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ABSTRACT

In Space Situational Awareness (SSA), accurate and efficient uncertainty quantification and propagation are essen-
tial for various applications, such as conjunction analysis, track correlation, and orbit prediction. The propagation
of the probability density function (PDF) in nonlinear systems results in non-Gaussian distributions, which are
difficult to approximate. Furthermore, the computational cost of approximating the PDF increases exponentially
with the number of random variables, a phenomenon known as the curse of dimensionality. To address these
challenges, the Orthogonal Probability Approximation (OPA) method is presented for high-fidelity uncertainty
propagation and PDF approximation in nonlinear dynamical systems. The method leverages Liouville’s theorem,
sampled PDF values at specific evaluation nodes, and Chebyshev polynomial basis functions to approximate the
PDF at the desired time of interest. A grid filtering approach is employed to enhance computational efficiency,
and scaling of the PDF values is utilized for non-conservative systems. Numerical results are presented for a linear
oscillator, a Duffing oscillator with and without damping, and a planar orbit problem. Validation is performed using
linear error propagation theory and Monte Carlo simulations. The results demonstrate that OPA is at least eight
times more computationally efficient in approximating the PDF of dynamical systems compared to conventional
Monte Carlo methods.
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1 Introduction

Uncertainty Quantification (UQ) in the context of Space Situational Awareness (SSA) refers to the
process of systematically assessing and managing the uncertainties associated with the prediction and
tracking of space objects, such as satellites, space debris, and other resident space objects (RSOs) [1,2].
Conjunction analysis, probability of collision estimation, and uncorrelated track association are some
of the major areas in SSA that require accurate UQ of the state of an RSO [3,4]. Utilizing conventional
methods for these problems can be challenging when the Probability Density Function (PDF) of
interest is non-Gaussian or becomes non-Gaussian due to nonlinear dynamics propagation [5]. This
phenomenon can be observed in a Monte Carlo simulation when one million initial states of an Earth-
bound satellite are propagated over ten days. The final states become so widely distributed in the orbital
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space that the resulting distribution is non-Gaussian [6]. The widely used method of propagating the
State Transition Matrix (STM) and system states to the final time, and linearly mapping the a priori
uncertainty to the final state, has the following flaw: the system dynamics are linearized for STM
propagation, and the PDF at the final state is assumed to be Gaussian in nature [4,7]. This issue can
be addressed by including higher-order derivatives with State Transition Tensor (STT) methods in the
mapping of the final PDF [8,9]. However, such methods require the higher-order partial derivatives
of the force models with respect to the state variables to be either computed or approximated [10–12].
This necessitates a trade-off between accuracy and computational cost [13,14]. Differential algebra
(DA) techniques have been used for accurate nonlinear uncertainty propagation. By implementing
a new algebra of Taylor polynomials, any function of n-dimensional variables can be expanded into
its Taylor polynomial of arbitrary order, along with the function evaluation [15]. For a general ODE
with given initial conditions, this allows for the computation of an arbitrary order expansion of the
solution flow. Based on the DA technique, the uncertainties of a dynamic system can be propagated
using a higher-order Taylor expansion of the statistical moments. DA-based uncertainty propagation
has been used for asteroid encounter analysis, preliminary orbit determination, propagation of orbit
uncertainties, and orbital conjunction analysis [16].

Monte Carlo (MC) simulation is currently the most reliable high-fidelity method for uncertainty
propagation. The outcomes of these simulations can be used in conjunction analysis, developing kernel
density estimates, or histograms to represent the posterior PDF [17]. The accuracy of MC-based
methods is shown to be inversely proportional to the square root of the number of sample points,
meaning even a marginal increase in accuracy requires the propagation of a large number of samples.
The Brute Force Monte Carlo (BFMC) algorithm, developed by NASA’s Conjunction Assessment
Risk Analysis team, is a high-fidelity tool for estimating the collision probability of Earth-orbiting
satellites [18]. It targets long-term or repeating encounters between closely spaced, high-value Earth-
orbiting satellites. The algorithm uses higher-order theory models from the Astrodynamics Support
Workstation, including the latest updates of the atmospheric parameters for the High Accuracy
Satellite Drag Model (HASDM). Including parametric uncertainty in the orbital dynamics force
model requires at least a 7-dimensional state space to quantify the uncertainty in the dynamics. For
a Gaussian PDF in a 7-dimensional space, more than 10,000 Monte Carlo samples are needed to
obtain at least one sample to land in the region with probability values below 10−4. Hence, in higher-
dimensional spaces, Monte Carlo simulations become very expensive for obtaining the PDF associated
with low-probability events that occur beyond 3σ extremal bounds.

Gaussian Mixture Models (GMM) and Polynomial Chaos Expansions (PCE) are more recent
methods of UQ in astrodynamics. GMM characterizes the initial uncertainty as a combination
of several Gaussian PDFs, each of which is propagated forward in time and then recombined to
create the posterior PDF [19,20]. This method assumes that the final PDF can be well represented
by the Gaussian mixture, and it is superior to MC methods in terms of computational cost as
dimensionality increases [21,22]. In PCE, a functional representation of the system response is used
for UQ. Such techniques have been applied to the quantification of uncertainty in astrodynamics
[23–25]. The problem of orbit uncertainty propagation in short arcs has been addressed using the
method of admissible regions and a new Arbitrary Polynomial Chaos (APC) method [26]. The
admissible region method attempts to solve the initial orbit determination problem involving short-
arc optical observations, such as angles and angular rates. Combining the stochastic collocation to
determine the APC coefficients significantly increases the computational efficiency of the APC method
when compared to the MC method. Numerical methods to solve the Fokker-Planck equation can also
capture the evolution of the PDF in nonlinear dynamical systems. Some of these methods include
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Unscented Transformation (UT) and tensor decomposition in combination with Chebyshev spectral
differentiation [27,28].

