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ABSTRACT

Winding is one of the most important components in power transformers. Ensuring the health state of the winding
is of great importance to the stable operation of the power system. To efficiently and accurately diagnose the disc
space variation (DSV) fault degree of transformer winding, this paper presents a diagnostic method of winding
fault based on the K-Nearest Neighbor (KNN) algorithm and the frequency response analysis (FRA) method. First,
a laboratory winding model is used, and DSV faults with four different degrees are achieved by changing disc space
of the discs in the winding. Then, a series of FRA tests are conducted to obtain the FRA results and set up the FRA
dataset. Second, ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.
Third, the 10-fold cross-validation method is employed to determine the optimal k-value of KNN. In addition,
to improve the accuracy of the KNN model, a comparative analysis is made between the accuracy of the KNN
algorithm and k-value under four distance functions. After getting the most appropriate distance metric and k-
value, the fault classification model based on the KNN and FRA is constructed and it is used to classify the degrees
of DSV faults. The identification accuracy rate of the proposed model is up to 98.30%. Finally, the performance
of the model is presented by comparing with the support vector machine (SVM), SVM optimized by the particle
swarm optimization (PSO-SVM) method, and random forest (RF). The results show that the diagnosis accuracy of
the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the
winding.
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1 Introduction

Power transformers play an important role in voltage transformation and energy transmission for
power systems [1,2]. As the essential equipment within the power station and substation, the reliable
operation of power transformers is of great importance for the safe and stable operation of the energy
internet. A research report on the failure data of transformers shows that winding deformation has
been one of the main causes of transformer failures [3]. Because the transformer winding is slightly
deformed and difficult to detect in the early stage of a failure, minor failure accumulates over a long
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period of time, while the winding insulation ages and the ability to resist short circuit decreases [4].
Once the transformer winding is impacted by the short circuit current, its powerful electro-dynamic
poles may cause serious damage to the transformer. Therefore, accurate fault prognostic is essential
for preventing slight winding deformation developing into catastrophic accidents and ensuring the
healthy operation of the power system.

To accurately detect winding deformation, lots of detection methods have been developed, such as
the short circuit impedance method [5], the low voltage pulse method [6], and the frequency response
analysis (FRA) method [7–9]. Among these diagnostic methods, the FRA method has emerged as
a very powerful and effective off-line detection tool due to its simple operation, good stability, and
high sensitivity. The FRA method relies on the interpretation of the deviation between the reference
FRA curve and the subsequently measured one. To date, several approaches have been proposed to
extract the features of FRA curves and assess the fault of the transformer winding, such as transformer
winding modeling [10], statistical index method [11], and transfer function method [12]. However, due
to the indispensability of expertise knowledge and complexity of the FRA results, it is still difficult
to identify and diagnose the fault type, fault location, and fault degree of the windings based on the
above analysis methods.

With the rapid growth of artificial intelligence, machine learning (ML) algorithms have been
widely and successfully used in the FRA field to identify the faults of winding. By using ML
algorithms, the diagnosis and interpretation results based on FRA curves are made accurately and
automatically without relying too much on expert experience. Therefore, some misdiagnoses can be
effectively avoided. In reference [13], a support vector machine (SVM) is employed to identify fault
types and degrees. In reference [14], a SVM model is used to locate and quantify the radial buckling
fault. Mao et al. [15] use SVMs to accurately identify the winding type. In reference [16], Luo applies
the artificial neural network (ANN) to recognize the extents of the deformation of winding by using
some statistical indicators. In addition, the hierarchical clustering method has also been successfully
introduced to explore the winding fault types [17].

