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ABSTRACT

Reducing the impact of power outages and maintaining the power supply duration must be considered in
implementing emergency energy dispatching in micro-networks. This paper studies a new emergency energy
treatment method based on the robust optimal method and the industrial park micro-network with the optical
energy storage system. After controlling the load input, a control strategy of adjusting and removing is proposed.
Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.
A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the
power supply. Uncertainty is designed to adjust the effect of uncertainty on the problem. The example shows that
this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that
the input of the control load can be optimized.
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1 Introduction

New energy vehicles have developed rapidly due to their safety, convenience, high efficiency, and
environmental protection. Although there are essential differences between modern and traditional
vehicles in power, the fundamental nature of new vehicles is still derived from the upgrading and
transformation of conventional cars. The high-speed rotation of the motor and air-conditioning
condensers are still the two significant cooling needs of new energy vehicles. In addition, the cooling
part of the battery is also increased, so the new energy vehicle contains four discrete, independent
cooling systems: power supply, motor, electric control, and air conditioning. The four parts are
separate and do not interfere with each other. This content brings many consumables, occupies space,
causes energy consumption, and causes other problems. Limited by the current technology, the battery
life, driving capacity, and vehicle performance of new energy vehicles must be improved by various
means. Theoretically, the four cooling systems also have the optimization potential of saving material,
energy, and space. Vehicle coordination, system integration, and humanized experience will be the
future development direction of new energy vehicles.

Distributed generation (DG) is a way to maximize the use of renewable energy sources. DG is a
primary significant measure to save energy and reduce energy consumption in the country, as well as
an efficient combined energy system. Due to external conditions, photovoltaic (PV), wind power and
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so on have specific intermittent and random characteristics. DG varies greatly, and its oscillation is
irregular. DG brings difficulties to energy management and optimal dispatching of the micro energy
grid. Considering the influence of uncertainty, it can be divided into two types: one is to use backup
resource regulation to smooth the power output to meet the load demand, but its economic benefits
are not ideal. The second is the analysis using stochastic optimization techniques and probabilistic
statistics. Robust optimization theory is a relatively perfect theory for solving fuzzy optimization
problems developed in random optimization and fuzzy optimization in the past 40 years. Robust
optimality is the constraint condition that can be satisfied by constructing an uncertain set of definite
intervals when all possible uncertain variables are given in a given set.

Reference [1] firstly established a naturally determined and systematic control of multiple decision
variables as a robust optimal game for game players. Reference [2] introduced a robust optimal
planning algorithm considering wind speed uncertainty. It uses the vital duality principle of linear
optimization to transform the optimal robustness problem into hybrid linear programming. Reference
[3] proposed a robust voltage control method for power systems, considering the power systems’
uncertainty of capacity and loads. This method can keep PV and load stability in the case of varying
concentrations. Reference [4] introduced a robust energy control method. The scenario is generated
by interval fuzzy modeling, which changes the initial robust optimal problem into quadratic conic
programming. Reference [5] used a two-stage robust optimal strategy to solve the uncertainty problem
for grid-connected microgrids containing generators, renewable energy and energy storage systems
(ESS). ESS will reduce the average operating cost. Some unit combination and economic scheduling
results have been obtained with robust optimal methods. However, the current research results rarely
apply the robust algorithm to the emergency energy treatment of micro-networks. Under conventional
conditions, a commercial building microgrid (CBMG) is a new and sustainable power system in the
industrial park. ESS island is used for emergency treatment in case of a power grid accident. However,
there are still some uncertain factors in PV power generation capacity after CBMG transitions to the
island. Reasonable control of unstable energy is of great significance to ensure the safe and stable
operation of the power grid.

This paper presents a robust optimal strategy for emergency energy dispatching (RO-EEM) after
a power outage. This method can reduce the disturbance of power interruption to users and extend the
power supply duration. A weight factor is introduced in RO-EEM to balance the importance of the two
subitems. In this paper, uncertainty is introduced to improve the effect of uncertainty on the problem
[6]. The control strategy of “adjusting first and then cutting off” is proposed to control the input of each
period of the control load. Electric vehicles (EVs) use a two-stage adjustment during the adjustment
period. Air conditioning uses cycle adjustment.

