segment of the EV trip was fitted according to the trip
chain theory to obtain a more accurate spatio-temporal distribution of the EV charging load [9–13].
Considering the impact of the traffic network information on the EV trip, some researchers have also
developed dynamic forecasting models for the EV charging demand with high accuracy and good
real-time performance [14,15]. In summary, the EV charging load prediction method based on the
trip chain theory has the advantages of high accuracy and easy implementation, and it significantly
facilitates the study of EV charging load prediction.

The capacity of the distribution network to accommodate EVs depends on various factors, which
have been studied from different perspectives in the existing literature. The influence of the EV
charging load on the service life of the distribution network transformer has been discussed extensively
[16,17]. The number of vehicles in the residential distribution network, the penetration of plug-in
hybrid electric vehicles (PHEVs) in the next few years, the distribution of PHEVs in the network, and
the estimated household load growth in the next few years have been considered to study the impact
of EVs on the residential distribution system; however, other distribution systems such as industrial
areas have not been considered [18]. The evaluation index system has been established from the three
aspects of rationality, safety, and economy of the distribution network operation, and the capacity of
the distribution network has been evaluated from various aspects [19]. The analysis of EV access from
the two aspects of distribution network construction investment and network loss during operation
has shown that EV access will lead to an increase in both the distribution network investment cost
and the network loss [20]. Various factors such as system load size, node voltage offset, and network
power loss have been integrated to analyze the ability of the distribution network to accommodate
EVs [21–23].

Although the aforementioned studies have used various evaluation indicators to analyze the
capacity of the distribution network to accommodate EVs, the following deficiencies persist in the
prediction of the EV charging load and the integration of the charging load and conventional load: (1)
EV trips are random in time and space, and their charging time and place are related to the journey.
However, the aforementioned studies have not fully considered the space-time characteristics of the
EV charging load in its prediction. (2) When dividing the distribution network into functional areas,
the load category in the functional area is generally considered unique; however, in fact, the load
categories in the functional area are diverse. If there is only one load category in the default functional
area, the accuracy of the result will be affected. Therefore, the conventional load should be processed
more finely.

In view of the aforementioned shortcomings, this paper proposes a method for analyzing the EV
capacity of the distribution network by considering the composition of the conventional load. First,
the power load units in the distribution network are classified according to the load characteristics.
Then, the distribution network topology is established by dividing the network into multiple small
power supply areas. By combining the trip chain theory and the Monte Carlo method, the temporal
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and spatial distribution of the EV charging load is predicted, and a distribution method based on
the proportion of the same type of conventional load between each node is proposed to integrate
the charging load prediction results with the conventional load of the distribution network. The
EV capacity of the regional distribution network is analyzed on the basis of the following indices:
node voltage, branch power, and transformer load capacity. Finally, by considering a regional 10-kV
distribution network as an example, the capacity of the distribution network to accommodate EVs is
analyzed.

2 Distribution Network Model Analysis and Preprocessing
2.1 Classification of Power Load Units

Owing to the complex distribution network lines and numerous loads in reality, as well as the
random specific charging locations for EVs, a method for power load unit classification is proposed
to prepare for the subsequent EV charging load distribution to each node of the distribution network.

A power load unit refers to the load with an independent distribution room or transformer for the
power supply. Common power load units include residential buildings, communities, villages, office
buildings, schools, and industrial parks. According to the load characteristics, the power load units
can be categorized into residential load, commercial load, and office load. For convenience of the
subsequent discussion, they will be denoted by class a, class b, and class c, respectively. The specific
definitions are as follows.

1) Class a load

It refers to the load that maintains the normal operation of residential places: a = {communities,
villages, nursing homes, etc.}.

2) Class b load

It refers to the load for commercial activities, b = {hotels, clubs, scenic spots, office buildings,
etc.}.

3) Class c load

It refers to the load involved in office and production activities, c = {government organs, schools,
industrial parks, etc.}.

