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ABSTRACT

This paper proposes a modified golden jackal optimization (IGJO) algorithm to solve the OCL (which stands
for optimal cooling load) problem to minimize energy consumption. In this algorithm, many tools have been
developed, such as numerical visualization, local field method, competitive selection method, and iterative strategy.
The IGJO algorithm is used to improve the research capabilities of the algorithm in terms of global tuning and
rotation speed. In order to fully utilize the effectiveness of the proposed algorithm, three famous examples of
OCL problems in basic ventilation systems were studied and compared with some previously published works.
The results show that the IGJO algorithm can find solutions equal to or better than other methods. Underpinning
these studies is the need to reduce energy consumption in air conditioning systems, which is a critical business
and environmental decision. The Optimal Chiller Load (OCL) problem is well-known in the industry. It is the best
method of operation for the refrigeration plant to satisfy the requirement of cooling. In order to solve the OCL
problem, an improved Golden Jackal optimization algorithm (IGJO) was proposed. The IGJO algorithm consists
of a number of parts to improve the global optimization and rotation speed. These studies are intended to address
more effectively the issue of OCL, which results in energy savings in air-conditioning systems. The performance
of the proposed IGJO algorithm is evaluated, and the results are compared with the results of three known OCL
problems in the ventilation system. The results indicate that the IGJO method has the same or better optimization
ability as other methods and can improve the energy efficiency of the system’s cold air.
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1 Introduction

Energy is the basis of society’s progress and development, and the sustainability of operations
in the production, service, and improvement of people’s living conditions is contingent on adequate
energy supplies [1]. On the one hand, investment in fossil fuels has decreased, and on the other hand,
the lack of opportunities for a comprehensive transition to renewable and clean energy has led to a less
prosperous world, while energy prices are also rising [2–5]. The constantly rising energy prices remind
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people that despite efforts to shift the world towards clean and sustainable electricity, the world still
inevitably relies on fossil fuels [6–8].

Due to the increasing demand for energy and the dwindling fossil fuel supply, it is more important
to save energy than ever before. It should be emphasized that, in addition to switching to sustainable
energy resources like solar energy, energy-consuming systems’ optimization can play a significant role
in the reduction of energy consumption [9].

Energy has gotten little attention around the world, and government subsidies, both overt and
covert, have always kept people from paying attention to the importance of energy. In recent years,
paying enough attention to both energy use and energy savings has become an inevitable necessity
[10,11]. More than one-third of global energy is used in buildings, estimated to be worth $6 billion a
year at current global prices.

Due to the fact that most modern human life occurs within buildings, it is crucial to create
suitable environmental conditions within buildings, with the most important being the provision of
air conditioning for residents, as this is an activity [12,13]. Air conditioning improves life and makes it
easier to work. This includes temperature and relative humidity control in the range of 22 to 28 degrees
Celsius and 40–60 percent, respectively.

Weather conditions, heat load, and building design all influence the effectiveness of an air
conditioning system. Chillers are the biggest energy users in terms of energy consumption [14]. As a
result, selecting and operating the appropriate chiller is critical for reducing energy use [15]. Selecting
the incorrect air conditioning system might result in higher costs while also failing to deliver adequate
cooling and comfort to inhabitants [16,17].

According to studies, cooling and heating consume approximately half of the energy used in the
construction industry. Due to a deficiency in energy sources and price volatility, experts have changed
the applications and structure of air conditioning systems.

HVAC, accounts for a significant proportion of the total energy consumption of a building, from
25% to 30% in residential buildings to over 50% in commercial buildings. Between 40% and 60% of
this need is met by chillers, which account for the majority of overall use of energy.

Records indicate that the efficiency of HVAC systems is closely related to the efficiency of cooling
units [18]. Due to the fact that multiple coolers typically use various devices, there are usually multiple
cooling combinations that can be provided by the coolers to meet refrigeration needs. The challenge for
OCL is to identify the required capacity fraction for each cooler to reduce system power consumption.

Researchers have considered the necessity for highly efficient cold production cycles because of the
growing importance of energy preservation internationally and the requirement for cold production
in diverse industries [19]. As a result, researchers have developed various cold-producing cycles.

The process of employing these systems can be economized by minimizing energy usage in the
chiller cycle. Because testing such systems is so expensive, the necessity for computer models to
optimize them is obvious [20]. Due to the increase in energy consumption, the air conditioning industry
is increasingly focusing on coolers as efficient systems. Optimizing the performance of these systems
through computer techniques and metaheuristic algorithms is one of the major challenges.

Air-conditioning systems make up the bulk of the energy use in buildings, and their chillers
are the main source of energy consumption. Accordingly, energy conservation is critical for chiller
systems. The OCL (Optimal Chiller Load) is investigated using a variety of optimization approaches.
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Optimization devices have been developed in recent years for various uses. Several of them have been
successful in resolving the OCL issue.

