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ABSTRACT

A new concept of projective solution is introduced for the second-order linear partial differential equations (PDEs)
endowed with constant coefficients. In terms of a projective variable the PDE is transformed to a second-order
ordinary differential equation (ODE) with constant coefficients at the first time. The characteristic form appears as
the coefficient preceding the second-order derivative term. Depending on the characteristic form and coefficients
we can derive various parameters-dependent particular solutions, which can be adopted as the bases to expand the
solution. The Helmholtz and wave equations are solved by the projection method. We project the field point to a
unit characteristic vector to obtain a constant ODE, whose two linearly independent projective solutions are cosine
and sine functions. When we expand the solution in terms of these functions as the bases, we can create a powerful
numerical technique to solve the Helmholtz equations with high accuracy, even the wave number is quite large.
We extend the results to the multi-dimensional wave equation, whose g-analytic function theory and the Cauchy-
Riemann equations are deduced. We derive an effective and simple projective solutions method (PSM) used in the
computations, which outperforms the conventional methods. Numerical experiments indeed verify the accuracy
and efficiency of the PSM.
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Γ Boundary
c Wave speed
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a Characteristic vector
Φ Directional parameter
Θ Directional parameter
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1 Introduction

Linear and nonlinear partial differential equations (PDEs) are widespread in scientific and
engineering problems. Mathematical models in physics, mechanics, and other fields can be applied
to describe the physical phenomena. Many phenomena have been modeled by the linear type PDEs.
However, for more complex conditions on the material property and geometric domain, the modeling
requires nonlinear type PDEs. An ambitious method recently proposed is the splitting technique to
linearize the nonlinear PDEs [1]. At each iterative step, we need to solve the linear PDEs, which are
basic requirements in the solutions of PDEs.

For the wave equations, rare analytic solutions are gained. In most cases, we need to numerically
solve the wave equations [2–6]. Recently, Chen et al. [7] developed a novel spatial-temporal radial
Trefftz collocation method for 3D transient wave propagation analysis.

For the linear PDEs with constant coefficients the typical analytic processes to derive the series
solutions are the separation of variables, deriving ordinary differential equations (ODEs) which
are in general coefficients varying like the Bessel equation and the Legendre equation, solving the
corresponding Sturm-Liouville problem to determine the eigenfunctions and eigenvalues, and finally
determining the expanding coefficients to match the specified conditions. In the traditional method, we
may encounter difficulty in that the solution bases are some special functions, which are not elementary
functions. The analytic process would become tedious when the dimension of the linear PDE is raised.
To overcome these difficulties, we will propose a novel method to transform the second-order multi-
dimensional linear PDE to a second-order ODE with constant coefficients, which can greatly simplify
the analytic works and derive a very powerful method with elementary functions or the compositions
of elementary functions as the bases of the series solutions.

We consider a boundary value problem (BVP) for the Helmholtz equation:

Δu (x) + κ2u (x) = 0, x ∈ Ω ⊂ R
d, (1)

u (x)
∣∣

x∈�1
= f (x), un (x)

∣∣
x∈�2

= g (x), (2)

where d = 2 or d = 3 and κ is a given constant. � = �1 ∪ �2 is a smooth boundary of Ω with
�1 ∩ �2 = ∅, and un (x) is the outward normal derivative on the surface �2.

Next, we consider an initial boundary value problem (IBVP) for the wave equation:

utt (x, t) = c2Δu(x, t), t ≥ 0, x ∈ Ω ⊂ R
d, (3)

u (x, t) |x∈Γ = h (x, t), (4)

u (x, 0) = f (x), (5)

ut (x, 0) = g (x), (6)

where d = 2 or d = 3 and c > 0 is a given speed of the wave. Γ is a smooth boundary of Ω which is
bounded.

For a harmonic wave motion in the steady state, the wave equation can be reduced to the
Helmholtz equation, which is also known as the reduced wave equation [8]. Recently, Fu et al. [9]
applied the wave theory to the water wave interactions with multiple-bottom-seated-cylinder-array
structures and provided the meshless generalized finite difference method for solving them. Owing to
the popular applications of the Helmholtz equation in many areas a lot of numerical methods were
developed [10–14]. Among the many methods, the singular boundary method is a powerful one to
solve various engineering problems as reviewed by Fu et al. [15]. However, for the Helmholtz equation
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equipped with a large wave number and given in a complex domain, it is still a great challenge to
solve it.