2.2 Division of Small Power Supply Areas
Owing the large number of power load units in the distribution network, to simplify the distribu-

tion network and facilitate the calculation, the concept of small power supply areas is proposed. It is
simply understood that the power load units that are located on the same line and are relatively close
to each other constitute a small power supply area. By dividing the distribution network into small
power supply areas, the power load units in a certain range are gathered into a load node. Owing to
such division, the distribution network is simplified considerably, as shown in Fig. 1.

According to the division method shown in Fig. 1, the distribution network can be simplified into
a network topology composed of several nodes. In addition, as can be seen from the figure, a node
may contain multiple categories of power load units.
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Figure 1: Simplification of the distribution network

3 Analysis of EV Capacity of Distribution Network
3.1 EV Charging Load Forecasting Considering Spatio-Temporal Characteristics
3.1.1 Trip Chain Theory

According to the description of an EV trip in the trip chain theory, the daily trip process of a single
EV is determined by the trip characteristic quantities, such as the first trip time Ts,1, the trip time tx
from the departure to the destination, the parking time tp of different trip destinations, and the trip
mileage d per trip [24]. The structure of the trip chain is shown in Fig. 2.

Time 
chain

Spatial 
chain

tx,i tp,i tx,i+1 tp,i+1tp,i-1

dx,i dx,i+1
Di-1 Di Di+1

Ta,i-1 Ts,i Ta,i Ts,i+1 Ta,i+1 Ts,i+2

Figure 2: Structure of the trip chain

The characteristic quantity in the trip chain can be categorized into time and space; i refers to the
i-th trip with Di-1 as the starting point and Di as the destination; Ts,i and Ta,i represent the departure
time and arrival time of the i-th trip, respectively; tx,i and tp,i represent the driving time of the i-th trip
and the parking time at the destination, respectively; and dx,i represents the driving distance of the
i-th trip.

3.1.2 Spatio-Temporal Variable Parameter Fitting

A suitable probability distribution model is selected for fitting according to the data distribution
characteristics. When the data distribution characteristics are different from the distribution charac-
teristics of common probability models, a Gaussian mixture distribution can be used for fitting, and
its probability density function can be described by the weight α, mean value μ, and variance σ of each
Gaussian distribution. The specific solution can be obtained using the expectation-maximization (EM)
algorithm [25,26].

The analysis of the trip data revealed that the first trip moment of the day for the EV users
obeys a one-dimensional Gaussian mixture distribution ln

(
tx,i

) ∼N
[
μx (Di−1, Di) , σ 2

x (Di−1, Di)
]
. For
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trips with a determined origin and destination, the trip time tx obeys a log-normal distribution
dx (tx) ∼ N

[
μdx (tx) , σ 2

dx (tx)
]
. The trip distance dx obeys a normal distribution under the condition

of trip time tx. Moreover, the mean μdx (tx) and variance σdx (tx) of the trip time tx both satisfy a power
function relationship. Hence, the power function y (tx) = a × (tx)

b form is used to fit the distribution
parameters. The parking time of each trip depends on the type of the trip destination. According to the
different types of destinations, the probability distribution model used for the parking time is different
[27].

3.1.3 Charging Behavior Criterion

According to the aforementioned method, the fitting of the EV travel characteristic quantities is
completed, and the probability distribution of each characteristic quantity is calculated subsequently.
Finally, the complete EV travel chain is generated through Monte Carlo random simulation. Further-
more, the endurance capacity of the vehicle decreases continuously during driving; hence, the initial
state of charge (SOC) of the EV is set to 1 to update the battery charge state during driving. The
calculation formula is expressed as follows:

SOCi = SOCi−1 − dx,iQ100

Cb

(1)

where SOCi−1 and SOCi denote the battery charge state before and after the i-th trip, respectively, dx,i

is the driving mileage (km), Q100 is the battery power consumption per 100 kilometers (kwh/100 km),
and Cb is the battery capacity (kWh).