In recent works, an algorithm for orbital conjunction probability analysis of non-Gaussian distri-
butions with model uncertainties and long encounter times, dubbed CRATER, has been introduced
[29]. For collisions involving highly non-Gaussian PDFs, the algorithm approximates the PDF as a
GMM, and the collision probability is evaluated using Coppola’s method, excluding mixtures that are
beyond 6σ from each other. By using a nonlinearity index to determine the number of mixtures needed
in a GMM, the algorithm is made adaptive to deal with several collision types. Though the algorithm
is comparable to GMMs in terms of accuracy, it has been shown to be computationally more efficient.
A new approach involving the Petri Net model has been used to investigate the impact of the space
debris flux on the estimation of collision probabilities between space debris and Low Earth Orbit
(LEO) satellites [30]. Using weighted and bipartite graphs that consist of two kinds of nodes (places
and transitions), Petri nets can be used to model and simulate the behavior of space debris systems.
Utilizing the space debris flux distribution of a specific year, the simulation is applied to a group of well-
known LEO satellites with different orbital parameters to estimate the collision probabilities within
the next 12 years. Results obtained from this model show that satellites in LEO between altitudes
of 600 km and 1000 km with inclination angles between 90° and 100° are expected to experience
frequent collisions by 2030. A more recently published work propagates orbit uncertainty using an
orbit deviation propagation approach. It combines an analytical two-body deviation propagation
solution with a Deep Neural Network (DNN) output to compensate for the errors between the two-
body and high-fidelity dynamic solutions. This fast approach propagates the mean and covariance
by combining the Unscented Transformation process with DNN-based deviation propagation [31].
Another approximation algorithm, called Global-Local Orthogonal MAPping (GLOMAP), uses the
properties of dynamical systems to approximate the PDF and its evolution along the trajectories of
an n-dimensional state space. It is a multi-resolution approximation algorithm that is robust, as it can
accurately characterize the noise and uncertainty in the data [32]. The algorithm is applied to compute
the evolution of the PDF of a polar sun-synchronous orbit with J2 perturbation. Results indicate
that for a propagation time of 2 h, the GLOMAP algorithm yields a maximum PDF approximation
error of 12%, which the authors consider to be reasonable [33]. At higher levels of uncertainty, all the
above-mentioned methods do not provide a general description of the posterior PDF without extreme
computational cost.

In this paper, a conceptual explanation of the Orthogonal Probability Approximation (OPA) is
introduced in Section 2. A one-dimensional illustration of the concept is provided in Section 2.1. This
is followed by the development of PDF modulation for non-conservative systems and illustrations of
grid filtering techniques in Sections 2.2 and 2.3, respectively. A general overview of implementing OPA
is given in Section 2.4. Linear system validation consists of using OPA to obtain the posterior PDF
of a simple harmonic oscillator with 2-dimensional (2D) state uncertainty in position and velocity, as
presented in Section 2.5. Section 3 introduces the numerical results of using OPA for UQ in nonlinear
systems. First, OPA is used to quantify the posterior PDF of a conservative, and a non-conservative
Duffing oscillator in Sections 3.1 and 3.2, respectively. Both 2-dimensional (2D) and 3-dimensional
(3D) uncertainties are investigated, involving state and parametric uncertainties. Numerical outcomes
are compared with the computation time and accuracy of classical Monte Carlo simulations. Then,
OPA is applied to quantify the uncertainty in the state of a satellite whose motion is confined to a
plane, as shown in Section 3.3. Finally, a discussion of the results is given in Section 4, and concluding
remarks are presented in Section 5.
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2 OPA Methodology

The method of OPA was originally introduced in previous works [6,34,35]. Being a highly efficient
method for lower-dimensional analysis, it provides a very precise description of the posterior PDF at
orders of magnitude lower computational cost than the classical Monte Carlo approach. This method
also provides a more accurate definition of the low probability density region of the PDF than the
Monte Carlo approach. The objective of OPA is to quantify uncertainty or determine the probability
distribution of a dynamic system at a future time of interest, tf , provided the probability distribution of
the system is known at the initial time, t0. An overview of the OPA method is presented as a flowchart
in Fig. 1. For a general n-dimensional dynamical system, the initial states, parameters, and their initial
uncertainties are specified at the beginning of the simulation. Next, the OPA parameters, such as the
number of extremal bound points and the approximation order, are determined. This is followed by
the propagation of the extremal bound points from t0 to tf using the equations of motion. An n-
dimensional Chebyshev grid is then created using the extremal bounds, and grid filtering is applied.
The filtered grid points are subsequently backpropagated to t0, and the known initial PDF values
at the backpropagated grid points are referenced to tf . Depending on whether the system dynamics
are conservative or non-conservative, the referenced PDF values are modulated using the procedure
described in Section 2.2. The orthogonal Chebyshev polynomials are then used to approximate the n-
dimensional PDF, after which the marginal PDF values are obtained by integrating the approximated
PDF with respect to the system’s random variables. The final step is the computation of the cumulative
probability integral. The sections below provide a detailed description of the OPA methodology.

Figure 1: OPA overview flowchart (EOM: Equations of Motion)
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2.1 Basics
This problem of uncertainty quantification in one dimension is depicted in Fig. 2a, where the

solid blue curve denotes the known distribution at t0, and the broken green line indicates the unknown
distribution at tf . In the first step, confinement of the region of interest at tf is done. This is the region
in which the approximation of the unknown final PDF will be performed. This is done by locating the
state space points at t0 whose PDF values match the boundary PDF value of interest. In this work, a
PDF value equivalent to 6σ in a Gaussian distribution is specified as the boundary PDF value at t0.
These state space points are then propagated to tf using the ordinary differential equations (ODEs) that
govern the system. In this work, unless specified otherwise, all the ODEs are numerically integrated
using MATLAB’s Runge-Kutta 45 integrator (ode45) with the tolerance values, both relative and
absolute, set to 10−8. The region between these state space points, or their generalized surface in
higher dimensions, is referred to as the region of extremal probability. This is depicted in Fig. 2b,
where the red dashes on the x-axis mark the extremal bounds. Obtaining the extremal bounds at t0 is
straightforward for well-characterized distributions (e.g., Gaussian or Cauchy). For more complex a
priori distributions, a randomized searching method would be required. Unless stated otherwise, the
initial distribution for all the cases presented in this work is Gaussian.

Figure 2: (Continued)
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Figure 2: OPA scheme illustrated using a 1D PDF example

After locating the extremal bounds at tf , the space between them is populated with grid points
whose PDF values will be computed from the a priori distribution and then used in the subsequent
approximation process. Fig. 2c depicts cosine nodes distributed between the extremal bounds at tf . To
achieve this, each evaluation node at tf is backpropagated to t0 using the system ODEs, with the state
information of these nodes at tf serving as the initial condition. The PDF value at the backpropagated
grid points is obtained by comparing the a priori distribution with the backpropagated state value
of these nodes. According to Liouville’s theorem, these PDF values always remain unchanged for
conservative systems. Hence, these PDF values are referenced to the grid points at tf , where they are
utilized to generate a functional approximation of the final probability distribution using Chebyshev
polynomials, f (x) ∼= ∑n

k=0 akϕk (x), where, n is the order of approximation, ϕk(x) is the Chebyshev
polynomial of order k in x, and ak is the approximation coefficient. Fig. 2d depicts the back-
propagation of each of the grid points, and Fig. 2e shows the resulting approximation for the posterior
PDF. It is important to note that the mapping of the known PDF values at the backpropagated grid
points occurs from t0 to tf through the utilization of Liouville’s theorem. This step is also known
as referencing the PDF values. The order of the approximation, n, is determined by the accuracy
requirements of the PDF approximation, and the corresponding coefficients are estimated using a
least-squares process. Since the Chebyshev polynomials ϕk(x) are orthogonal within the domain of
approximation, the matrix inversion step in the least squares process can be executed more efficiently.
The approximation process is performed using Chebfun, an open-source MATLAB toolbox for
Chebyshev polynomial approximation [36]. Unless specified otherwise, all numerical results shown
in this paper were obtained using the Chebfun toolbox.