Chen et al. [21] implemented smart models to save energy while optimizing chiller loading. Neural
Networks (NNs) were used to create chiller energy consumption models, and the PSO approach (which
stands for Particle Swarm Optimization) was used to OCL for minimal energy use. After evaluation
with ELD (Equal Load Distribution) and LR (Linear Regression) approaches, they achieved 17.63%
and 12.68% energy savings at seventy and fifty-five percent PLR (chiller load rate), respectively. As
a result, the NNPSO approach resolved the velocity convergence problem on the OCL and provided
very precise findings in a small chunk of time. The suggested strategies could be used to optimize air
conditioning units and associated challenges.

Gheydi et al. [22] utilized ANN techniques and optimization programming to optimize load in
a multiple-chiller system. The variety of research on central air conditioning optimization models
concentrates on a single chiller or numerous ones with identical types and capacities. Based on ANN,
an energy consumption model is built which considers the operational constraints of each type of
chiller. The current technique can conserve power usage up to 16.68 percent more than the MM
method, according to simulated data assessment over a one-year operation interval.

Sohrabi et al. [23] suggested optimal chiller loading to save energy. This research uses 3 case
studies to analyze the performance of the EMA (Exchange Market Algorithm) and make a comparison
between it and former optimization approaches used to tackle the OCL issue. The EMA is an effective
way of resolving the OCL problem, and it may also be utilized in air-conditioning units, according to
the findings. In electrical energy consumption and fast convergence terms, it is more power-saving and
quicker than earlier optimization approaches used for this problem.

Lee et al. [24] assessed the implementation of a PSO algorithm for OCL to improve energy
efficiency. The particle swarm approach has been presented for chiller system continuous parameter
optimization problems. The optimum parameters are PLR, and the target function is energy consump-
tion. In this paper, the results of the optimal model constructed by GA and the Lagrangian method
are compared with each other. In both cases, the PSO is superior to the evolutionary algorithm in
overcoming the divergence of the Lagrange method.

Ardakani et al. [25] suggested a novel method to optimize chiller loading utilizing PSO. Two novel
procedures are utilized in this work to solve the OCL problem. PSO and continuous GA successfully
weather shortages in other conventional optimization procedures because the nature of variables in
the OCL problem is continuous. The proposed program has significant advantages such as simple
execution, fast convergence, avoiding falling into local optima, and independent solutions. The results
show that the proposed method can be well applied to air conditioning systems.

In this paper, we propose a new IGJO algorithm to solve OCL problems. An important drawback
of the GJO (golden jackal optimization) algorithm is its unavailability in the search. Here, an improved
version is proposed to modify this issue and provide an efficient optimal chiller loading with lower
energy consumption.

2 Problem Formulation

A chiller is a device that uses absorption refrigeration or a vapor-compression cycle to lessen the
temperature of a particular fluid by removing heat from it. After that, the fluid is sent to a heat
exchanger to chill the atmosphere. The wasted heat produced during refrigeration must be either
released into the air or collected for heating [26]. In some air-conditioned buildings, there is a central
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cooling system, which uses a number of parallel/serial chillers to meet different cooling requirements.
As a result, one of the most vital aspects of HVAC in big publicly-used constructions is numerous
chiller systems.

Fig. 1 shows the topology of the coupled system and the topology of multiple chillers. All chillers in
Fig. 1 have various load values for energy consumption [27–29]. For the multiple chiller systems based
on the chillers’ general energy consumption, the total energy consumption is obtained by Eq. (1) as
follows:

ET =
L∑

l=1

Pl (1)

In this equation, Pi is the energy consumption of the chiller number i, and M is the total number
of chillers.

Figure 1: A decoupled system accompanied by the multi-chiller one

Different targets can be utilized for designing a good configuration for the chiller system. This
research considers minimizing the temperature of the wet bulb as an objective function (Cwb), that is,

Cwb = min
l

(
L∑

l=1

Pl

)
(2)

where, Pl signifies the on/off state for the complex number i:

Pl =
{

1 on
0 off

(3)

Another important statistic, that describes the chiller cooling load ratio and design capacity, is
PLR. l is considered the chillers’ number, Consequently, the PLRl is zero if the chiller number l is shut
down (Pl = 0), and it takes a random value between 0.3 and 1, if the chiller number i is on (Pl = 1):

PLRl =
{

rand (0.3, 1) if on
0 if shut down

(4)

The centrifugal chiller power consumption is described by considering three different cases is:

Pl =
⎧⎨
⎩

αl + βl × PLRl + γl × PLR2
l if Pl = 1(case 1)