It is assumed that the EV is charged when SOCi−1 of the EV either cannot meet the demand of
the next trip or is lower than the customary safe SOC level. The charging mode is set to both AC slow
charging and DC fast charging, with priority given to the former considering the battery life and the
impact on the grid. When the slow charging mode cannot complete the charging task to support the
next trip within the parking time, the fast charging mode is adopted.

It should be noted that in the survey and statistical data of users’ trips in this study, there is no
distinction between EVs and fuel vehicles, i.e., EVs and fuel vehicles are assumed to have the same trip
regularity. In addition, this study is mainly based on the development status of EVs in the northern
cities of China. At this stage, private EVs account for the vast majority of the EV market, whereas
other types of EVs such as electric taxis account for a small proportion; the error caused by ignoring
them is negligible. Moreover, considering that the charging of electric buses is uniformly dispatched
by the operation company, it involves good planning and can be regarded as the conventional load in
the distribution network. Hence, it will not be considered.

3.2 Distribution of EV Charging Load
The temporal and spatial distribution of the EV cluster charging load in Section 3.1 includes the

charging load of EVs connected to residential, commercial, and office areas in each time period and
the total charging load in each time period. To integrate the EV charging load with the conventional
load of the distribution network and compensate for the shortage of a single load in each functional
area in the traditional distribution method, by completing the pretreatment of the distribution network
model, a distribution method based on the proportion of a similar conventional load among the nodes
is proposed. The distribution calculation formula is expressed as follows:
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(2)

where N is the number of distribution network nodes; Lb_i,a, Lb_i,b, and Lb_i,c are the class a, class b,
and class c conventional loads on node i, respectively; Lev,a, Lev,b, and Lev,c are the EV charging loads
connected to residential, commercial, and office areas, respectively; Lev,i is the EV charging load on
node i; and Lb_i is the foundation load on node i.

By superimposing the EV charging load and the conventional load, the total load of the node
after connecting the EV charging load can be obtained as follows:

Li = Lb_i + Lev,i (3)

where Li is the total load on node i.

A schematic diagram of the allocation method is shown in Fig. 3.
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Figure 3: Charging load distribution
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3.3 EV Charging Capacity Modeling of Distribution Network
3.3.1 Objective Function

To analyze and evaluate the capacity of an urban distribution network to accommodate EVs, the
objective function for the maximum number of EVs accommodated in the distribution network is
established as follows:

maxC = f (Net, Lb, Lev) (4)

where Net is the topology of the distribution network; Lb is the node conventional load; and Lev is the
EV charging load.

According to the objective function, the EV capacity of the distribution network is limited by the
topology of the distribution network and its conventional load. It should be noted that the aim of
this study is to calculate the maximum number of EVs that can be accommodated in the distribution
network, regardless of the limitation of the charging piles, i.e., the number of charging piles in the
distribution network is assumed to be sufficient.

3.3.2 Constraint Condition

1) Node voltage constraint

Vmin ≤ Vi ≤ Vmax (5)

where V i is the voltage value of node i, and V max and V min are the upper and lower limits of the node
voltage, respectively.

2) Transformer capacity constraints

Si ≤ SN (6)

where Si is the load of transformer i and SN is the rated capacity of the transformer.

3) Branch current constraint

Il_i ≤ IN (7)

where I l_i is the current of branch i and IN is the maximum allowable current of the line.

3.4 Solving Process
The backward/forward sweep power flow calculation method [28] is a common method for

calculating the voltage level of each node, transformer load level, branch current, and other operation
indices in the distribution network, and it has great advantages in solving the power flow of radial
distribution networks. When the EV charging loads of different scales are connected to the distribution
network, the operation state of the distribution network is bound to change, such as drop in the
node voltage level, heavy load operation of the transformer, and line overheating. While continuously
adjusting the EV ownership, the operation state of the distribution network is observed; by judging
whether the distribution network operates within the safe range, the maximum number of EVs that
the distribution network can accommodate can be determined. The flowchart of the solution process
is shown in Fig. 4.
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Figure 4: Flowchart for analyzing EV capacity of distribution network

4 Example Analysis
4.1 Basic Information of Distribution Network

In this study, part of an actual distribution network is used for analysis. The area contains six
110/10 kV substations with a total of 34 outgoing lines. The specific structure is simplified as shown
in Fig. 5.