2.2 PDF Modulation for n-D Non-Conservative Systems
The OPA technique outlined in Section 2.1 is based on Liouville’s theorem which states that

the probability density value of a state space point, defined by an a priori distribution with initial
conditions, remains constant as long as the point traverses a unique state space trajectory. This is
encapsulated in Liouville’s equation [37] as,

dρ

dt
= ∂ρ

∂t
+

m∑
i=1

(
∂ρ

∂qi

q̇i + ∂ρ

∂pi

ṗi

)
= 0 (1)

where, q, p denote the state variables, and the number of random variables is indicated by m.
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This is true only for conservative dynamical systems. For systems that involve non-conservative
dynamics, energy may either be removed (e.g., friction and drag) or added (e.g., thruster, solar radiation
input on satellite solar panels) to the system. Hence, Eq. (1) is no longer applicable, and the probability
density of a given state space point changes with time. This variation can be quantified by the fact
that, at any time instant, the integral of the probability density surface with respect to all the random
variables must equal one. For example, in the case of dissipative systems, for the integral of the
probability density surface to equal one at any instant, the PDF value of a state space point must
increase as it moves forward in time. This increase continues until the system reaches a steady state,
which has the maximum probability. Conversely, the opposite occurs in a system to which energy is
added: the PDF value of a state space point decreases as it moves forward in time.

Fig. 3 illustrates the effect of energy dissipation in a damped Duffing oscillator which is a system
with 2 random variables (i.e., position and velocity). As shown, the area covered by the extremal
bounds at tf (green) is smaller than the area covered by the extremal bounds at t0 (red). This means that
the associated PDF at tf increases in value in proportion to the area shrinkage of the extremal bounds
at tf . In Fig. 2d, each back-propagated evaluation node picks up a PDF value based on its location in
the state space and the a priori PDF. This PDF value is scaled or modified to reflect the area shrinkage.
For problems with two random variables, a local scale factor is adopted for each evaluation node. The
area of the triangle for which each evaluation node is a vertex is computed. The area change of each
such triangle during back-propagation is tracked and used to compute the scale factor, which is then
used to scale the PDF value. If Afi and A0i denote the area of the triangle associated with the i-th
evaluation node at tf and t0, respectively, then the associated scale factor, SFi is obtained by,

A0i = 1
2

∣∣∣∣∣∣
x100 x200 1
x110 x210 1
x120 x220 1

∣∣∣∣∣∣
i

(2)

Afi = 1
2

∣∣∣∣∣∣
x10f x20f 1
x11f x21f 1
x12f x22f 1

∣∣∣∣∣∣
i

(3)

A0i = 1
2

∣∣∣∣∣∣
a00 1
a10 1
a20 1
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i

(4)

Afi = 1
2

∣∣∣∣∣∣
a0f 1
a1f 1
a2f 1

∣∣∣∣∣∣
i

(5)

SFi = A0i

Afi

(6)

where, a00 (x100, x200), a10 (x110, x210), a20 (x120, x220) represent the vector locations of the triangle
vertices/nodes at t0, and a0f (x10f , x20f ), a1f (x11f , x21f ), a2f (x12f , x22f ) represent the vector locations of
the triangle vertices/nodes at tf . This PDF modulation process for a single triangle is illustrated in
Fig. 4. A systematic repetition of this process is done by constructing adjacent triangles to obtain
the scale factors associated with all nodes (i.e., i = 0, 1, 2, ..., n). The referenced PDF value from
t0, at each evaluation node is then multiplied/scaled by the scale factor SFi before the Chebyshev
approximation step.
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Figure 3: 2D Duffing oscillator with damping: shrinking of the extremal bounds when the system
propagates through state space. Area formed by the extremal bounds at tf (green) is smaller than the
area formed by the extremal bounds at t0 (red)

Figure 4: Sample PDF modulation using triangles in a 2D problem
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Similarly, for a non-conservative dynamical system with 3 random variables (x1, x2 and x3), a
local scale factor is adopted for each evaluation node. The volume of the tetrahedron for which each
evaluation node is a vertex is computed. The volume change of each such tetrahedron during back-
propagation is tracked and used to compute the scale factor, which is then applied to scale the PDF
value. If V fi and V 0i denote the volume of the tetrahedron associated with the i-th evaluation node at
tf and t0, respectively, and if SFi is the associated scale factor, then,

V0i = 1
3!
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i

(7)
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SFi = V0i
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(11)

where a00, a10, a20, a30 represent the vector locations of the tetrahedron vertices at t0 and a0f , a1f , a2f , a3f

represent the vector locations of the tetrahedron vertices at tf . This process is illustrated for a single
tetrahedron in Fig. 5. The process is systematically repeated to obtain the scale factors associated
with each evaluation node, after which they are used to scale the referenced PDF values at each node
before they are passed to the approximation step. For a non-conservative dynamical system with n
random variables, the scale factor associated with each evaluation node is obtained by evaluating the
hypervolume change associated with the corresponding n-dimensional simplex. Using linear algebra,
the scale factor associated with the i-th evaluation node can be computed by tracking the hypervolume
change of the corresponding n-dimensional simplex,

V0i = 1
n!

∣∣∣∣∣∣∣∣

x110 − x100 x120 − x100 . . . x1n0 − x100

x210 − x200 x220 − x200 . . . x2n0 − x200

...
...

...
...

xn10 − xn00 xn20 − xn00 . . . xnn0 − xn00

∣∣∣∣∣∣∣∣
i

(12)

Vfi = 1
n!

∣∣∣∣∣∣∣∣

x11f − x10f x12f − x10f . . . x1nf − x10f

x21f − x20f x22f − x20f . . . x2nf − x20f

...
...

...
...

xn1f − xn0f xn2f − xn0f . . . xnnf − xn0f

∣∣∣∣∣∣∣∣
i

(13)

V0i = 1
n!

∣∣a10 − a00 a20 − a00 . . . an0 − a00

∣∣
i

(14)

Vfi = 1
n!

∣∣a1f − a0f a2f − a0f . . . anf − a0f

∣∣
i

(15)



178 DEDT, 2024, vol.2

SFi = V0i

Vfi

(16)

where, a00, a10, ..., an0 represent the vector locations of the simplex vertices at t0, and a0f , a1f , ..., anf

represent the vector locations of the simplex vertices at tf . Despite being a very precise way to scale
the n-dimensional PDF, this local technique is computationally intensive. An alternative, albeit less
accurate, approach is to estimate the scale factor by computing the overall hypervolume shrinkage
associated with the n-dimensional extremal bounds. This can be done using the convexhull function in
MATLAB.