2 CBMG Architecture

CBMG consists of PV, ESS, EV, Alternating Current (AC)/DC, load, microgrid central controller
(MGCC), etc. The lower machine controller consists of a micro-source controller, a load controller
(LC) and an EV controller (Fig. 1).

MGCC mainly monitors and coordinates the running status of each system. It can integrate every-
thing. The lower-level controller periodically sends data such as power consumption and generation to
the MGCC. MGCC will filter and process this to control CBMG effectively. AC/DC, a bidirectional
conversion circuit, can complete the DC and AC two kinds of power conversion [7]. Loads are divided
into control and focus categories according to their importance and ability to be adjusted. Control
loads include air conditioning, EV, auxiliary lighting, etc. It has low importance and good adjustability.
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The micro-energy grid must obey the unified control of MGCC during operation, but the size of
its adjustment significantly impacts the system use effect. The main load has the necessary lighting
equipment, computer control module, etc. Its importance is higher, and its adjustability is lower. In
operating a micro energy grid, the stable power supply should be kept as far as possible. If MGCC still
cannot meet the requirements of the main load after adjustment, it will significantly affect the safe and
stable operation of the whole power grid [8].

Figure 1: Schematic diagram of a micro-network system in optical energy storage Industrial Park

3 Mathematical Modeling

The CBMG will go to an island state after a power outage in the distribution network. Given the
V/F control situation, no matter how the input and output power of the battery energy storage system
changes, the voltage and frequency output by the inverter are given values. The difference between the
measured frequency f and the reference frequency determines frequency control. Then the phase angle
of the inverter is controlled by the proportional-integral regulator output. The output voltage and
frequency are controlled at a given value according to the amplitude and frequency of the measured
grid voltage. This keeps the grid voltage and frequency stable. Therefore, the CBMG is the primary
control device in the V/F mode in the island state.

3.1 Optimization Mode
CBMG needs to consider customer satisfaction and time of use in emergencies. And the two are

in conflict. The weighting factor is incorporated into the optimal index to measure its importance. Its
purpose function is as follows:

min ah(x) + bτ(x) (1)

h(x) =
∑n

i=1

xε0 − xεi

xε0

(2)

τ(x) =
∑n

i=1

SOC0 − SOCi

SOC0

(3)
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SOCi = SOC0 −
∑i

j=1

prj · �t
An

(4)

h(x) represents the relative change in the controllable load. The trimmer h(x) is, the closer the
controllable load input is to the initial value during a power outage [9]. At this time, the less impact
the power failure brings to the user, the higher the user satisfaction. The weight factor a indicates its
importance. τ(x) represents the relative change in the system on a Chip (SOC) of ESS. The smaller
τ(x) is. The larger the SOC of the ESS. The more backup power it can provide. Its importance is
indicated by the weight factor b. The sum of the weighting factors a and b is 1. If the ESS stores more
standby energy, the user has less dependence on controllable load. The weight factor a should be a
small value, otherwise b should be a small value. i is the number of optimizations. n is the total number
of optimizations. xε0 is the input of controllable load when power failure occurs. xεi is the input of
controllable load in optimization i. SOC0 is the SOC of the ESS when the outage occurs. SOCi is the
SOC of ESS at optimization i. prj is the discharge power of ESS at the JTH optimization. �t is the
time interval between two adjacent optimizations. An is the rated capacity of ESS.

3.1.1 Constraints on Power Balance

The discharge power of ESS must meet Eq. (5). The purpose is to maintain the power balance of
the System after CBMG switches to island operation.

pvi + pri = xεi + xεri (5)

pvi is the predicted value of PV in optimization i. xεri is the necessary load at the i optimization.
The amount of access to critical loads is a known constant that fluctuates with time.

3.1.2 Constraints on Controllable Load

The controllable load should be adjusted within a specific range. It can be expressed as

xε min ≤ xεi ≤ xε max (6)

xε min = Lεv min + Lεt min + Lεr min (7)

xε max = Lεv max + Lεt max + Lεr max (8)

xε min and xε max are the lower and upper limits of Bxci. Lεv min, Lεt min and Lεr min are the lower limits of
controllable load EV, air conditioning and secondary lighting facilities. Lεv max, Lεt max and Lεr max are the
upper limits of controllable load EV, air conditioning and secondary lighting facilities.