Here, node 1 is the superior system equivalent node, the impedance between node 1 and node 2 is
the system short-circuit impedance, node 2 is the 110 kV busbar, and nodes 3, 14, 20, 25, 28, and 40
are the 10-kV substation busbar nodes.

The transformer model and rated capacity of each substation are listed in Table 1.

The distribution network node conventional load and line impedance parameters are summarized
in Table S1.

Without considering the EV charging load connected to the distribution network, the power
flow calculation is performed on the original distribution network. The node voltage distribution is
obtained as shown in Fig. 6.

As can be seen from the calculation results in Fig. 6, the node voltage is as low as 0.956 (unit
value). In addition, the maximum current of the line is 360.56 A, and the load rate of each transformer
is within the allowable range. According to the regulations of 10-kV distribution network operation,
the allowable offset range of the node voltage is between −7% and +7% of the rated voltage, and
the maximum allowable current of the LJ-240 overhead line is 610 A (70°C), the maximum allowable
current for a three-core cable with a conductor cross section of 300 mm2 is 433 A (60°C), according to
the wire type. Therefore, from the results of the power flow calculation under the conventional load
only, it can be seen that the distribution network has some remaining load capacity for EV charging
load access.
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Figure 5: Structure of the specified distribution network

Table 1: Parameters of transformers

Number of nodes of
the substation

Transformer model Transformer capacity
configuration (MVA)

3 SFPZ7-50000/110 50 ∗ 2
14 SFZ7-10000/110 10 ∗ 2
20 SFZ7-12500/110 12.5 ∗ 2
25 SFZL7-6300/110 6.3 ∗ 2
28 SFZ7-40000/110 40 ∗ 2
40 SFPZ7-50000/110 50 ∗ 2
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Figure 6: Distribution of node voltages

4.2 EV Charging Demand Forecast
4.2.1 Fitting of Trip Characteristic Quantity

The National Household Trip Survey (NHTS) dataset [29] was used to analyze the characteristics
of urban residents’ driving trip activities.

1) Purpose of trip

The NHTS trip dataset contains 19 common trip purposes of the residents as well as the statistical
analysis of the trip data of the vehicles within the city. The six trip purposes and trip frequencies of the
residents with the highest frequency of driving on weekdays and weekends are summarized in Table 2.

Table 2: Proportion of the main trip purpose

Trip frequency
(%)

Go home Shopping Go to
work

Entertainment Pick up Eat Total

Weekdays 32.48 16.86 16.30 8.63 7.50 7.19 88.96
Weekends 36.93 20.34 3.98 13.76 4.08 11.70 90.79

In the calculation of the EV charging demand, the six trip destinations were classified into three
categories: residential, office, and commercial. The charging demand generated at shopping and
entertainment trip destinations was considered as commercial. Furthermore, charging was considered
not to be performed when the stay at dining and pick-up trip destinations was too short.

2) First trip time

The daily first trip times obeyed a three-peak mixed Gaussian distribution. The fitting results are
shown in Table 3.
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Table 3: Fitting results of the first departure time

Parameters θ 1 θ 2 θ 3

α1 μ1 σ 1 α2 μ2 σ 2 α3 μ3 σ 3

Weekdays 0.35 7.42 0.92 0.44 8.56 2.01 0.21 13.07 3.20
Weekends 0.80 9.51 1.89 0.09 14.39 1.52 0.11 17.19 1.76

3) Driving time and distance

The trip duration of departure and destination follows a log-normal distribution ln
(
tx,i

) ∼N
[
μx, σ 2

x

]
.

The fitting results for weekdays and weekends are presented in Table S2.

The mean and variance of the driving distance show a power function relationship with the driving
duration. The fitting results are shown in Table 4.