As a supervised method, the K-Nearest Neighbor (KNN) algorithm has the advantages of high
accuracy, insensitivity to noise, and low complexity. It has been used to address classification and
regression. Especially, since KNN is only concerned with a small number of adjacent samples when
making classification decisions and it does not rely on the method of discriminating the category to
which it belongs, it has a good classification effect for different sample sets that cross or overlap more.
However, until now, the application of KNN based on FRA for the identification of the typical winding
fault degrees is rare. Therefore, in this paper, a diagnosis model combining the FRA method and
KNN is proposed to identify the disc space variation (DSV) fault degrees of the transformer winding.
First, plenty of FRA tests are conducted on a winding model with four different degrees of DSV fault
to acquire the FRA dataset. Second, several different numerical indices are selected to extract the
characteristics of the FRA curves caused by DSV faults. Third, the 10-fold cross-validation method
is employed to determine the optimal k-value of KNN. To realize the optimal performance of the
KNN model for fault classification, the relationship between the accuracy of the KNN model and
the k-value is compared under different distance functions. Then, the KNN model is established by
using the selected k-value and the best distance function to identify the DSV fault degrees of the
transformer winding. Finally, the diagnostic performance of the proposed model, including accuracy
rate and running time, is compared with that of traditional SVM, SVM optimized by the particle
swarm optimization (PSO-SVM), and the random forest (RF).
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The rest of this paper is structured as follows. Section 2 is the principle of the FRA test and DSV
fault settings. The features existing in the deviation of the FRA curves caused by faults are extracted
by using numerical indices described in Section 3. Section 4 is the diagnosis of DSV fault degrees by
KNN. The application procedure of the proposed model, results analysis, and comparison with SVM,
PSO-SVM, and RF are all shown in this section. Section 5 is the conclusion.

2 Principle of FRA and DSV Fault of Winding
2.1 Fundamentals of the FRA Method

FRA is a non-destructive detection method that is capable of detecting mechanical deformation
of the core and winding. The diagram of FRA tests is shown in Fig. 1. In the FRA method, the
low-voltage sweep frequency excitation signals are injected into one terminal of a winding, and
corresponding response signals are measured from the other terminal of the winding. Then, by
calculating the amplitude of the ratio of response voltage to the input voltage, the amplitude of
the frequency response can be obtained, as described in Eq. (1). Finally, the FRA curve can be got
by plotting the amplitude of the frequency response with respect to frequencies. Since the winding
can be equivalent to a passive linear two-port network consisting of resistance, inductance, mutual
inductance, conductance, and capacitance, any change of the geometry of the winding caused by fault
will lead to the change of the FRA curve. Then, by analyzing and interpreting the deviation of the
current FRA curve and initial FRA curve, the state of the winding will be diagnosed.

A (f ) = 20 lg
|U0 (f )|
|U1 (f )| (1)

where, A (f ) is the amplitude of the FRA results at frequency f . U0 (f ) and U1 (f ) are the output and
input voltages of the winding at frequency f , respectively.

Figure 1: Diagram of FRA tests

2.2 FRA Test Configurations
In IEEE [18] and IEC [19] standards, four typical FRA test connection ways are introduced. They

are end-to-end voltage ratio (EE), end-to-end short-circuit (EES), capacitive inter-winding (CIW),
and inductive inter-winding connections (IIW), as shown in Fig. 2. In Fig. 2a, the sweep frequency
signals are injected into one terminal of a winding while the response signals are received from the
other terminal. At the same time, the secondary winding of the same phase is left open during the test.
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Because this way can obtain the frequency response of each winding separately, so it is the most widely
used connection. In this paper, the EE connection is used.

Figure 2: FRA test configurations. (a) EE, (b) EES, (c) CIW, and (d) IIW

2.3 DSV Fault of Winding
The laboratory winding with the type of continuous discs is shown in Fig. 3. The height of the

winding is 230 mm and the winding has 12 discs. The inner and outer diameters of a disc are 370 and
530 mm, respectively. There are four different DSV fault degrees in this study. By altering the height of
the spacer between adjacent discs, the DSV faults with different levels are achieved, namely �h, 2�h,
3�h and 4�h, as shown in Fig. 3. �h is 10 mm. It needs to state that the DSV faults with different
degrees that occurred in different locations of the winding are all taken into consideration to acquire
more FRA results.