αl + βl × PLRl + γl × PLR2
l + δl × PLR3

l if Pl = 1(case 2 and 3)

0 if Pl = 0
(5)

where, αl, βl, γl, and δl describe pa redefined set of values of the KW/Part Load Ratio curve of the ith

chiller.
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The Pl is not negative in the preceding equation because of the positive value of the chiller’s energy
usage. To provide promising cooling in the system that fulfills the load requirement, the correct choice
for multiple chiller systems must be made, moreover, the cooling load for each chiller and the system
should be equal. The mathematical formula for system cooling load (Lc) is as follows:

Lcool =
L∑

l=1

Cl × PLRl (6)

where, Cl represents the capacity of the chiller with number i (ith) [30].

3 Improved Version of Golden Jackal Optimization (IGJO) Algorithm
3.1 IGJO Algorithm

The inspiration for the offered procedure and the mathematical model are stated respectively in
this part.

3.1.1 Motivation

The vertical height of golden jackals is about 41 cm and the size of their tails is about 26 cm [31].
In general, their body length is between 71 and 86 cm. Their fur color varies depending on where
they live and the season. This color difference can be yellow, rough brown, or pale gold. Golden
jackals dash vast distances to catch prey, and this is due to their physical characteristics, including their
extended legs and small bodies. Golden jackals have a very varied diet [32]. They are both vegetarian
and carnivorous. Their diet includes land birds, youthful gazelles, reptiles, rodents, insects, fish, frogs,
rabbits, and fruits.

Golden jackals live in pairs with their mates, both parents are responsible for protecting and
providing food. Hence, the family is provided by helpers in many aspects. Adults use “rumble growl”
and “predator bark” to warn the cubs of their hiding place, and one adult can effectively avoid large
predators. The helpers also provide food for a nursing mother, hence more time is spent hunting by
parents. Golden jackals discover each other’s position using a wide range of howls.

Golden jackals usually hunt and relax with their mates. There is harmony in all their behavior. The
number of individuals reported in one group is up to 5 or 10 individuals. They use their urine to keep
intruders out of the area. Golden jackals need to work together to forage and hunt more extensive
prey in the accessible areas. Pairs that hunt together can get more prey than those that hunt alone. In
duo or collective hunting, they move parallel to the target while crossing it. Similarly, they move along
narrow streams or rivers to catch aquatic rodents and birds and impel their prey between each other.

The following steps are original steps for hunting by a golden jackal couple:

1. Exploring, and advancing in the direction of the target.
2. Surrounding, and annoying the target up to it no longer moves.
3. Invasion toward the target.

3.1.2 Algorithm and Mathematical Model

GJO is also a metaheuristic approach based on population. Thus, the primary answer as the first
test is uniformly distributed in the solution space:

X0 = Xmin + rand(Xmax − Xmin) (7)
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where rand indicates a uniform random vector between [0, 1] and the lower and higher range for
parameters are represented by Xmin and Xmax.

The matrix is below the Prey matrix, which is obtained by initialization. The first and second best
of this matrix is the jackal’s couple.

Prey =

⎡
⎢⎢⎣

X1,1

X2,1

...
Xn,1

X1,2

X2,2

...
Xn,2

· · ·
· · ·
...

· · ·

X1,d

X2,d

...
Xn,d

⎤
⎥⎥⎦ (8)

where Xij indicates the ith prey of jth dimension. In general, the quantity of parameters and existing
prey are d and n, respectively. Certain solution variables are defined by the location of the prey. The
cost function is introduced into the optimal algorithm to obtain the fitness of predators. The following
matrix summarizes the degree of adaptation of each animal:

FOA =

⎡
⎢⎢⎣

f (X1,1; X1,2; · · · ; X1,d)

f (X2,1; X2,2; · · · ; X2,d)
...

f (Xn,1; Xn,2; · · · ; Xn,d)

⎤
⎥⎥⎦ (9)

where the cost function is indicated by f . The first and second fittest define male and female jackals.

3.1.3 Seeking the Prey, or Exploration Phase

In this section, the exploration strategy in the considered algorithm is presented. Jackals can
instinctively find prey and pursue it. In some cases, the prey getaways and is not easily obtained.
Therefore, the jackals stay and explore for another target.

X1 (t) = XM (t) − E. |XM (t) − rl.Prey(t)| (10)

X2 (t) = XFM (t) − E. |XFM (t) − rl.Prey(t)| (11)

where Prey(t) represents the location vector of the target, t is the present iteration, and the location of
the female and male jackel are described by XFM (t) and XM (t). The updated location of female and
male jackel associated with the target is defined by X1 (t) and X2(t).