Table 4: Fitting results of the mean and standard deviation of the driving distance

Trip day μdx σ dx

a b a b

Weekdays 0.19 1.34 0.09 1.37
Weekends 0.12 1.49 0.07 1.50

4) Duration of parking

The parking duration of vehicles at different destinations was analyzed, and only the shorter time
was considered for vehicles whose destination was home; the case of returning home and not going out
again was not considered. The vehicle parking times at different destinations show a large difference.
The fitting results obtained using the log-normal and Gaussian mixture distribution are shown in
Table 5.

Table 5: Fitting results of parking duration

Trip purpose Distribution type Weekdays Weekends

Go home (min) Log-normal distribution μ 4.36 4.47
σ 1.15 1.16

Shopping (min) Log-normal distribution μ 3.08 3.21
σ 0.86 0.85

Go to work (h) 3-peak mixed Gaussian distribution α1 0.1 0.12
μ1 0.64 0.40
σ 1 0.45 0.27
α2 0.43 0.38
μ2 3.84 3.74
σ 2 1.38 1.48

(Continued)
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Table 5 (continued)

Trip purpose Distribution type Weekdays Weekends

α3 0.47 0.49
μ3 8.97 8.34
σ 3 1.36 1.92

Entertainment (min) Log-normal distribution μ 4.57 4.65
σ 1.02 0.94

Pick up (min) Log-normal distribution μ 1.64 1.91
σ 1.12 1.15

Eat (h) Bimodal mixed Gaussian distribution α1 0.38 0.62
μ1 0.15 0.60
σ 1 0.08 0.43
α2 0.62 0.38
μ2 0.93 1.44
σ 2 0.55 0.65

5) Trip destination transfer probability

Dividing a day into 24 periods and considering the difference between going home for a short
period of time and going home at the end of the trip, the size of the trip purpose shift matrix is 24 ×
6 × 7. The trip shift probability between 17:00 and 18:00 on weekdays is shown in Fig. 7.

Transfer 

probability

The probability of trip shift from 17:00 to 18:00 on weekdays 

Figure 7: Transfer probability between trip purposes between 17:00 and 18:00 on weekdays



EE, 2023, vol.120, no.3 755

4.2.2 Charging Demand Forecast

The top five EVs in terms of the market share in the United States were selected for simulation.
The specific parameters are listed in Table 6.

Table 6: Parameters of selected car models

Car model Proportion Battery capacity (kWh) Power consumption per 100
km (kWh/100 km)

Tesla model 3 63% 75 16
Tesla model X 11.2% 100 24
Tesla model S 11% 100 15.4
Chevrolet bolt 8.1% 66 17.2
Nissan leaf 6.7% 30 21.2

Considering the battery life and the impact on the distribution network, slow charging (5 kW)
is preferred for EVs; however, fast charging (50 kW) is chosen when the slow charging mode cannot
complete the charging task to support the next trip within the parking time. To improve the simulation
accuracy, the EV trip and charging behavior were simulated continuously for 3 weeks with a simulation
accuracy of 1 min. To exclude the error caused by the SOC in the starting phase, the charging load
demand on Monday and Sunday of the second week in each charging area was chosen for analysis, as
shown in Fig. 8.
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Figure 8: Charging demand on Monday and Sunday of the second week

From Fig. 8, a comparison of the EV charging load curves in office areas on weekdays and
weekends shows that the charging load is higher in office areas on weekdays than on weekends, and
this gap is particularly prominent between 08:00 and 20:00, because EV users habitually choose to
charge their EVs at their workplaces on weekdays.
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The analysis of charging loads connected to residential areas shows that the general trends of
EV charging loads on weekdays and weekends are the same; however, between 12:00 and 20:00 on
weekends, the EV charging loads are slightly higher than those at the same time on weekdays because
more users are at home during the weekends and therefore have more opportunities to choose to charge
their EVs at their place of residence.

In general, users stay in commercial areas for a short time, which is not sufficient to complete
charging. Hence, the charging load of EVs entering commercial areas on weekdays and weekends is
low; however, people are more accustomed to visiting commercial areas on weekends, making the
charging load on weekends slightly higher than that on weekdays.