Figure 5: Sample PDF modulation using tetrahedrons in a 3D problem

2.3 Chebyshev Grid Filtering
An important step in OPA is the back-propagation of the grid points (Fig. 2d). This step presents

two key challenges that need to be addressed: i) the curse of dimensionality, and ii) the system’s
nonlinear dynamics. In lower-dimensional problems, up to 2D, even with an approximation order
as high as 70, the time required for the back-propagation of, for example, 4900 (= 70 × 70) points
is significantly less than the time required for a Monte Carlo simulation that achieves the same PDF
approximation accuracy. However, in higher dimensional PDF approximation, the number of points
created in a tensorial grid increases exponentially. But most of these grid points are clustered near the
boundary where the PDF value is essentially zero. Hence, with each dimension, the number of grid
points required for PDF approximation increases by nearly an order of magnitude, of which only a
small fraction of them are in locations where the PDF values are non-zero. This phenomenon is known
as the curse of dimensionality [38].

The second challenge is the divergence that can occur during the back-propagation of nonlinear
dynamics (i.e., one or more state space variables become extremely large or approach infinity). In
Fig. 6, every point on the extremal bounds at tf is obtained by forward propagation of the points on
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the extremal bounds at t0. Each point in the overlaid Chebyshev grid is a state space point that, in
principle, can be backpropagated to t0. In theory, after back-propagation, every grid point that lies
within the extremal bounds at tf (i.e., an internal grid point) will land within the extremal bounds at
t0, and every grid point that lies outside the extremal bounds at tf (i.e., an external grid point) will land
outside the extremal bounds at t0. However, in practice, for nonlinear systems, some of these external
grid points may land far outside the extremal bounds at t0, and some may even diverge to infinity.
Additionally, it is unnecessary to backpropagate these points, as the PDF value at these points is
negligible (nearly zero) and not of interest to the problem. To address these issues, points outside the
extremal bounds are filtered out, and only the points within the extremal bounds are backpropagated.
This filtering improves the efficiency of OPA.

Figure 6: Divergence during back-propagation in nonlinear systems

The grid filtering implemented in this paper uses dot products to determine which grid points lie
within the extremal bounds. For the 2D case, in the rectangle ABCD shown in Fig. 7a, the points p1 and
p2 are checked by first computing the unit normal vectors n̂1, . . ., n̂4 for the four sides of the rectangle
ABCD. The next step is to ensure that all the obtained unit normal vectors are pointing inward. This
is done by ensuring that the dot product between the normal vector and the vector from the geometric
center to a point on the side is positive. Finally, the test point pi is checked to see if it lies within the
rectangle by evaluating the dot product between each of the normal vectors and the vector connecting
pi to any point on the side. This dot product value must be non-negative for pi to lie inside ABCD.

Similarly, for the 3D case, in the tetrahedron ABCD shown in Fig. 7b, the points p1 and p2 are
checked by first computing the unit normal vectors for all faces of the tetrahedron. After ensuring
the inward pointedness of the unit normal vectors of each face, the dot product between each normal
vector and the vector connecting the test point pi to any point on the face is computed. If this dot
product is non-negative, then pi lies inside the tetrahedron ABCD. The detailed steps of the process
are shown in Algorithm A1 in Appendix A. Algorithm A1 can be applied to any n-sided polygon or
n-faced polyhedron. For dimensions higher than 3D, the same dot product inequality check is applied



180 DEDT, 2024, vol.2

for grid filtering. However, this requires the computation of the null space to obtain the unit normal
vectors for each simplex of the n-D convex hull. These procedures are documented and implemented
in a user-created MATLAB function, inhull [39].

Figure 7: Example of 2D and 3D grid filtering used in OPA

2.4 Implementation and Validation of OPA
All the steps of OPA described so far are encapsulated in the flowchart shown in Fig. 1. When

implementing OPA for nonlinear systems, Monte Carlo (MC) simulations are used to validate the
outcomes of OPA. The first step is to create a significant number of sample/test points (i.e., initial
conditions) based on the system’s initial known distribution. Typically, around 1 million samples are
generated to achieve a reasonable approximation of 6σ extremal bounds. Each of these sample points
is then propagated to tf , after which the kernel density estimator is used to generate the PDF from these
propagated sample points. As in the OPA simulation, marginal PDFs and the cumulative probability
integral are computed. The accuracy of the cumulative probability integrals from the OPA simulation
and MC simulation are then compared. Because the initial PDF is truncated in these simulations,
according to probability theory, the cumulative probability integral should remain constant between
the initial and final PDFs and should be very close to one if the initial PDF is truncated at a 6σ distance
from the mean. The approximation order and the number of samples are chosen such that both OPA
and MC simulations achieve the same level of accuracy. Consequently, computational efficiency is
quantified, for the same level of accuracy of the cumulative integral, by recording the runtime for
each method. Algorithm A2 describes the sequence of steps required to implement OPA for a general
n-dimensional dynamical system. All the numerical experiments shown in this paper were run on an
HDD desktop computer with an Intel(R) Core(TM) i7 processor at a clock speed of 3.4 GHz and
16 GB RAM.

2.5 Validation of OPA via Linear Covariance Propagation
A simple undamped linear system with a unit mass is chosen as a representative of linear systems

to validate the implementation of OPA,

Ẋ =
[

0 1
−ω2

n 0

]
X , Ẋ = AX (17)
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where, X = [xẋ]T and ωn is the natural frequency. The relevant OPA simulation parameters can be
found in Table 1. In this dynamic system with two random variables, position, and velocity, the 6σ

initial extremal bounds of the Gaussian distribution are defined using 100 points. The initial covariance
for this dynamic system is given by P0 = diag([0.032 0.052]). Here, Liouville’s theorem is used to place
100 points at the 6σ bounds from the mean values of position and velocity shown in Table 1. First,
the eigenvalues and eigenvectors of the initial covariance matrix are obtained. Then, a set of random
points on the surface of an n-dimensional unit sphere is generated. The dimension of this set of points
corresponds to the dimensionality of the problem, and the cardinality of this set is the number of
extremal bound points specified by the user. These random points are then scaled by the product of
the initial standard deviation and the value of the extremal bounds (i.e., 6σ for the cases considered
in this paper). Finally, these points are oriented using the eigenvectors and translated to lie on the
6σ surface of the distribution, whose mean is specified in Table 1. Nominal values for initial position
and velocity, along with the 6σ initial extremal bounds, are propagated through the linear dynamics,
Eq. (17), to a chosen final time, tf (Fig. 8).