E is Escaping Energy related to prey. It is defined as followed:

E = E0 ∗ E1 (12)

whereby, E0 and E1 denote the initial and reducing energy of the target, respectively.

E0 = (r − 1) ∗ 2 (13)

In Eq. (13), r is a random amount in the intervals 0 and 1.

E1 = c1 ∗
(

1 −
(

t
T

))
(14)

Adding or subtracting this distance to the present location depends on the escape energy of the
prey. “rl” indicates the arbitrary numbers’ vector on L′evy distribution basis, which describes the L′evy
walk. The motion of prey in L′evy procedure is simulated by the multiplication of prey and “rl”.

rl = 0.05 ∗ LF(x) (15)
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where the levy flight function is represented by LF , which is obtained as follows:

LF (x) = 0.01 × (μ × σ)∣∣∣v( 1
β

)

∣∣∣ ;

σ =

⎛
⎜⎜⎝

Γ(1 + β) × sin
(

πβ

2

)

Γ

(
1 + β

2

)
× β ×

(
2

β−1
2

)
⎞
⎟⎟⎠

1/β

(16)

where v, u are arbitrary amounts in the interval 0, 1, β is equal to 1.5. Ultimately, by averaging Eqs. (4)
and (5).

X (t + 1) = X1 (t) + X2(t)
2

(17)

3.1.4 Surrounding or Abducting Prey or Exploitation Stage

The energy that the prey can expend to escape is reduced by annoying the jackal, afterward, the
prey is surrounded by the jackal pair. Attacking and swallowing prey takes place after encirclement.
The mathematical expression of hunting manners related to male and female jackals is presented
below:

X1 (t) = XM (t) − E. |rl.XM (t) − Prey(t)| (18)

X2 (t) = XFM (t) − E. |rl.XFM (t) − Prey(t)| (19)

where location is indicated by X1 (t) and X2 (t) which is related to the target, the energy of Prey’s
Escaping is composed of Eq. (6).

Jackals may encounter natural problems during the chase, which prevents them from moving
quickly and properly on the way to the prey. The main aim of “rl” is to consider these obstacles’
aftermath [33].

3.1.5 Alteration from One Exploration to Another

Attacking and applying force to the victim is done in the algorithm |E| < 1. Briefly, the search in
the proposed algorithm starts by generating a population of victims that are candidates to solve the
problem. The location of potential prey was estimated by male-female hunting pairs over the ages [34].
Each opponent’s pair-to-pair distance has been updated. To emphasize search and exploitation, the
variable E1 was reduced from 1.5 to 0, and when hunting, a pair of Golden Buckthorns moved closer
to the victim if E was less than one, and away from the victim if E was greater than one. In the last
step, the algorithm ends by providing the final model.

3.2 IGJO Algorithm
This section discusses two enhancements to the IGJO algorithm. The GOA is changed in this

context by combining its original structure with the OBL mechanism to present the capability of fully
exploration of the solution area and quickly achievement of the ideal value. The chaotic mechanism
was enhanced to boost GJO’s exploration ability and solve the GJO’s premature convergence.
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By advocating the candidates’ values and their opposing values, the OBL technique delivers a
proper candidate selection. The following equation is used to get the opposite values of a candidate:

Y (t + 1) = Y (t) + Y (t) + −Y (t) (20)

where, Y (t) and Y (t) denote the solution’s maximum and minimum values After completing the GJO’s
exploration phase, the OBL technique is used to keep 40 percent of the domain space determined by
the GJO. This phase enables the original domain space to swiftly approach the ideal values and fix
out-of-range values.

The second improvement to the IGJO Algorithm here is to utilize a chaotic system as much as
possible [35]. All random values, according to the chaotic mechanism, may be characterized as some
regular numbers that are related to one another. For the algorithm to give faster convergence, this
method generates pseudo-random values rather than random values. The present study uses scale
factor as a chaos operator for updating r term of the algorithm from a random term between 0 and 1
into a self-learn parameter. The mathematical model of the scale factor is given below:

α = α + (
α − α

) ×
(

1 − arccos

((−2 × in
it

+ 1
)

π

))
(21)

where, in and it represent the iteration number, and the maximum iteration value, respectively, and α

and α are the topmost and the lowest values of α.

Therefore, by applying this mechanism to the algorithm, the constant value (c1) is achieved as
follows:

c∗
1 = 2 × α − 1 (22)

3.3 Validation of Algorithm
The efficiency validation of the suggested IGJO on Algorithm is implemented by carrying out

several tests on the first ten benchmark functions from the “CEC-BC-2020 test suite” [36], that have
been frequently applied in earlier works [37]. These functions are classified as multimodal, unimodal,
hybrid, and composite functions [38]. They are created via combining 15 elementary test functions,
namely, Bent Cigar, Discus, High Conditioned Elliptic, Expanded Griewank plus Ackley, Rosen-
brock, Griewank, Weierstrass, Expanded Schaf, Rosenbrock, Modified Schwefel, Katsuura, Happy
Cat, HGBat, Lunacek bi-Rastrigin, and Rastrigin [39]. The description of the above functions is shown
in Fig. 2.