Combined with the aforementioned analysis of the charging loads in each region, the prediction
results of this study for the spatial and temporal distribution of the EV charging loads are consistent
with the actual situation and have high accuracy.

4.3 Analysis of EV Charging Capacity in Distribution Network
Taking Monday of the second week as an example, the EV capacity of the distribution network is

analyzed according to the process shown in Fig. 4. When the number of EVs increases to 22973, the
line of node 11 of the distribution network is the first to reach the maximum allowable current value
of 432.8 A, at which time the other branch currents and transformer loads are within the constraint
range. The voltage distribution of the distribution network nodes is obtained as shown in Fig. 9.

Figure 9: Load node voltage distribution including EV charging load

From Eq. (4), it can be seen that the topology of the distribution network and the size of
the conventional load are the key factors that limit the capacity of the distribution network to
accommodate EVs, for which the 11 nodes and the lines where they are located are analyzed with
the parameters listed in Tables 7 and 8.

Table 7: Line conventional load of node 11

Line branch 11 12 13

Conventional load (kVA) 2764.3+393.7i 2468.9+351.6i 937.6+133.5i

Total (kVA) 6170.8+878.8i
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Table 8: Conventional load composition of nodes 11, 12, and 13

Number of nodes Class a load Class b load Class c load

11 6.09% 3.98% 0.23%
12 4.00% 13.09% 0%
13 1.05% 7.61% 0%

First, the analysis is done from the perspective of the conventional load on the line where node
11 is located. When EV charging load is not considered, the conventional load on the line is shown
in Table 7, and the total line load reaches 6170.8+878.8i kVA, which shows that the conventional
load on the line is higher than most lines. On the other hand, the analysis from the perspective of EV
charging load access. As can be seen from Table 8, the percentage of class a load in nodes 11, 12 and 13
reached 6.09%, 4.00%, 1.05%, respectively, and the total percentage of class a load in these three nodes
reached 11.14%, in addition, the total percentage of class b load on the line also reached 24.7%, which
is a relatively large ratio compared to other lines. According to the charging load allocation principle,
the node with a large percentage of conventional load classification is also assigned a large charging
load, so the above-mentioned node will receive more charging load for charging load allocation, thus
causing line overload.

The aforementioned analysis shows that under the existing distribution grid structure, the number
of EVs that can be accommodated in the distribution grid in the region is around 22973, considering
the spatial and temporal characteristics of the EV trip and charging behavior.

4.4 Evaluation of Charging Load Distribution Method
The proposed method allocates the charging load in proportion to the conventional load of the

same category among the nodes, which offers the following advantages:

1. The manner of division of the distribution network into functional areas is improved. Pre-
viously, the functional area was large in scope and had a single conventional load category.
However, in fact, the functional area may also contain other categories of the conventional
load during the division. For example, the office area includes not only schools, party and
government agencies, and factories and other loads but also residential and commercial loads
of a certain scale. The division of the electric load unit classification and electronic supply area
in this study overcomes this drawback.

2. The accuracy of the charging load allocation is improved. If the spatial characteristics of the
charging load are not considered, i.e., if the charging load in each area is not distinguished, and
the total charging load is directly distributed according to the total conventional load of each
node, there will be a large deviation in the distribution result, as shown in Table 9 (considering
the line of node 11 as an example).

As can be seen from Table 9, considering the spatial characteristics of the charging load, the
charging load obtained by the line of node 11 increased from 788.5 to 1245.1 kW, i.e., an increase of
57.9%. This is only for the analysis of the line of node 11; the case of the other nodes depends on the
specific composition of the conventional load. In conclusion, the proposed charging load allocation
method fully considers the spatial and temporal characteristics of the EV charging load as well as the
composition characteristics of the distribution network conventional load, and improves the accuracy
of the distribution network EV capacity analysis results.
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Table 9: Charging load of the line of node 11 under two distribution modes

Distribution mode Distribution results (kW) Total (kW)