Table 1: Linear oscillator: OPA simulation parameters (μ = mean, σ = standard deviation)

Parameter Value

t0 (s) 0
μx0

(m) 0.85
σx0

(m) 0.03
μẋ0

(m/s) 0
σẋ0

(m/s) 0.05
tf (s) 5.6481
ωn (rad/s) 1
n 30
OPA computation time (s) 14.5684

Figure 8: Linear oscillator: initial and final bounds
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For an approximation order of 30, the total number of grid points comes to 302 = 900. The
probability distribution at any given time is a function of the state variables: position and velocity,
which are also the random variables in the linear system. A 2D Chebyshev grid is formed using,

Xij =
{

cos
(

iπ
n1

)
, cos

(
jπ
n2

)}
, 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, i, j ∈ Z (18)

For this case, the approximation order for both random variables is set to be equal, i.e., n1 =
n2 = n. The grid created encompasses the extremal bounds at tf as shown in Fig. 8. Following the
procedure outlined in Section 2.3, the external grid points are eliminated. Each grid point within
the extremal bound is back-propagated to the initial time, t0 to obtain the corresponding PDF value
(Fig. 9), which, according to Liouville’s theorem, remains unchanged for a conservative system. This
set of referenced PDF values at the Chebyshev grid points is then used to approximate the PDF at tf ,
Fig. 10. The process of approximation is carried out using Chebfun, an open-source MATLAB package
that implements Chebyshev polynomial approximations. In a linear dynamic system, the covariance
matrix can be numerically propagated to t f using the equation from linear error theory [40],

Ṗ = AP + PAT (19)

P(t0) = P0 (20)

where, A is the system matrix, P is the covariance matrix and P0 is the initial covariance matrix. Using
the expression for the PDF value of a multivariate Gaussian distribution,

fanalytical = (2 π)
−k/2 |Σ|−1/2 exp

(
−1

2
(X − μ)

T
Σ−1 (X − μ)

)
(21)

and plugging in μ =
[
μxf

μẋf

]
(the propagated mean position and velocity), k = 2 (the cardinality

of random variables), and � = P (the propagated covariance matrix), the analytical probability
density values at the Chebyshev grid points at tf are obtained. Fig. 10 shows the final PDF obtained
after approximation, which is compared with the PDF obtained from linear error propagation using
Eqs. (19) and (20). The results show errors in the order of 10−7 (Fig. 11). Besides direct comparison
of the PDFs, an important accuracy metric in PDF approximations is the evaluation of the total
probability integral value, at tf , which is given by,
(
If

)
OPA

=
∫

x

∫
ẋ

f (x, ẋ) dẋ dx (22)

where, f (x, ẋ) is the functional approximation of the PDF. The integral of f (x, ẋ) within the 6σ extremal
bounds at tf , evaluated using the Clenshaw-Curis quadrature, turns out to be 0.999999991460116 [41].
Since this linear system is assumed to have a Gaussian PDF at t0 that is truncated to the 6σ extremal
bounds, the total probability integral at t0 can be computed by converting the distribution to polar
coordinates and performing the integration as,

(I0)analytical = 1
2π

∫ 6

0

(∫ 2π

0

exp
(−r2

2

)
dθ

)
rdr (23)

=
∫ 6

0

exp
(−r2

2

)
rdr
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Figure 9: Linear oscillator: filtered grid points before and after back-propagation

Figure 10: Linear oscillator: performing PDF approximation
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Figure 11: Linear oscillator: cumulative probability and validation using linear error theory

Using integration by substitution with t = r2, it can be shown that,

I0 = 1 − exp
(−62

2

)
(24)

= 0.999999984770020

(I0)analytical = 0.999999984770020 (25)

According to the fundamental theorem of probability, this value for the total probability integral
should always remain constant. Without loss of accuracy, the analytic total probability integral value
can be considered the true total probability integral value. It is seen that (If )OPA − (I f )analytical is in the
order of 10−9, which further demonstrates the accuracy of OPA.

3 Numerical Results

In this section, OPA is used to approximate the PDF of two nonlinear dynamical systems: the
Duffing oscillator (undamped and damped), and a satellite in a planar orbit. A Duffing oscillator is a
nonlinear oscillator with its overall dynamics described by the equation,

ẍ + δẋ + αx + βx3 = γ cos ωt (26)

where, γ and ω are the amplitude and the angular frequency of the periodic driving force, β is the
nonlinear stiffness coefficient, α is the linear stiffness coefficient, and δ is the damping coefficient,
respectively. In this work, a Duffing oscillator with a softening spring (β < 0) and no external force
(γ = 0) is studied. In Cowell’s formulation, the general orbit problem is given by,
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r̈ = −μe

r3
r + ap (27)

where, r = [x, y, z]T represents the position vector in the Earth Centered Inertial (ECI) coordinate
frame, r = x2 + y2 + z2, μe is the Earth’s gravitational parameter, and ap is perturbing acceleration,
e.g., gravity potential, drag, solar radiation pressure, third-body effects, etc. For the presented planar
two-body problem, we let ap = 0, and r = [x, y]T . For all the cases presented herein, OPA shows better
computational efficiency than Monte Carlo simulations for the same level of PDF approximation
accuracy.

3.1 The Undamped Duffing Oscillator
In this problem, the oscillator mass is set to one, the damping coefficient is removed, and k is

treated as the common stiffness coefficient for both the linear and nonlinear stiffness terms, Eq. (28).
In this nonlinear conservative system, the PDF is a function of two random variables: position and
velocity. Tables 2 and 3 provide the simulation parameters. In this case, there are 2025 (n2 = 452)
Chebyshev grid points in total. The initial 6σ bound is defined by a set of 100 points that are generated
using the procedure described in Section 2.4. The propagation time is set as three-fourths of the
oscillator period. Fig. 12 depicts the morphing of a circular extremal bound at t0 to an irregularly
shaped extremal bound at tf . A 2D Chebyshev grid is constructed, encompassing the extremal bounds,
and the approximation nodes external to the extremal bounds are eliminated as shown in Fig. 13.

ẍ + (
1 + k2

)
x − 2k2x3 = 0 (28)

From the computation point of view, the back-propagation process is the most time-consuming
section of OPA. The time required for the back-propagation depends on three factors: i) the number
of points that lie within the extremal bounds, ii) the initial and the final time (i.e., time span) of the
back-propagation and iii) the complexity of the ODE system that is numerically integrated. After the
back-propagation of each filtered grid point to t0, the corresponding PDF value is referenced to tf

(Fig. 13). Then, the approximation is done using the Chebfun package to result in the PDF shown
in Fig. 14. As the dynamics of the system are no longer linear, the analytic linear error propagation
theory cannot be used for validation. Hence, Monte Carlo simulation is performed with 1 million
sample points and the corresponding PDF is obtained using the kernel density estimation function.
Fig. 14 shows the PDF corresponding to the Monte Carlo simulation of 1 million evaluation points.
Since the PDF is non-Gaussian, the total probability integral value, I, is used as the metric to evaluate
the accuracy of the PDF approximation. This value should come close to the cumulative integral of
the truncated probability density function at t0. Fig. 15 depicts the close agreement between the 1-
dimensional marginal PDFs and the cumulative integral curves of OPA and MC simulations. Table 4
shows the cumulative integral value of the PDF and the corresponding computation time for the OPA
and MC simulations. OPA is shown to achieve nearly more than 100 times speed-ups vs. Monte Carlo
simulations, as shown in Table 4, where the speed-up is calculated using the computation time of OPA
and MC simulations.
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Table 2: 2D Duffing oscillator with stiffness: OPA simulation parameters