The simulation process was programmed with Matlab R2020a (64 bit) installed on Microsoft
WIN10 operating system configuration: Intel core i7-9090H, CPU frequency of 2.60 GHz, 16.0 G
memory, RTX 2070 for 8 G. In all algorithms, the maximum population size is set to 60 and the
maximum blocking algorithm is set to 200. A total of 4000 performance tests were performed by
running each algorithm 20 times on each task. Each function is bounded between −100 and 100.
Table 1 shows the parameters and values of the algorithms in the text used in the validation process.

Table 2 shows the standard deviation (STD) and mean (Avg) values of the proposed procedure
compared to the 4 methods described above.
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Figure 2: Mathematical definition of the utilized functions from “CEC-BC-2020 test suite” [40], where
Vars defines the dimension of the functions

Table 1: Parameter and values of the algorithms in literature using for comparison

Algorithm Parameter Value

MVO [41]
The rate of traveling distance 1
Probability of wormhole existence 0.2

FA [42]
α 0.2
β 0.5
γ 1

LS [43]
g 20
L 1
F 0.6

BBO [44]

Habitat modification possibility 0.9
Possibility of immigration per gene 0.6
Size of step for mathematical integration of possibilities 0.9
Max emigration (E) and immigration (I) 0.9
Possibility of mutation 0.06
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Table 2: Standard deviation and mean of this method compared to other methods in the literature

Function IGJO [45] BBO LS FA MVO

Avg STD Avg STD Avg STD Avg STD Avg STD

F1 00.0 00.0 4.69 ×
10+1

3.70 ×
10+1

9.38 3.36 ×
10+1

8.38 3.48 ×
10+1

7.94 3.16 ×
10+1

F2 7.93 9.27 9.46 ×
10+1

3.46 ×
10+2

3.12 ×
10+1

6.74 ×
10+2

4.38 ×
10+1

6.59 ×
10+2

3.14 ×
10+1

6.28 ×
10+2

F3 7.9 8.98 7.87 9.54 5.48 3.25 4.43 5.68 4.15 5.53
F4 00.0 00.0 5.98 ×

10−1

6.35 ×
10−1

3.95 ×
10−1

4.42 ×
10−1

3.38 ×
10−1

3.96 ×
10−1

3.98 ×
10−1

3.34 ×
10−1

F5 3.35 3.66 1.10 ×
10−1

3.56 ×
10+2

7.56 ×
10+1

9.56 ×
10+1

8.23 ×
10+1

10.12 ×
10+1

8.64 ×
10+1

10.53 ×
10+1

F6 8.35 ×
10−2

9.59 ×
10−2

4.54 ×
10−1

5.64 ×
10−1

3.42 ×
10−1

4.35 ×
10−1

3.12 ×
10−1

4.24 ×
10−1

3.39 ×
10−1

3.93 ×
10−1

F7 7.84 ×
10−2

9.53 ×
10−2

3.59 ×
10−1

5.58 ×
10−1

3.31 ×
10−1

3.85 ×
10−1

3.67 ×
10−1

3.54 ×
10−1

3.28 ×
10−1

3.27 ×
10−1

F8 4.83 ×
10+1

5.48 ×
10+1

10.11 ×
10+1

10.53 ×
10+1

5.24 ×
10+1

6.39 ×
10+1

5.59 ×
10+1

6.44 ×
10+1

6.61 ×
10+1

6.35 ×
10+1

F9 5.85 ×
10+1

6.83 ×
10+1

5.49 ×
10+2

4.42 ×
10+2

3.31 ×
10+2

3.96 ×
10+2

3.79 ×
10+2

3.35 ×
10+2

3.14 ×
10+2

3.25 ×
10+2

F10 3.19 ×
10+2

3.10 ×
10+2

4.58 ×
10+2

4.89 ×
10+2

3.94 ×
10+2

3.25 ×
10+2

3.54 ×
10+2

3.36 ×
10+2

3.33 ×
10+2

3.85 ×
10+2

Regarding Table 2, it is obvious that the suggested IGJO Algorithm outperforms the MVO, FA,
LS, BBO, and the GJO (GJO) on all 10 benchmark functions of the CEC 2020. The suggested IGJO’s
better findings demonstrate its increased accuracy in determining the global optimal value. In addition
to the accuracy value, utilizing the suggested IGJO algorithm with a lower StD value demonstrates that
this technique with a lower standard deviation value produces consistent results across 20 independent
runs. This demonstrates that the suggested technique is more precise than the current algorithms in the
literature. This motivates us to use the algorithm for optimal chiller loading applications to provide
better results.