Spatial characteristics are considered
Class a Class b Class c

1245.1
1123.6 119.0 2.5

Spatial characteristics are not considered 788.5 788.5

5 Conclusion

Considering that the increasing EV charging load due to large-scale access to EVs will affect the
safe and stable operation of the distribution network, this paper proposed a method for analyzing
the EV charging capacity of the distribution network. First, the topology the of distribution network
was simplified by analyzing and preprocessing the distribution network model. Second, by combining
the trip chain theory and Monte Carlo simulation method, the driving trip and charging behavior of
urban residents was analyzed, and the temporal and spatial distribution of the EV charging demand
was predicted. Considering the diversity of the conventional load composition categories of the actual
distribution network nodes, a distribution method based on the proportion of the conventional load
of the same category among nodes was proposed to integrate the charging load with the conventional
load of the distribution network. Finally, the EV charging capacity of the distribution network was
solved via power flow calculation. In this study, specifically, a feasible EV charging load distribution
method was proposed on the basis of the characteristics of the space-time distribution of the EV
charging load and the composition characteristics of the node conventional load. Compared with the
traditional method of dividing the distribution network into functional areas, this study made a more
refined classification of the power load units in the power supply area. The proposed EV charging load
distribution method was shown to effectively reduce the error caused by a single load category in the
traditional method, ensure reasonable distribution of the charging power to each node, and improve
the reliability of the results. The findings presented herein can provide not only a reference to power
grid operators for relevant decisions but also significant guidance to the government for planning the
development of EVs.
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Appendix

Table S1: Distribution network parameters

First node
number

End node
number

Branch impedance (Ω) Active power of end
node (kW)

Reactive power of
end node (kVar)

1 2 0.0000+0.0278i 0.0000 0.0000
2 3 0.0048+0.1176i 0.0000 0.0000
3 4 0.1602+0.2896i 3920.4000 558.3600
3 5 0.0582+0.1097i 2257.2000 321.4800
5 6 0.0582+0.1097i 856.5000 121.9864
6 7 0.0582+0.1097i 1982.5700 282.3660
7 8 0.0582+0.1097i 500.9400 71.3460
3 9 0.2232+0.4345i 3165.5250 450.8475
3 10 0.5412+0.9335i 3752.1000 534.3900
3 11 0.1038+0.1940i 2764.3030 393.7038
11 12 0.1038+0.1940i 2468.9610 351.6399
12 13 0.1038+0.1940i 937.6290 133.5411
2 14 0.0327+0.5834i 0.0000 0.0000
14 15 0.6257+1.0442i 1447.8750 206.2125
15 16 0.6257+1.0442i 1311.7500 186.8250
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https://doi.org/10.1049/gtd2.12216
https://doi.org/10.1109/TPWRS.2010.2049133
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1109/ACCESS.2020.3014160
https://doi.org/10.1088/1755-1315/113/1/012170


EE, 2023, vol.120, no.3 761

Table S1 (continued)

First node
number

End node
number

Branch impedance (Ω) Active power of end
node (kW)

Reactive power of
end node (kVar)