Parameter Value

t0 (s) 0
tf (s) 4.7753
k (N/m) 0.5
n 45

Table 3: 2D Duffing oscillator with stiffness: initial random variables

Random variables Mean (μ) Standard deviation (σ )

x (m) 0.85 0.03
ẋ (m/s) 0.00 0.03

Figure 12: 2D conservative Duffing oscillator: bounds at t0 and tf
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Figure 13: 2D conservative Duffing oscillator: filtered grid and referenced PDF at tf

Figure 14: 2D conservative Duffing oscillator: PDFs from OPA and Monte Carlo simulation
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Figure 15: 2D conservative Duffing oscillator: comparison of the 1-dimensional marginal probability
density function (PDF) and cumulative probability curves with MC simulation

Table 4: 2D conservative Duffing oscillator: comparison of OPA & MC simulation results

Method No. of
Chebyshev
grid points

No. of Chebyshev
grid points after
grid filtering

Cumulative integral Computation
time1 (s)

Speed up =
(MC/OPA)

OPA 452 623 0.999999999047725 26.4781 108.4700
Monte Carlo
simulation

1 million (Not applicable) 0.999873394793882 2872.0804 1.0000
(baseline)

Note: 1Because of the changes in the computation architecture, computation times may vary.

3.2 The Damped Duffing Oscillator
In this section, OPA is applied to a damped Duffing oscillator with uncertainty in the damping

coefficient, Eqs. (29) and (30). In this non-conservative dynamic system, the PDF at any given time
depends on three random variables: (1) position, (2) velocity, and (3) the damping coefficient, δ. The
state space trajectory of the oscillator is depicted in Fig. 16. The simulation parameters can be found
in Tables 5 and 6. Since the problem has three random variables, it requires a 3-dimensional Chebyshev
grid. Choosing an approximation order of n = 28, results in n3 = 283 = 21,952 Chebyshev grid points
before grid filtering.

ẍ + δẋ + (
1 + k2

)
x − 2k2x3 = 0 (29)

δ̇ = 0 (30)

The stiffness coefficient k is treated as a constant, and the damping coefficient δ becomes the
random variable whose variation with time is zero. Out of the 3 random variables in this problem, only
position and velocity change with time. Fig. 17 shows the initial extremal bounds that are propagated
to a final time tf using Eqs. (29) and (30) to obtain the final extremal bounds. As shown in Fig. 17, a
3-dimensional (3D) Chebyshev grid is then formed at the final time. Following the technique discussed
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in Section 2, the grid points within the final extremal bounds, Fig. 17, are filtered and then back-
propagated. Because of the non-conservative nature of the system dynamics, the PDF values at the
grid points referenced from the back-propagation need to be scaled before the approximation is done.
Although the procedure described in Section 2.2 can be used to scale the backpropagated PDF values,
there is a simple and efficient way to scale the PDF using the fact that the damping coefficient does
not change with time in this simulation, δ̇ = 0. Using the nature of the Chebyshev grid, the selected
grid points at tf can be grouped into several levels with each level defined by a constant value of
δ (Fig. 18). A convex hull is formed using the grid points between two successive levels at tf . The
volume of this convex hull is denoted as V fi. Upon back-propagation, each grid point from a damping
coefficient level at tf lands at different position and velocity coordinates at t0 but the value of the
damping coefficient remains unchanged. A second convex hull is formed using the backpropagated
grid points of the corresponding successive levels at t0, whose volume is termed as V 0i. The convex
hulls with volumes V fi and V 0i are shown in Fig. 19. The scale factor associated with this pair of levels
is given by,

SFpairi = V0 i

Vf i

(31)

SFleveli = SFpairi+1
+ SFpairi

2
(32)

Figure 16: 3D non-conservative Duffing oscillator: state space propagation from t0 to tf

Table 5: 3D Duffing oscillator with damping: OPA simulation parameters

Parameter Value

t0 (s) 0
tf (s) 7.49
k (N/m) 0.5
n 28
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Table 6: 3D Duffing oscillator with damping: initial random variables

Random variables Mean (μ) Standard deviation (σ )

x (m) 0.85 0.03
ẋ (m/s) 0.00 0.03
δ (Ns/m) 0.50 0.03

Figure 17: 3D non-conservative Duffing oscillator: initial and final bounds

Figure 18: 3D non-conservative Duffing oscillator: filtered grid points and damping coefficient levels
at tf (each colored layer of points (right) is a damping coefficient level with constant value for the
damping coefficient)
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Figure 19: 3D non-conservative Duffing oscillator: PDF modulation using volume approximation

This process continues for each pair of successive levels until all the selected grid points are
covered. For example, if there are 25 levels, then this method yields 24 scale factors. Since each level
of grid points is paired with the level above and with the level below, the scale factor of that level is
obtained by computing the average as shown in Eq. (32). This mean scale factor is then used to scale
the referenced PDF values of that level. The procedure continues until the referenced PDF at all levels
is scaled. After scaling, the 3D PDF is approximated using the Chebfun toolbox. Figs. 20 and 21 show
the outcomes of integrating the approximated PDF with respect to one random variable at a time (i.e.,
damping coefficient and velocity, respectively). The sequence of integration is described in Eqs. (33)
and (34),

g (x, ẋ) =
∫ c2

c1

f (x, ẋ, δ) dδ (33)

h (x) =
∫ ẋ2

ẋ1

g (x, ẋ) dẋ (34)

The smoothness of the cumulative probability curve depends on the order of approximation used.
In the 2D Duffing oscillator problem, Table 4 shows that an MC simulation with 1 million points is
required to achieve a reasonably accurate cumulative integral value. Therefore, using 1 million points,
Fig. 20, an MC simulation is used to validate the approximation process. Table 7 shows that both the
OPA and Monte Carlo simulations yield cumulative integral values close to one (to three decimal
places). However, OPA is more than 270 times faster than the conventional Monte Carlo approach.
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Figure 20: 3D non-conservative Duffing oscillator: comparison of 2D marginal PDFs

Figure 21: 3D non-conservative Duffing oscillator: comparison of the 1-dimensional marginal proba-
bility density function (PDF) and cumulative integral curves with MC simulation
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Table 7: 3D Duffing oscillator with damping: comparing OPA and Monte Carlo simulation results

Method No. of
Chebyshev
grid points

No. of Chebyshev
grid points after
grid filtering

Cumulative integral Computation
time (s)

Speed up =
(MC/OPA)

OPA 283 932 0.999102705941492 17.7407 277.2637
Monte Carlo
simulation

1 million (Not applicable) 0.999715600885726 4918.8523 1.0000
(baseline)

3.3 The Planar Orbit Problem
A higher-dimensional application of OPA is propagating the PDF of a simulated orbit problem.