Figure 3: Winding with a DSV fault

The measured FRA curves with four different DSV fault degrees at different locations of the
winding are shown in Fig. 4. It needs to state that since the number of FRA curves is very large, only
a part of them are shown in Fig. 4.
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Figure 4: The FRA curves under different DSV fault degrees. (a) Fault degree 1; (b) Fault degree 2; (c)
Fault degree 3; (d) Fault degree 4

3 Feature Extraction of FRA results
3.1 Selection of Numerical Indices

To accurately classify the DSV fault degrees of the winding, the features existing in the deviation of
the FRA fingerprint and current FRA curves should be precisely obtained. In this study, according to
the contributions of references [20–28], ten different types of numerical indices are selected, as shown
in Table 1. All of the indices in Table 1 are calculated based on the magnitude vectors. X stands for
the magnitude of the current vector. Y stands for the magnitude of the FRA fingerprint. X (i) and
Y (i) represent the i-th element of their vectors, respectively. X and Y are the averages of X and Y ,
respectively. N represents the number of frequencies within a vector. More than one index selected can
effectively avoid incomplete feature extraction and ensure the accuracy of the fault diagnosis.
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Table 1: Numerical indices

Definition Abbr. Formulas

Lin’s concordance coefficient [20] LCC LCC = 2SXY(
Y − X

)2 + S2
Y + S2

X

Euclidean distance [21] ED ED =
√∑N

i=1 (Y (i) − X (i))2

Sum of errors [20] SE SE =
∑N

i=1 [Y (i) − X (i)]
N

Sum squared ratio error [22] SSRE SSRE =
∑N

i=1

(
Y (i)
X (i)

− 1
)2

N

Correlation coefficient [23] CC CC =
∑N

i=1 X (i) Y (i)√∑N

i=1 [X (i)]2 ∑N

i=1 [Y (i)]2

Sum squared max-min ratio error [24] SSMMRE SSMMRE =
∑N

i=1

(
max (Y (i) , X (i))
min (Y (i) , X (i))

− 1
)2

N

Comparative standard deviation [25] CSD CSD =
√∑N

i=1

[(
Y (i) − Y

) − (
X (i) − X

)]2

N − 1

Absolute sum of logarithmic error [26] ASLE ASLE =
∑N

i=1

∣∣20 log10 Y (i) − 20 log10 X (i)
∣∣

N

Cross correlation factor [27] CCF CCF =
∑N

i=1

(
X (i) − X

) (
Y (i) − Y

)
√∑N

i=1

[
X (i) − X

]2 ∑N

i=1

[
Y (i) − Y

]2

Root mean square error [28] RMSE RMSE =

√√√√√√ 1
N

∑N

i=1

⎛
⎜⎝ |Y (i)| − |X (i)|

1
N

∑N

i=1 |X (i)|

⎞
⎟⎠

2

3.2 Normalization Processing
To eliminate the influence of the dimension of different numerical indices, the Min-Max method

is used to normalize the indices. The normalization equation is expressed as:

x∗ = x − Min (x)

Max (x) − Min (x)
(2)

where, x represents the feature variable that needs to be normalized. Max (x) and Min (x) represent
the maximum and minimum values of the feature variables, respectively.
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4 Diagnosis of DSV Fault Degrees by KNN Algorithm
4.1 Principle of KNN

The KNN is one of the most widely used algorithms in ML. It is perspicuous and simple, and it
can be used to solve classification and regression problems. KNN does not have to define mathematical
models in advance during the calculation, but assumes that there is a correlation between all similar
data. Therefore, KNN does not be trained to build a classification model before applying test data to
the model. Instead, it is trained to build a classification model while testing, so it is a negative learning
method.

4.1.1 Basic Idea of KNN

As shown in Fig. 5, samples are divided into the following three categories based on the charac-
teristics of each sample in a feature space and each sample has two eigenvectors. For a new sample
Mk, if most of its k most similar samples in the feature space (that is, the closest samples in the feature
space) belong to a certain category, the sample Mk will be considered to belong to this category as
well. Obviously, the decision to classify a new sample should follow the principle that the minority is
subordinate to the majority.