16 17 0.6257+1.0442i 1034.5500 147.3450
17 18 0.6257+1.0442i 826.6500 117.7350
14 19 2.3556+4.4434i 1480.0500 210.7950
2 20 0.0245+0.4667i 0.0000 0.0000
20 21 0.4950+0.8280i 1527.0750 217.4925
20 22 0.3997+0.7736i 3848.6250 548.1375
22 23 0.3997+0.7736i 1022.1750 145.5825
20 24 1.4786+2.7731i 1227.6000 174.8400
2 25 0.0574+0.9261i 0.0000 0.0000
25 26 0.2621+0.3103i 3153.1500 449.0850
26 27 0.2621+0.3103i 638.5500 90.9450
2 28 0.0060+0.1458i 0.0000 0.0000
28 29 0.0161+0.0198i 2363.6250 336.6375
28 30 0.0876+0.2488i 3437.7750 489.6225
28 31 0.1872+0.3110i 950.2500 135.3386
31 32 0.1872+0.3110i 4044.1500 575.9850
32 33 0.1872+0.3110i 1025.6400 146.0760
28 34 0.4238+0.7056i 3507.0750 499.4925
28 35 0.0585+0.1116i 1722.6000 245.3400
35 36 0.0585+0.1116i 1366.2000 194.5800
36 37 0.0585+0.1116i 1289.4750 183.6525
37 38 0.0585+0.1116i 1027.1250 146.2875
28 39 0.6190+0.8384i 2504.7000 356.7300
2 40 0.0048+0.1176i 0.0000 0.0000
40 41 0.5783+1.1401i 2868.5250 408.5475
41 42 0.5783+1.1401i 2640.8250 376.1175
40 43 0.4004+0.7530i 2217.6000 315.8400
43 44 0.4004+0.7530i 712.8000 101.5200
44 45 0.4004+0.7530i 2460.1500 350.3850
40 46 0.0618+0.1095i 1220.1750 173.7825
46 47 0.0618+0.1095i 390.9260 55.6773
47 48 0.0618+0.1095i 1931.8610 275.1438
48 49 0.0618+0.1095i 1393.9200 198.5280
49 50 0.0618+0.1095i 1193.5400 169.9890
40 51 0.0592+0.0903i 2138.4000 304.5600
40 52 0.6885+1.2236i 1628.5500 231.9450
40 53 0.2990+0.5777i 992.4750 141.3525
53 54 0.2990+0.5777i 1282.0500 182.5950
40 55 0.1521+0.2808i 1103.8500 157.2150
55 56 0.1521+0.2808i 746.2100 106.2784

(Continued)
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Table S1 (continued)

First node
number

End node
number

Branch impedance (Ω) Active power of end
node (kW)

Reactive power of
end node (kVar)

56 57 0.1521+0.2808i 2148.3000 305.9700
57 58 0.1521+0.2808i 1425.6000 203.0400

Table S2: Fitting results of driving time

Trip time Last trip This trip

Go home Shopping Go to work Entertain-
ment

Pick up Eat

Weekdays
(μx, σx)

Go home (2.76,1.05) (2.36,0.72) (2.94,0.73) (2.85,0.86) (2.41,0.73) (2.39,0.68)
Shopping (2.45,0.73) (2.21,0.77) (2.46, 0.8) (3.24,0.96) (2.18,0.94) (2.28,0.77)
Go to work (3.01,0.78) (2.68,0.82) (2.79,0.88) (2.94,0.84) (2.85,0.78) (2.38,0.73)
Entertain-
ment

(2.89,0.80) (2.61,0.85) (2.20,0.83) (2.83,0.86) (3.11,0.94) (2.70,0.79)

Pick up (2.34,0.73) (2.46,0.80) (2.73,0.76) (3.22,0.82) (2.25,0.79) (2.35,0.73)
Eat (2.5, 0.74) (2.31,0.85) (2.33,0.69) (2.93,1.12) (2.76,1.04) (2.49,0.92)

Weekends
(μx, σx)

Go home (3.05,1.31) (2.46,0.70) (2.75,0.76) (3.09,0.90) (2.56,0.87) (2.62,0.80)
Shopping (2.48,0.70) (2.21,0.70) (2.04,0.46) (2.66,0.56) (2.65,0.89) (2.39,0.96)
Go to work (2.81,0.77) (2.67,0.79) (2.54,0.87) (3.32,0.24) (2.95,0.79) (2.51,0.88)
Entertain-
ment

(3.07,0.87) (2.75,0.78) (2.25,1.15) (3.15,0.98) (2.97,0.93) (2.95,0.90)

Pick up (2.56,0.93) (2.81,1.01) (3.13,1.04) (3.61,0.79) (2.87,0.98) (2.96,0.86)
Eat (2.69,0.82) (2.69,0.86) (2.40,0.97) (2.83,1.03) (3.18,0.79) (2.51,0.89)
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