3.1.3 ESS Constraints

The SOC of ESS should be strictly controlled within a specific range. The goal is to prevent damage
to ESS from overcharging and over-discharging. It can be expressed as

SOCmin ≤ SOCi ≤ SOCmax (9)

SOCmin, SOCmax is the lower limit and upper limit of SOCi. The discharge power of ESS also has
a range limit. It can be expressed as

prmin ≤ pri ≤ prmax (10)

pri Positive ESS discharge. ESS is charged when it is negative. prmin is the upper limit of charging
power of ESS. prmax is the upper limit of ESS discharge power.
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PV predictions are often based on data collected over a short period. It has certain randomness
and volatility [10]. The above optimization model is written in matrix form. Matrix C, matrix Wε

in the objective function, matrix K, matrix T and matrix τ in the constraint condition are free of
uncertainties. Matrix k contains uncertainties. xis the column vector composed of controllable load
input and ESS discharge power. The original optimization model can be expressed as

min Wx + Wε (11)

s.t.

Kx = k (12)

Tx ≤ τ (13)

xmin ≤ x ≤ xmax (14)

Eqs. (12) and (13) in the constraint condition can be combined

Ax ≤ b (15)

The constant term in the objective function does not affect the optimal solution. Therefore, the
above optimization model can be simplified as follows:

min Cx (16)

Ax ≤ b (17)

xmin ≤ x ≤ xmax (18)

3.2 RO-EEM Model
When the distribution network is out, CBMG switches to island operation. If the initial SOC of

ESS is small and the load is large, the PV output is higher [11]. This is more conducive to the access of
controllable load and the maintenance of ESS reserve power. The worst case is the lowest PV output.
PV output at a time Ai is ωi. The fluctuation range of PV i is ωi − ω̂i ≤ ωi ≤ ωi + ω̂i. The PV output
value in the optimization model should be ωi = ωi − �iω̂i. �i is the uncertainty at the ith moment.
�i should satisfy 0 ≤ �i ≤ 1 and

∑
�i = �. � is the total uncertainty. RO-EEM model based on

optimization model {(11)–(14)} can be expressed as

min Cx + Wε (19)

s.t.

Kx = ω − diag(ω̂)� − xεr (20)

Tx ≤ τ (21)

xmin ≤ x ≤ xmax (22)

0 ≤ �i ≤ 1 (23)
∑

i

�i = � (24)

diag(ω̂) is a square matrix with ω̂ as the diagonal element and the remaining elements as 0.
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4 RO-EEM Strategy

RO-EEM is a rolling optimization method based on RO-EEM. Rolling optimization is an effective
method in real-time problems. The forecast of PV is constantly revised to make it more consistent with
the current trend. Fig. 2 shows the schematic diagram of the RO-EEM strategy [12]. The process goes
like this:

(1) Obtain SOC at the initial time t = t0 + i −1 ·�t′ of rolling optimization. t0 is the time when the
power failure occurs. i is the number of scrolling optimizations. �t′ is the time interval between two
adjacent scrolling optimizations. As the initial SOC value of this rolling optimization.

(2) Weight factor a and b, total uncertainty �. The RO-EEM model calculated the controllable
load input and ESS discharge power in the remaining period. The tb in Fig. 2 is the estimated
outage time.

(3) The optimization result of the RO-EEM model is based on the PV predicted value. The decision
must adjust according to the actual PV output [13]. If the difference between the actual PV output
and the predicted PV value is within the allowable adjustment range of ESS, it is balanced by ESS.
Otherwise, it is balanced by a controllable load. If the controllable load is not balanced when wholly
removed, cutting off part of the critical load is necessary.

(4) Update the real-time data and predicted value of PV and carry out the following rolling
optimization.

Figure 2: Schematic diagram of the RO-EEM policy

5 Specific Adjustment of Controllable Load
5.1 EV Adjustment Scheme

The relationship between SOC and charging current in the EV charging process can be expressed
as Eq. (25).

SOC(EV)i+1 = SOC(EV)i + Ii

Fn

�t (25)
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SOC(EV)i+1 and SOC(EV)i are SOC values of EV at time i+1 and time i, respectively. Ii is the charging
current of EV at moment i. Fn is the rated capacity of electric vehicles [14]. The charging ratio Ci of
electric vehicle can be expressed as Eq. (26). Thus, SOC in the charging process of electric vehicles can
be expressed as Eq. (27).