4 Improved Golden Jackal Optimization Algorithm for Solving OCL Problem

Using the suggested IGJO Algorithm is able to increase the optimization procedure’s efficiency
in addressing the optimal chiller loading, as previously proposed and confirmed. As a result, in this
section, the approach for using the suggested Golden Jackal Optimization Algorithm to optimize the
OCL as a continuous optimization problem has been provided. PLR of the chillers is utilized here
as the optimization algorithm’s decision variables. When there are n coolers working in parallel in
multiple cooler systems, the actual values of the coolers are used to describe their partial load ratio.
After opening up the chiller, the PLR is set from 0.3 to one. When the chiller is turned off, the PLR is
0. The method of directing the limitation to the jackal candidates is formulated below:
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PLRl = a + (b − a) × rand,

l = 1, 2 · · · n (23)

where, a = 0.3, b = 0.7, and rand defines a random value from zero to one.

As mentioned before, the main purpose is to minimize the OCL problem (Cwb) subject to the
limitations by considering the power consumption of the chiller number i. The following equation
shall be taken into account to determine the fitness of each jackal candidate during the OCL:

Fj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
fl + h

, if Gj < 0

1
fl

, if Gj ≥ 0

(24)

Gj =
n∑

l=0

PLRl × RTl − CL (25)

If Gj < 0, a big penalty value has been provided to the candidate number j to satisfy the
cooling load.

5 The Results of the Simulation

In this part, 3 separate case studies are presented, and then they are evaluated to evaluate the
suggested IGJOA performance in addressing OCL issues. The data for the first example is taken from
[46], whereas, the 2nd and 3rd cases’ data are taken from [47]. Table 3 shows the chiller settings used
in the different tests.

Table 3: Chiller settings used in the different tests

System Chiller αi βi γi δi Capacity (RT)

Case 1

1 400.1 −123.4 771 0 1280
2 286.9 79 701.4 0 1280
3 −119.6 1527 −499.8 0 1280
4 −18.7 899.0 −97.6 0 1280
5 −94.8 1998.3 −350.9 0 1250
6 189.4 226.0 522.0 0 1250

Case 2

1 103.1 168.8 −435.2 510.6 450
2 −66.9 1180.2 −2172.9 1453.9 450
3 379.8 −781.4 1149.7 −62.7 1000
4 539.7 409.1 −3622.9 4019.4 1000

Case 3
1 99.9 816.5 −971.7 790.0 800
2 67.2 607.2 −379.4 278 800
3 129.2 300.3 12.8 99.8 800

The method uses various simulations with their set parameters to deliver an optimal selection
of the decision variables and to get efficient optimal chiller loading. The efficiency assessment has



2576 EE, 2023, vol.120, no.11

been performed by applying the proposed improved Golden Jackal Optimization Algorithm to the
three introduced OCL case studies and comparing it with some related works based on metaheuristic
algorithms, including AFS (Artificial Fish Swarm) [48], IWO (Invasive Weed Optimization) [49], BMO
(Barnacles Mating Optimizer), and the original GJO (Golden Jackal Optimization) algorithms [50].

The optimization procedure bases the outcomes on an ordinary value of 30 separate runs to create
a fair analysis. The algorithm is carried out on the Matlab R2020a environment. Table 4 shows the
simulation findings for Case-Study 1.

Table 4: Simulation findings for the first Case-Study

CL (Cc) Chiller QEPO PLR/
Power (KW)

IWO PLR/
Power (KW)

AFSA PLR/
Power (KW)(A)

BMO PLR/
Power (KW)

GJO PLR/
Power (KW)

6858 (90%)

1 0.75/4725 0.85/4740 0.86/4740 0.76/4740 0.78/4741
2 0.68/4729 0.76/4740 0.84/4740 0.68/4740 0.69/4741
3 1.0/4729 1.0/4740 1.0/4740 1.0/4740 1.0/4741
4 1.0/4730 1.0/4740 1.0/4740 1.0/4740 1.0/4741
5 1.0/4730 1.0/4740 1.0/4740 1.0/4740 1.0/4741
6 0.85/4730 0.83/4740 0.75/4740 0.78/4740 0.78/4741

6477 (85%)

1 0.74/4362 0.61/4420 0.75/4535 0.69/4422 0.76/4425
2 0.63/4420 0.64/4420 0.66/4535 0.58/4422 0.58/4425
3 1.0/4422 1.0/4440 1.0/4535 1.0/4422 1.0/4425
4 1.0/4422 1.0/4426 1.0/4535 1.0/4422 1.0/4425
5 1.0/4422 1.0/4426 1.0/4535 1.0/4422 1.0/4425
6 0.7/4422 0.74/4426 0.72/4535 0.84/4422 0.57/4425