When using Chebyshev polynomials for higher dimensions, it becomes computationally expensive
to compute full multi-dimensional approximations for the PDF. Additionally, for most real-world
problems, only the spatial dimensions are required for further computations. This means that a one-
dimensional approximation can be used to integrate the non-spatial dimensions of the PDF so that
only a 2D or 3D Chebyshev approximation is required. This is achieved by selecting a dimension
for integration and then, for each of the combinations of the non-selected dimensions, integrating
along a one-dimensional line of the selected dimension to compress its probability into a single point
in a space defined by the non-selected dimensions. This process is then repeated for all non-spatial
dimensions. A simple LEO planar orbit problem is considered with uncertainty in the initial position
and velocity. Because of the nature of the coupled dynamics, the PDF becomes a function of four
random variables: position (x, y) and velocity (Vx = ẋ, Vy = ẏ). In this problem with two spatial and
two velocity dimensions, at each constant value of x, y, and ẋ, a one-dimensional integral along ẏ will
compress the 4D space into a 3D space. Repeating this along ẋ compresses the space to 2D, and then
a 2D Chebyshev approximation can be used for the spatial dimensions.

The state vector for the planar orbit problem is written as,

X = [
x y ẋ ẏ

]T
(35)

Ẋ = [
ẋ ẏ ẍ ÿ

]T
(36)

with its dynamics given by,

ẍ = −μe

r3
x (37)

ÿ = −μe

r3
y (38)

r = √
x2 + y2 (39)

Tables 8 and 9 present the orbital elements and other relevant parameters of the planar orbit
chosen to demonstrate OPA, respectively. The 6σ initial extremal bound of the planar orbit problem
is defined by 500 points, which are obtained using the initial values of the uncertainties for the four
random variables given in Table 10 and the procedure described in Section 2.4. These points, with a
constant value of the PDF, are shown in Fig. 22. Since there are four random variables, the 4D extremal
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bounds are shown in two separate plots. Upon propagating these extremal bounds to one-fourth (=
0.25 ∗ T) of the period of the orbit, the final extremal bounds are obtained, as shown in Fig. 23. A
4D Chebyshev grid encompassing the final extremal bounds is then formed (Fig. 24), and the points
within the extremal bounds are filtered (Fig. 25) using the procedure mentioned in Section 2.3. These
points are backpropagated to t0 (Fig. 26), and the PDF value at each (x0, y0, ẋ0, ẏ0) is referenced to tf .

Table 8: Planar orbit problem: orbital elements of the LEO

Orbit elements Value Unit

Semi-major axis (a) 7435.0545 × 103 m
Apogee altitude (ha) 1800.0000 × 103 m
Eccentricity (e) 0.1000 (none)
Inclination (i) 0.0000 deg
Right ascension of the ascending node (Ω) (Not applicable) deg
Argument of perigee (ω) (Not applicable) deg
Period of the orbit (T) 6380.2465 × 103 s

Table 9: Other relevant parameters of the planar orbit problem

Parameters Value Unit

Earth gravitational parameter (μe) 3.9860 × 1014 m3/s2

Radius of the earth (re) 6378.5600 × 103 m
Apogee radius (ra) 8178.5600 × 103 m
Apogee velocity (va) 6.6229 × 103 m/s
Period of the orbit (T) 6380.2465 × 103 s

Table 10: Planar orbit problem: random variables at t0

State variable Mean value (μ) Standard deviation (σ )

x (m) −ra 30.00
y (m) 0 30.00
ẋ (m/s) 0 0.03
ẏ (m/s) −va 0.03
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Figure 22: Planar orbit: 6σ extremal bound points at t0

Figure 23: Planar orbit: 6σ extremal bound points at tf
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Figure 24: Planar orbit: extremal bounds with 4D Chebyshev grid at tf

Figure 25: Planar orbit: filtered 4D Chebyshev grid points at tf
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Figure 26: Planar orbit: filtered grid points after back-propagation at t0

Although the number of grid points increases exponentially with the dimensionality of the
problem, grid filtering makes the back-propagation tractable. From Table 10, the ratio of the standard
deviations of the spatial and velocity dimensions is found to be 30/0.03 = 1000. From numerical exper-
iments, it was found that maintaining the ratio around this value results in enough backpropagated
grid points within the extremal bounds, which ensures a good-quality approximation of the PDF at tf .
The 4D PDF is then approximated using the higher-dimensional approximation procedure described
above. After approximation, a 2D and a 1D marginal PDF are obtained by the integration sequence
given in Eqs. (30)–(32). Finally, the cumulative integral is also obtained by integrating the 1D marginal
PDF with respect to the x position.

f2 (x, y, ẋ) =
∫ ẏ2

ẏ1

f1 (x, y, ẋ, ẏ) dẏ (40)

f3 (x, y) =
∫ ẋ2

ẋ1

f2 (x, y, ẋ) dẋ (41)

f4 (x) =
∫ y2

y1

f3 (x, y) dy (42)

The equivalent 2D and 1D marginal PDFs, as well as the cumulative integral curves from a
1 million Monte Carlo simulation of the planar orbit problem, are also obtained by following the
integration sequence given above. These comparisons can be seen in Figs. 27 and 28.
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Figure 27: Planar orbit: 2D marginal PDFs from OPA and MC simulation

Figure 28: Planar orbit: comparison of 1D marginal PDF and cumulative integral curves from OPA
and MC simulation

The smoothness of the curve and convergence of the cumulative integral value to one indicates the
quality of the PDF approximation. Several trials of OPA with different approximation orders were run,
and the outcomes are summarized in Table 11. The speed-up is obtained by considering the one million
sample Monte Carlo simulation as a reference. Fig. 29 shows the plots of the error in the cumulative
integral value and speed up with the approximation order. For the approximation order of 90, the
cumulative integral value is comparable to that of the MC simulation, and the OPA simulation is at
least eight times faster than the MC simulation. Although the computation time will vary according
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to the hardware architecture on which the simulation is performed, the speed up will remain constant.
This shows the accuracy, efficiency, and reliability of OPA for approximating the PDF of the planar
orbit problem.

Table 11: Planar orbit problem: summary of results with tf = 0.25 ∗ T

Method No. of
Chebyshev
grid points

No. of
Chebyshev
grid points
after grid
filtering

Cumulative
integral

Computation
time (s)

Speed up =
(MC/OPA)

OPA 604 12,358 0.953406848364823 2.37 × 102 44.3006
704 22,715 0.989280144972501 4.06 × 102 25.9031
804 40,370 1.003664328837054 6.88 × 102 15.2897
904 61,867 1.000085806203675 1.20 × 103 8.7706
1204 194,304 0.999997925654380 3.76 × 103 2.7996

Monte Carlo
simulation

1 million (Not
applicable)

1.000268166866315 1.05 × 104 1.0000
(baseline)

Figure 29: Planar orbit problem: OPA performance-speed up and total integral accuracy

4 Discussion

Results presented in Section 3 show OPA to achieve nearly the same PDF approximation accuracy
as seen in Monte Carlo simulations but with superior computational efficiency. In the case of the 2D
conservative Duffing oscillator, the PDF approximation using OPA requires almost three orders of
magnitude fewer grid points than that of the Monte Carlo simulation while being more than 100 times
faster. For the non-conservative Duffing oscillator problem, OPA again requires almost three orders
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of magnitude fewer grid points while being more than 270 times faster than the corresponding Monte
Carlo simulation. Finally, in the planar orbit problem, the best case of OPA requires two orders of
magnitude fewer points while being 8 times faster than the corresponding MC simulation.