Ci = Ii

Fn

(26)

SOC(EV)i+1 = SOC(EV)i + Ci · �t (27)

The EV types and adjustment processes during MGCC are shown in Fig. 3. When CBMG Island
operation requires EV adjustment. The flexible adjustment should be made first. Reduce its charging
magnification to a minimum one by one. When the elastic adjustment period is complete, stiffness
adjustment will occur if the system cannot meet the requirements. If the entire EV is cut off, the
forced reduction should be used instead of truncation [15]. When EV’s SOC and charge-discharge ratio
are known, the flexibility-adjusted phase and stiffness-adjusted phase amplitude can be calculated by
Eqs. (28) and (29).

Pri =
∑

r∈�r

(Cr−i − Cmin) FnV n (28)

Pτ i =
∑

τ∈�τ

Cτ−i · Fn·V n (29)

Pri and Pτ i are the power adjustable ranges of the flexible and rigid adjustment stages at the ith
moment respectively. Ωr and Ωτ are the sets of EVs that can participate in flexible and rigid regulation
respectively. Cr−i and Cτ−i are the charging ratio of EV participating in flexible regulation and rigid
regulation at the i moment, respectively. Cmin is the minimum charging ratio set in advance.

Figure 3: Types and adjustment process of electric vehicles



2924 EE, 2023, vol.120, no.12

5.2 Air Conditioner Adjustment Scheme
The key to simulating the energy consumption of air conditioning is accurately simulating the heat

exchange process. The equivalent thermal parameter model of air conditioning is shown in Fig. 4.

Figure 4: Equivalent thermal parameter model of air conditioning

The equivalent thermal parameter model is in Fig. 4. P is the cooling/heating power of the air-
conditioning unit. η is the energy efficiency ratio. ηP is the cooling/heat production of air conditioning.
Ca is the specific heat capacity of a gas. Cm is the specific heat capacity of a solid. To is the outside
temperature. Ti is the indoor temperature. Tm is the stable indoor temperature. By simplifying the
above model, we can get the calculation formula of indoor temperature Ti in steady and off states.
They are shown in Eqs. (30) and (31), respectively:

Tj+1
i = Tj+1

o − ηPR − (
Tj+1

o − ηPR − Tj
i

)
e

−�t
RC (30)

Tj+1
i = Tj+1

o − (
Tj+1

o − Tj
i

)
e

−�t
RC (31)

Tj+1
i and Tj+1

o are indoor and outdoor temperatures at time j+1, respectively. C is equivalent hot
melt. R is equivalent to thermal resistance. �t is the time interval between adjacent computations.

The load response constraints under the kth anticipated accident are

�dk
ac,t ≤ Rt

d,ac (32)

In the formula, the superscript k is the expected accident number. The power balance constraint
under the kth anticipated accident is

− Mk
Bθ

k
t + Mk

Hpk
t = dt − �dk

ac,t (33)

The line power equation constraint under the kth anticipated accident is

pk
f ,t = Mk

Tθ k
t (34)

Under the kth expected accident, the upper and lower limits of line power are constrained as

− pf ,max ≤ pk
f ,t ≤ pf ,max (35)

Under the kth predicted accident, the upper and lower limits of power generation are con-
strained as

qk
t pmin ≤ pk

t ≤ qk
t

(
pt + Rt

g

)
(36)

qk
t is the start-stop state of the unit during the period t under the kth predicted accident. The

problem to be solved becomes a mixed integer linear program. A mature solver can solve the system.
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5.3 Controllable Load Adjustment Scheme
Through the implementation of RO-EEM, the reduction of the controllable load after each outage

can be calculated compared to the initial time. The MGCC will issue tailoring orders. The basic idea of
load control is to adjust before cutting [16]. As a load with a specific adjustment allowance, the CBMG
air conditioning system has a better adjustment ability in the air conditioning system. Together, they
will undertake the reduction of MGCCS. When the load reduction exceeds the total adjustment range
of the EV and air conditioner, the load that does not have the adjustment capacity must be cut off.
Non-adjustable capacity loads include secondary lighting, ultra-low SOC, and EVs with the lowest
charge ratio.