Figure 5: Schematic diagram of the KNN algorithm

According to the basic idea of KNN, determinations of the appropriate k-value and the distance
between samples are the core elements of the application of the KNN to address the classification
problem.

4.1.2 Distance Function

In KNN, the degrees of similarity between the two sample points are usually represented by
calculating their distance by using distance function. The shorter the distance, the higher the similarity.
Many different types of distance functions are developed, such as Minkowski distance, Euclidean
distance, and Chebyshev distance. The selection of the distance function is of utmost importance
for achieving high classification accuracy. To investigate the impact of different distance metrics on
the KNN classification model, four distance functions are selected to study their influence on the
classification results. The selected distance functions are shown in Table 2.



2280 EE, 2023, vol.120, no.10

Table 2: Distance functions

Distance functions Formulas

Minkowski D1

(
αi, β j

) = p

√
n∑

k=1

∣∣αim − βjm

∣∣p
, p ≥ 1

Cityblock D2

(
αi, β j

) =
n∑

m=1

∣∣αim − βjm

∣∣
Euclidean D3

(
αi, β j

) =
√

n∑
m=1

(
αim − βjm

)2

Chebychev D4

(
αi, β j

) = ∞

√
n∑

m=1

∣∣αim − βjm

∣∣∞ = maxm

∣∣αim − βjm

∣∣
Note: Where, αim and βjm are the samples of train set and testing set, respectively.

4.1.3 Determination of the K-Value and Distance Function by Cross-Validation Method

The k-value is the only hyperparameter in the KNN algorithm, which has an important influence
on the prediction results. When the k-value is small, it means that the classification results are
determined only by the categories of the nearest samples in the neighborhood. However, when the
training set contains “noise samples”, the model is also susceptible to these noise samples. Then, it
may reduce the training error and easily result in overfitting. When the k-value is large, it may reduce
estimation errors, but can also easily lead to an increasing of the approximation errors of learning. In
practical application, the k-value generally takes a relatively small integer which is not greater than 20.

To determine an optimal k-value, the 10-fold cross-validation method is used. First, the sample
data is randomly and equally divided into 10 parts. Then, nine parts of them are treated as training
set and one part as a test set on a rotational basis. Finally, the average of the cross-validation accuracy
rate of the ten results is treated as the classification accuracy of the KNN algorithm. To reduce the
influence of the random division of samples under a 10-fold cross-validation, one hundred 10-fold
cross-validations are made and the average accuracy rates of the one hundred 10-fold cross-validations
for classification of the DSV fault degrees are obtained. By analyzing the variation law of cross-
validations with respect to the k-value and the basic principle of selection of the k-value, the optimal
k-value will be determined. The relationship between 10-fold cross-validation average accuracy, k-
value, and distance functions is shown in Fig. 6. It can be seen that k = 1 has the highest accuracy rate
for each distance function. However, although the accuracy rate of k = 1 is the highest, to avoid the
influence of noise, k = 1 will not be selected. As shown in Fig. 6, when k = 5 and the distance function
is Chebyshev, the KNN model achieves the second-highest average classification accuracy rate. Based
on the above reasons and the results in Fig. 6, to ensure high accuracy of test results and reduce the
impact of noise, k = 5 is determined and the Chebyshev distance function is selected.

4.2 Fault Diagnosis and Results Analysis
4.2.1 Application Steps of KNN for Diagnosis of DSV Fault Degrees

In this paper, the KNN model is used to classify the four different degrees of DSV fault. The
flow chart of KNN for diagnosis of DSV fault degrees is shown in Fig. 7 and the detailed application
procedures are as follows:
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1. Set up the FRA dataset. By using the FRA test setup, the FRA fingerprint of healthy winding
and the FRA curves of winding with different degrees of DSV fault are measured.

2. Feature extraction. The features existing in the variation of the FRA curves caused by DSV
faults are obtained by using the selected numerical indices.

3. Normalization of Features. To eliminate the influence of the dimension of different numerical
indices, the Min-Max method is used to normalize the features extracted by numerical indices.