While both OPA and non-intrusive polynomial chaos use stochastic collocation, OPA quantifies
the system uncertainty at the final time by directly approximating the higher-dimensional PDF surface.
On the other hand, non-intrusive polynomial chaos approximates each random variable of the system
using polynomials that are, in turn, functions of other standard random variables. OPA employs
targeted sampling by exploiting the geometry of the future PDF. In other words, by utilizing the shape
of the future PDF, OPA uses only those samples that contribute to the PDF approximation [23,26].

The grid filtering scheme described in this paper fits a convex hull over the points on the 6σ

extremal bounds. For more concavely shaped extremal bounds, like the classic banana shape, this
scheme will lead to fewer internal grid points after filtering. This will be addressed in future works using
better algorithms to improve the accuracy of grid filtering. For the initial uncertainties, the examples
presented in this paper utilize a Gaussian distribution because it is the most common error distribution
in the outcomes of estimation/filtering schemes like the Extended Kalman Filter (EKF). In general,
OPA can be used to approximate the non-Gaussian PDF in a filtering scheme in which the system’s
observations are not available for extended periods due to situations like occultation by the Earth, e.g.,
space debris on the far side of the Earth [42]. Under such circumstances, the initial uncertainties of the
object, obtained from the last observed/known epoch in the filtering/estimation scheme, are usually
Gaussian. The functional description of the non-Gaussian PDF provided by OPA at the final time can
be used as the initial condition for uncertainty propagation in the subsequent period. Hence, without
loss of generality, OPA can be used to propagate the uncertainties of a dynamic system when the initial
distribution is known.

5 Conclusion and Future Work

High-fidelity uncertainty propagation is a challenging area of research, especially in situations
involving space assets. Orthogonal Polynomial Approximation (OPA) proves to be an excellent
candidate for high-quality Probability Density Function (PDF) approximations. The methodology
of OPA is concisely explained with a one-dimensional conceptual example, followed by the procedure
to implement OPA for non-conservative systems. PDF modulation and scaling are illustrated for a
two-dimensional case. Issues concerning back-propagation are described, followed by an illustration
of grid filtering. A simple harmonic oscillator is used as a case for linear system validation. Results
show an excellent match between the PDFs obtained from OPA and analytic linear error propagation
theory.

The proposed method is then applied to three different nonlinear systems: 1) a conservative
Duffing oscillator, 2) a Duffing oscillator with damping coefficient uncertainty, and 3) a planar orbit
problem in Low Earth Orbit (LEO). Through one million sample Monte Carlo simulations, the
uncertainty propagation in all three nonlinear systems has been validated. For all the cases shown
in the paper, OPA is more computationally efficient than Monte Carlo simulation.

Using the cumulative integral as an accuracy metric for PDF approximation quality is necessary
but insufficient. Future research in this direction will utilize other statistical indicators such as entropy
and Kullback-Leibler (KL) divergence to compare the PDFs. Moreover, when the propagation time of
the planar orbit problem is increased beyond 0.25 T, the extremal bounds become narrower and more
slender. This reduces the number of grid points that lie within the extremal bounds, which in turn
decreases the quality of the approximated PDF. This problem can be overcome by using segmented or
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local basis functions, which future works will explore. Further studies will investigate the application
of OPA to obtain collision probability in nonlinear systems.
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Appendix A

Algorithm A1: Grid filtering for 2-dimensional and 3-dimensional problems
Given:

A matrix Y that has n vertices which are m-dimensional;
Test points p1, p2, . . . , pk that are also m-dimensional;
CH = convhull(Y); % Creating a convex hull using the matrix Y

if m = 2 then
NB = get_edges(CH);

O =
(

x1 + x2 + . . . + xn

n
,

y1 + y2 + . . . + yn

n

)
; % Geometric center computation

else
NB = get_faces(CH);

O =
(

x1 + x2 + . . . + xn

n
,

y1 + y2 + . . . + yn

n
,

z1 + z2 + . . . + zn

n

)
;

end
for i = 1: NB do

For the current side (or the face), compute the unit normal vector, n̂i;
In the current side (or face), pick a point, say F;
Form the vector FO by connecting it with the geometric center O;
Calculate n̂i. FO;
if n̂i. FO > 0, then

n̂i = n̂i;
else

n̂i = −n̂i; % Convert the outward pointed unit normal to inward pointed
end
for j = 1:k do

In the current side (or face), pick a point, say F;
Form the vector FPj by connecting it with the test point, pj;
Calculate n̂i. FPj;
If n̂i. FPj ≥ 0, then

pj is internal to the convex hull considering the unit normal n̂i;
else

pj is external to the convex hull considering the unit normal n̂i;
end

end
All the test points that pass this test are internal to the convex hull with respect to n̂i

end
This test is repeated for all the inward pointing unit normal vectors to obtain all the points that are
internal to the convex hull.

Algorithm A2: Algorithm for implementing OPA
Initialize X(t0), p(t0), σ (X0, p0) (usually Gaussian), tspan1 = [t0 tf], tspan2 = [tf t0] and
Ẋ = f (X, p)(EOM);
Using the X(t0), p(t0), σ (X0, p0), obtain the initial distribution ρ0;

(Continued)
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Algorithm A2 (continued)
Using the specified initial low PDF value, ρextreme0, obtain the 6σ initial extremal bound points,
EB0;
Set the OPA approximation order n;
ndims = size(σ (X0, p0), 2);
for i = 1:length(EB0) do

EB0(i,:) → Ẋ = f (X, p), tspan1 EBf (i,:); % Extremal bounds propagation
end
V0 = getnDvolume(EB0);
Vf = getnDvolume(EBf);
for i = 1:length(ndims) do

grid 1df = chebpts(min(EBf (:,i)), max(EBf (:,i)), n); % Grid formation
end
grid ndf = ndgrid(grid 1df);
grid ndf, in = chebyshevGridFiltering(grid ndf); % Grid filtering
for i = 1:length(grid ndf, in) do

grid ndf, in (i,:) → Ẋ = f (X, p), tspan2 → grid nd0, in (i, :); % Back-propagation
grid nd0, in (i, :) → ρ0 → backPropPdf0, in (i,:)

end
if V0/Vf = 1 then

backPropPdfMod0, in = backPropPdf0, in;
else

backPropPdfMod0, in = PDFmodulation(backPropPdf0, in, grid ndf, in, grid nd0, in);
% PDF modulation

end
F = functionApprox(backPropPdfMod0, in, grid ndf, in, n); % Chebyshev approximation
margFpos = obtainMarginalPDF(F, Xvel);
I = ClenshawCurtisQuadrature(F);
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