The rest of the paper is outlined sequentially. Section 2 devotes to a new approach of the second-
order linear PDEs with constant coefficients, by transforming them to a second-order ODE with
constant coefficients. The leading term is multiplied by the characteristic form, whose value determines
the particular solutions of the PDE. In Section 3, we introduce new variables to transform the 2D and
3D Helmholtz equations to the second-order ODEs and then derive very useful bases in Section 4.
The numerical tests of the 2D and 3D Helmholtz equations are carried out in Section 5. The g-analytic
function theory for the wave equation is developed in Section 6, where we prove the g-analytic Cauchy-
Riemann equations and provide the g-analytic function as the general solution of the wave equation.
New projective bases for multi-dimensional wave equations are derived in Section 7. The numerical
tests of 2D and 3D wave equations are carried out in Section 8. Finally, the conclusions are coined in
Section 9.

2 New Approach of Linear PDEs with Constant Coefficients

We generalize Eqs. (1) and (3) to the d-dimensional second-order linear PDEs with constant
coefficients:

d∑
i=1

d∑
j=1

Aij

∂2u (x)

∂xi∂xj

+
d∑

i=1

Bi

∂u (x)

∂xi

+ Cu (x) = 0, x ∈ Ω ⊂ R
d, (7)

where Aij is a d × d symmetric matrix.

In the characteristic theory of second-order linear PDEs, the characteristic form [8,16].

Q (a) = aTAa =
d∑

i=1

d∑
j=1

Aijaiaj (8)

is crucial, where ai ∈ R with a = (a1, . . . ad)
T the characteristic vector.

We introduce a new projective variable by

w = a · x =
d∑

i=1

aixi, (9)

where we relax ai to ai ∈ C, which may be a complex number. w is the projection of the field point x
to a nonzero characteristic vector a, and we seek u(x) to be a projective type solution:

u (x) = v (w) = v (a · x). (10)

It leads to
∂u (x)

∂xi

= aiv′ (w),
∂2u (x)

∂xi∂xj

= aiajv′′ (w), (11)

where the prime denotes the differential of v (w) with respect to w.

Theorem 1. For Eq. (7) with Bi �= 0 and C �= 0, if w is given by Eq. (9) and u is given by Eq. (10)
then

u (x) = D exp (λ1w) + E exp (λ2w) = D exp (λ1a · x) + E exp (λ2a · x) (12)
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is a projective type solution. Here, u (x) = v (w) satisfies

Q (a) v′′ (w) + B · av′ (w) + Cv (w) = 0, (13)

where the parameters a are selected to rendering Q (a) �= 0, and λ1 and λ2 satisfy

Q (a) λ2 + B · aλ + C = 0. (14)

Proof. It follows from Eqs. (7), (10), and (11) that
d∑

i=1

d∑
j=1

Aijaiajv′′ (w) +
d∑

i=1

Biaiv′ (w) + Cv (w) = 0, (15)

which by Eq. (8) can be recast to Eq. (13). The fundamental solutions of Eq. (13) depend on the
eigenvalue in Eq. (14), which is in general a complex eigenvalue with λ ∈ C, such that

v (w) = Deλ1w + Eeλ2w, (16)

where D and E are constants. Inserting Eq. (9) for w into Eq. (16), we can derive Eq. (12). �
Eq. (7) belongs to the elliptic type PDEs if the characteristic equation Q (a) = 0 possesses no real

solutions of a. In the case of Bi = 0 and C = 0 of Eq. (7), Theorem 1 is insufficient since Eq. (13) is
reduced to

Q (a) v′′ (w) = 0, (17)

from which only the first-order solution can be achieved in view of v′′ (w) = 0. Therefore we must
consider

Q (a) = 0, (18)

to seek a in the complex numbers. The elliptic type linear PDE with Bi = 0 and C = 0 can be recast
to the canonical form as the standard Laplace equation:

�u (x) = 0, x ∈ Ω ⊂ R
d. (19)

Lemma 1. For Eq. (19), if w is given by Eq. (9) and u is given by Eq. (10) then the following
particular solutions are available:

u (x) = exp

[
d−1∑
j=1

ajxj

]
cos kxd, u (x) = exp

[
d−1∑
j=1

ajxj

]
sin kxd, (20)

where a2
1 + · · · + a2

d−1 = k2, and

u (x) = Rk cos kΘ, u (x) = Rk sin kΘ, (21)

where

R =
√√√√[

d−1∑
j=1

ajxj

]2

+ x2
d, Θ = arctan

xd∑d−1

j=1 ajxj

, (22)

in which a2
1 + · · · + a2

d−1 = 1.