4. Calculation of distance between features by using four distance functions.
5. Determination of the optimal k-value and the best distance function. By evaluating the average

accuracy rate of the KNN model under different k-value and distance functions based on
the 10-fold cross-validation method, the optimal k-value and the best distance function are
determined.

6. Sort the distance in ascending order and select samples of the first k minimum distance.
7. Count the category of each selected sample and find out the category with the most number.
8. Diagnosis of the DSV fault degrees.
9. End.

Figure 6: Relationship between 10-fold cross-validation average accuracy, k-value, and distance
functions

4.2.2 Results Analysis and Comparison with SVM Algorithm

The diagnosis accuracy rate has been obtained in Section 4. The average accuracy rate of the
KNN model for the classification of the DSV fault degrees is 98.30%, as shown in Fig. 6. To show
the performance of the proposed method, the accuracy rate and running time of the traditional SVM,
PSO-SVM, and RF methods are calculated to compare with those of KNN.

The DSV fault degree of the winding model belongs to a small sample, nonlinear, and high-
dimensional pattern recognition problem. As a typical machine learning algorithm, SVM has a very
strong ability to address this problem and it has good generalization ability in the case of limited
samples. In addition to SVM, since the RF algorithm can deal with unstructured data, it can better
capture the complex relationship between data, so as to improve the prediction accuracy. Meanwhile,
RF is a flexible, easy-to-use machine learning algorithm that produces, even without hyper-parameter
tuning. Therefore, to show the performance of the KNN for the classification of DSV fault degrees, it
is necessary to compare KNN with SVM, PSO-SVM, and RF algorithms. The radial basis function
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is used in the SVM and PSO-SVM methods. The number of decision trees and leaf nodes in the RF
model are both three. The performance comparison results are shown in Table 3. Although RF is
faster than that of KNN, the accuracy rate of RF is the lowest. It can be seen that KNN has the
highest accuracy rate among these methods. It means that the KNN is particularly suitable for dealing
with multi-classification problems and it performs better than the SVM, PSO-SVM, and RF for the
classification of the DSV fault degrees of winding. In addition, since the number of fault samples is
relatively small, the running time of the KNN is also better than that of the SVM and PSO-SVM. It
needs to state that the running time of the SVM and PSO-SVM models shown in Table 3 also contains
the operation time of the 10-fold cross-validation.

Figure 7: Flow chart of the KNN for diagnosis of DSV fault degrees

Table 3: Performance comparison

Method Accuracy rate Running time

KNN 98.30% 0.2091
SVM 86.11% 0.2314
PSO-SVM 92.13% 0.3599
RF 89.29% 0.1779

5 Conclusion

In the paper, a diagnosis model which combines KNN and FRA is proposed to diagnose the
DSV fault degrees of transformer winding. A lot of FRA tests are performed on a transformer
winding model which is set with different degrees of DSV faults to acquire the FRA dataset. A
series of numerical indices are selected and used to extract the features existing in the FRA curves.
After determining the optimal k-value of KNN and best distance function by using the 10-fold cross-
validation method and the distance between features of samples, the KNN model is built and it is used
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to diagnose the DSV fault degrees of winding. The diagnostic accuracy rate of the proposed model is
up to 98.30% which is better than the SVM, PSO-SVM, and RF methods. Additionally, the running
time of the proposed model for the classification of the DSV fault degrees of winding is also better
than the SVM and PSO-SVM. The diagnosis results show that the proposed model has a good ability
to diagnose the DSV fault degrees of winding. The proposed diagnosis method provides a quantitative
approach for the fault diagnosis of transformer winding. It has an important practical significance for
technical personnel to detect winding deformation and quickly develop a related maintenance strategy.
Meanwhile, the contribution of this paper is beneficial to the development of a standard interpretation
algorithm for the fault detection of the transformer winding.

In a further study, if conditions permit, the proposed model needs to be applied to some real
transformers to further validate its accuracy. In addition, fault types and fault locations of transformer
winding both need to be researched based on the proposed model in the future.
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