6096 (80%)

1 0.6/4145 0.66/4145 0.68/4145 0.58/4146 0.46/4145
2 0.5/4145 0.58/4145 0.65/4145 0.45/4146 0.49/4145
3 1.0/4145 1.0/4145 1.0/4145 1.0/4146 1.0/4145
4 1.0/4145 1.0/4145 1.0/4145 1.0/4146 1.0/4145
5 1.0/4145 1.0/4145 1.0/4145 1.0/4146 1.0/4145
6 0.6/4145 0.61/4145 0.64/4145 0.55/4146 0.75/4145

5717 (75%)

1 0.0/3800 0.86/3897 0.86/3908 0.0/3845 0.60/3906
2 07/3800 0.74/3897 0.78/3907 08/3845 0.46/3906
3 1.0/3800 0.31/3897 0.28/3907 1.0/3845 1.0/3906
4 1.0/3800 1.0/3897 1.0/3907 1.0/3845 1.0/3906
5 1.0/3800 1.0/3897 1.0/3907 1.0/3845 1.0/3906
6 0.8/3800 0.8/3897 0.76/3907 0.75/3845 0.52/3906

5334 (70%)

1 0.0/3590 0.6/3578 0.66/3626 0.0/3545 0.67/3906
2 0.6/3590 0.7/3577 0.78/3626 0.53/3545 0.59/3628
3 1.0/3590 1.0/3577 0.39/3626 1.0/3545 0.34/3628
4 1.0/3590 1.0/3577 1.0/3626 1.0/3545 1.0/3628
5 1.0/3590 1.0/3577 1.0/3626 1.0/3545 1.0/3628
6 0.6/3590 0.6/3577 0.5/3626 0.64/3545 0.57/3628
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According to the data presented above, the suggested improved golden jackal optimization
algorithm provides the greatest performance and the minimum energy consumption for all PLRs.
The improved golden jackal optimization algorithm results are displayed in Fig. 3.

Figure 3: Optimal chiller loading of Case-Study 1 by the proposed improved golden jackal optimization

Table 5 shows the simulation findings for Case-Study 2.

Table 5: Simulation findings for the second Case-Study

CL (Cc) Chiller QEPO PLR/
Power (KW)

IWO PLR/
Power (KW)

AFSA PLR/
Power (KW) (A)

BMO PLR/
Power (KW)

GJO PLR/
Power (KW)

2610 (90%)

1 1.0/1930 0.90/1899 0.90/1931 1.0/1900 0.92/1931
2 0.97/1930 0.92/1899 0.93/1931 0.85/1900 0.90/1931
3 1.0/1930 1.0/1899 1.0/1931 1.0/1900 1.0/1931
4 0.74/1930 0.74/1899 0.87/1931 0.69/1900 0.75/1931

2320 (80%)

1 0.86/1531 0.88/1560 0.87/1560 0.74/1561 0.73/1561
2 0.86/1531 0.85/1560 0.83/1560 0.79/1561 0.77/1561
3 0.92/1531 0.81/1560 0.92/1560 0.88/1561 0.89/1561
4 0.70/1531 0.73/1560 0.75/1560 0.76/1561 0.64/1561

2030 (70%)

1 0.70/1158 0.76/1172 0.74/1183 0.61/1182 0.69/1182
2 0.70/1158 0.78/1172 0.74/1183 0.67/1182 0.66/1182
3 0.70/1158 0.72/1172 0.79/1183 0.69/1182 0.65/1182
4 0.66/1158 0.61/1172 0.69/1183 0.57/1182 0.58/1182

1740 (60%)

1 0.60/1004 0.69/1007 0.64/1006 0.59/1006 0.56/1006
2 0.67/1004 0.66/1007 0.73/1006 0.58/1006 0.54/1006
3 0.55/1004 0.54/1007 0.60/1006 0.57/1006 0.59/1006
4 0.68/1004 0.67/1007 0.64/1006 0.59/1006 0.57/1006

1450 (50%)

1 0.63/783 0.63/790 0.66/818 0.59/815 0.56/817
2 0.0/783 0.0/790 0.07/818 0.0/815 0.0/817
3 0.0/783 0.0/790 0.63/818 0.0/815 0.56/817
4 0.65/783 0.64/790 0.65/818 0.58/815 0.57/817

(Continued)
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Table 5 (continued)

CL (Cc) Chiller QEPO PLR/
Power (KW)

IWO PLR/
Power (KW)