6 Example Analysis
6.1 PV Prediction and Amplitude Measurement

Suppose the power goes off at 16:00. Expect a 30-min power outage. Set the interval between two
adjacent scrolling optimums to 2 min. The grey algorithm makes the prediction. Many probability
distributions can be approximated by using the normal distribution. Under normal conditions, the
data obtained by a simple random sampling conform to the normal distribution. This property can be
obtained by deducing the central limit theorem [17]. The deviation distribution of the short-term solar
power forecast is close to the normal distribution because the random sampling method is adopted to
sample the error of the short-term solar power forecast.

On the time axis, the mean deviation μ of the PV power generation forecast is 0. The deviation of
the PV forecast is σ and the standard deviation is 0.5. The prediction error of PV follows the normal
distribution of μ = 0 and σ = 0.5. The maximum error δmax of PV was estimated within the 95% CI
range. Then the predicted change in PV is [PVi − δmax, PVi + δmax].

6.2 Basic Data
Set the total installed capacity of PV to 100 kW. ESS is rated at 50 kWh. The maximum output

of the maximum charge and discharge is 30 kW. The SOC value of ESS is 0.44 when the power is off.
The highest SOC value is 0.75. The minimum is 0.11. The shortest two shortest optimal intervals A
are 1 min. The main load is between 20 and 40 kilowatts, generated randomly. The maximum power
of the control load is 200–500 kW. The initial setting of the control load is 200 kW.

6.3 Comparative Analysis
Comparative analysis is used in this paper. The objective is to verify the effectiveness of the RO-

EEM strategy better.

6.3.1 Traditional Control Policies

CBMG systems that convert to islands after a power failure in the distribution system are
complicated by their voltage/frequency changes [18]. Its charging and output can be adjusted according
to load and PV changes. The control load is then progressively loaded up to the maximum output of
the ESS. The input rate of the control load varies with the main load and the PV output power. At this
time the result of the example is shown in Fig. 5.

As shown in Fig. 5, the ESS will not be recharged after 15 min of power failure. Photovoltaic
power generation is the only power system. This will increase the risk of later stabilization operations
[19]. If there is a power outage at night, the PV output will significantly reduce. It is effortless and
straightforward for the ESS to stop discharging when the control load is 0 and still cannot guarantee



2926 EE, 2023, vol.120, no.12

the need for the critical load. This will significantly adversely impact the safe and smooth operation
of CBMG.

Figure 5: Schematic diagram of traditional strategy example results

6.3.2 RO-EEM Strategy

Set the weighting factor a to 0.9. b is 0.1. The population uncertainty ψ is 0. The result of the
example is shown in Fig. 6. It can be seen from Fig. 6 that in the early stage of power failure, PV
power is tremendous. The ESS is charging. When the power is off for 15 min, the SOC value is about
0.34. This can be prepared for future production to ensure the stable operation of CBMG. Because the
blackout was at 16:00, the light was getting dimmer [20]. Therefore, the PV output power is reduced
correspondingly. The discharge intensity of ESS tends to increase. Increasing the control load into the
power system helps to improve customer satisfaction.

Figure 6: Schematic diagram of RO-EEM policy example results

Comparative analysis of numerical examples shows that the RO-EEM strategy can effectively
adjust the input of controllable load to achieve the expected goal.

6.4 Analysis of Uncertainty Factors
In the RO-EEM model, ψ is an overall degree of uncertainty. ψ = 0 indicates that PV forecast

at each time point is a fixed value. a is 0.9. b is 0.1. After obtaining various values, A’s corresponding
index function values are shown in Table 1. This will get worse as the uncertainty grows [21]. The
decrease of PV output power to the introduction of control load and the maintenance of the backup
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capacity of the ESS system will make the system users satisfied with the decrease of the ESS load.
Therefore, when the value of ψ changes from 1 to 9, the value of its index function shows a trend of
increasing gradually. In addition, the variation range of the PV forecast at each time point is small, so
the difference in objective function value under the uncertainty condition is also low.

Table 1: Value of objective function when uncertainty ψ changes

ψ Obj ψ Obj ψ Obj

1 22.154 4 22.169 7 22.183
2 22.159 5 22.174 8 22.188
3 22.164 6 22.178 9 22.192

6.5 Controllable Load Adjustment Results and Analysis
Set the number of electric vehicles in CBMG at 20. The default target SOC is 0.95. The SOC

threshold is 0.3. Power battery parameters are shown in Table 2. EV’s initial SOC is randomly
generated between 0.1 and 0.6. The initial charge ratio randomly generates between 0.1 and 0.5 C
(Fig. 7). The minimum EV charging ratio is set at 0.1 C in the adjustment stage.

Table 2: Power battery parameter table

Target SOC Rated capacity Maximum charge ratio Rated voltage

0.95 40 Ah 0.5 C 336 V

Figure 7: Initial SOC and the charging ratio of EV

Install CBMG 40 air conditioners. Its average generating capacity is 2 kilowatts. The total power
at the time of the blackout was 100 kilowatts. In summer, the energy-saving effect of air conditioners
reaches 3. The equivalent heat capacity is 0.18 kW/°C. When the temperature is 5.56°C/kW, the
outdoor temperature does not change at 32°C. Both indoor and outdoor temperatures increase as
the temperature rises [22]. The start-up setting temperature of 40 air conditioners can be arbitrarily
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generated at 22°C to 28°C (Fig. 8). After the power is turned off, the indoor temperature is set the
same as that of the air conditioner.

Figure 8: Randomly generated initial air conditioner temperature

When a is 0.9, b is 0.1 and ψ is 0. The RO-EEM strategy can calculate the controllable load
reduction amount. Execute the reduction task according to the controllable load adjustment plan
[23]. The input of EV, air conditioning and secondary lighting facilities at each moment after a power
failure is shown in Fig. 9. In the early stage of power failure, the total input of controllable load is
less. The air conditioning load with adjustable capacity and part of the EV are removed. Then the
controllable load input showed an increasing trend. The input of air conditioning and EV increases
accordingly.

Figure 9: Input results of various controllable loads

At the initial stage of a power outage, the total input of controllable loads is small, and the air-
conditioning loads and some EVs with adjustment capabilities are cut off. After that, the loadable
input showed an increasing trend. The investment in air conditioners and EVs will increase accordingly.
At the initial moment of power failure, the power consumption of the air conditioner is large, but
because the EV contains some loads that cannot regulate. Its status is similar to that of secondary
lighting facilities. It operates last when the load is reduced, so the total input amount of the EV is
more than that of the air conditioner. The secondary lighting facilities have the most input due to
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the lack of adjustment ability and the last action. The air conditioner is adjusted by rotation. At the
initial moment of a power outage, set the odd group as the adjustable group and the even group as
the removable group, and rotate every 5 min. It can be seen from Fig. 9 that the input amount of the
air conditioner is 0 before the 7th min. Therefore, the temperatures of the air conditioners in the odd
group and the air conditioners in the even group have risen to some extent. From the 7th min, the
input of the air conditioner shows an upward trend. At this time, the odd group can be removed, and
the even group can be adjusted. Therefore, between the 7th and 10th min, the temperature of the odd
group of air conditioners still maintains an upward trend. In contrast, the temperature of the even
group of air conditioners decreases. In the 10th, 15th, 20th and 25th min, there will be a rotation of
the working mode of the odd-even group.

However, EVs adopt a two-stage adjustment when performing load reduction tasks, first reducing
the charging rate and then cutting off EVs whose SOC is greater than the critical value. The EV’s
charging rate and SOC changes are shown in Fig. 10 during the power failure process.

Figure 10: The EV’s charging rate and SOC changes

7 Conclusion

In this paper, a robust optimization-based emergency energy management strategy is proposed.
This paper adds the uncertainty factor (PV) to the optimization model. This can make the optimization
result more conducive to the safe and reliable operation of the CBMG. The RO-EEM strategy
introduces the idea of rolling optimization to make the predicted value of PV more in line with
the actual trend. The RO-EEM strategy can effectively adjust the controllable load input. Setting
different weight factors can flexibly change the importance of user satisfaction and power supply
time. Each EV’s real-time charging rate and air conditioning control strategy can be obtained from
the controllable load adjustment scheme.
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