AFSA PLR/
Power (KW) (A)

BMO PLR/
Power (KW)

GJO PLR/
Power (KW)

1160 (40%)

1 0.0/645 0.0/648 0.0/648 0.0/648 0.0/648
2 0.0/645 0.0/648 0.08/648 0.0/648 0.0/648
3 0.53/645 0.56/648 0.61/648 0.62/648 0.58/648
4 0.64/645 0.64/648 0.66/648 0.63/648 0.59/648

As can be observed in this research study, the suggested improved golden jackal optimization
algorithm provides the highest efficiency while consuming the least amount of power for the system
[51]. The graphical concept of the diagram, as well as the outcomes of optimization for the improved
golden jackal optimization algorithm, is illustrated in Fig. 4.

Figure 4: Optimal chiller loading of Case-Study 2 by the proposed improved golden jackal optimization

Table 6 compares the simulation results of the suggested improved golden jackal optimization
toward the IWO, AFS, BMO, and the original GJO algorithms for Case-Study 3 [52]. It can
be observed that, as shown in the first two case studies, the proposed improved GJO algorithm
outperforms other algorithms.

Table 6: Simulation findings for third Case-Study

CL (Cc) Chiller QEPO PLR/
Power (KW)

IWO PLR/
Power (KW)

AFSA PLR/
Power (KW)(A)

BMO PLR/
Power (KW)

GJO PLR/
Power (KW)

2160 (90%)
1 0.67/1578 0.76/1578 0.68/1579 0.68/1585 0.68/1588
2 0.88/1578 0.89/1578 0.89/1579 0.87/1585 0.89/1588
3 1.0/1578 1.0/1578 1.0/1579 1.0/1585 1.0/1588

1920 (80%)
1 0.67/1379 0.67/1398 0.69/1401 0.59/1585 0.67/1406
2 0.79/1379 0.79/1398 0.85/1401 0.77/1398 0.87/1406
3 0.86/1379 0.88/1398 0.86/1401 0.86/1398 0.89/1406

(Continued)
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Table 6 (continued)

CL (Cc) Chiller QEPO PLR/
Power (KW)

IWO PLR/
Power (KW)

AFSA PLR/
Power (KW)(A)

BMO PLR/
Power (KW)

GJO PLR/
Power (KW)

1680 (70%)
1 0.58/1211 0.64/1238 0.58/1241 0.59/1238 0.57/1248
2 0.67/1211 0.68/1238 0.69/1241 0.67/1238 0.66/1248
3 0.68/1211 0.69/1238 0.79/1241 0.68/1238 0.78/1248

1440 (60%)
1 0.0/979 0.48/981 0.47/990 0.0/996 0.0/997
2 0.59/979 0.67/981 0.58/990 0.84/996 0.86/997
3 0.58/979 0.47/981 0.59/990 0.86/996 0.87/997

1200 (50%)
1 0.0/789 0.49/840 0.0/844 0.0/850 0.0/855
2 0.64/789 0.37/840 0.67/844 0.69/850 0.69/855
3 0.66/789 0.58/840 0.79/844 0.67/850 0.78/855

960 (40%)
1 0.0/681 0.29/688 0.0/698 0.0/701 0.0/705
2 0.58/681 0.26/688 0.58/698 0.55/701 0.58/705
3 0.57/681 0.57/688 0.57/698 0.55/701 0.56/705

Fig. 5 depicts the optimal chiller loading for the suggested improved golden jackal optimization
algorithm in Case-Study 3.

Figure 5: Optimal chiller loading of Case-Study 3 by the proposed improved golden jackal optimization

The findings of three case studies show that applying the proposed strategy produces quick
convergence outcomes. The primary reason for this rapid convergence is the use of the OBL technique
and self-learner mechanisms which also provide better global optimal results.

6 Conclusions

In this paper, an IGJO algorithm is suggested to handle the OCL problem. The basic goal of
minimizing the energy use of refrigerators is to minimize the LR (load ratio) of each component, which
is considered the optimal parameter. To implement the validation, three case studies are authenticated,
then a comparison is made between the results and several diverse meta-heuristics, including AFS
(Artificial Fish Swarm), IWO (Invasive Weed Optimization), BMO (Barnacles Mating Optimizer), and
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the original GJO (Golden Jackal Optimization) Algorithms to show the system efficiency. Regarding
the results, compared to other current optimal algorithms, the proposed IGJO algorithm can find
better or equivalent optimal answers. In addition, the provided program has good convergence ability.
The computer test results achieved by setting various parameters demonstrate the elasticity and
stability of the IGJO algorithm. In summary, the IGJO algorithm can become an effective and
appropriate technique for optimizing cooler load problems, which can be applied to other optimization
problems.
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