Proof. For Eq. (19), Eq. (18) reduces to

‖a‖2 = a2
1 + · · · + a2

d = 0. (23)
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There exists no real solution for a, unless the undesired one with a = 0. Let

η =
d−1∑
j=1

ajxj, w = η + adxd. (24)

We can take ad = ik, where k is a parameter and i2 = −1. By Eq. (23),

a2
1 + · · · + a2

d−1 = k2 (25)

renders the real solutions of other parameters aj, j = 1, · · · , d − 1, which are located on the sphere
with a radius k in the (d − 1)-dimensional space. Such that we have

w = η + ikxd =
d−1∑
j=1

ajxj + ikxd, (26)

which is a complex variable. Taking the exponential of w, generates

v (w) = ew = exp

[
d−1∑
j=1

ajxj + ikxd

]
= exp

[
d−1∑
j=1

ajxj

]
(cos kxd + i sin kxd), (27)

and the particular solutions in Eq. (20) follow.

On the other hand, we can generate particular solutions by

v (w) = wk =
[

d−1∑
j=1

ajxj + ixd

]k

, (28)

where a2
1 + · · · + a2

d−1 = 1. Through some manipulations Eq. (28) leads to the particular solutions in
Eq. (21). By cyclically exchanging the independent variables, we can generate many other particular
solutions. �

Up to now the discussions of particular solutions of the linear PDE with constant coefficients
are somewhat heuristic and formal. To display the advantage of the present approach, we consider a
specific PDE:

uxy (x, y) + ux (x, y) = 0. (29)

By inspection the general solution is

u (x, y) = ag (y) + bf (x) e−y + c, (30)

where a, b, c are constants, and g (y) and f (x) are differentiable functions.

Let w = a1x + a2y and u = v (w) . We can obtain

a1a2v′′ (w) + a1v′ (w) = 0. (31)

Taking a1 = 0 and a2 = 1, we obtain u = v (w) = g (y) as a particular solution. If a1 �= 0, Eq. (31)
reduces to

a2v′′ (w) + v′ (w) = 0, (32)
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which leads to a constant u = c and

u = exp
(−w

a2

)
= exp

(−a1x − a2y
a2

)
= e−y exp

(−a1x
a2

)
. (33)

If we take a1 = −ik and a2 = 1, we can obtain

u = ae−y cos kx + be−y sin kx (34)

as a particular solution. By using the Fourier series, we can generate a particular solution u = e−yf (x),
where

f (x) = a0 +
∞∑

k=1

ak cos kx + bk sin kx. (35)

This case shows that the new approach can find the general solution of Eq. (29).

These particular solutions involve the parameters, which can be employed as useful bases to
expand the solution of the linear PDE with constant coefficients. Below we will give definite linear
PDEs of Helmholtz and wave equations, and derive the particular solutions involving parameters as
the expanding bases of the solutions.

3 New Projective Solutions of Helmholtz Equations

We first construct a new projective solution of Eq. (1) with d = 2. To facilitate the proof of the
new results, we introduce a projective variable in view of Fig. 1:

w = a1x + a2y, (36)

where w signifies the distance of the line on the plane (x, y) to the original point, and the pair (a1, a2)

is a unit characteristic vector satisfying

a2
1 + a2

2 = 1, a1 = cosΦ, a2 = sinΦ, (37)

where Φ is a parameter. It follows from Eq. (36) that

∂w
∂x

= a1,
∂w
∂y

= a2. (38)

(x,y)

a1x+a2y=w
x

y

(a1,a2)

Figure 1: A schematic plot to signify a new projective solution of the 2D Helmholtz equation in terms
of w, where w is the projection of (x, y) to a unit characteristic vector (a1, a2)

Theorem 2. For the 2D Helmholtz equation, if w is given by Eq. (36) and Eq. (37) is satisfied, then

u (x, y) = v (w) (39)
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satisfies Eq. (1) with d = 2, where

d2v (w)

dw2
+ κ2v (w) = 0. (40)

Proof. It follows from Eqs. (39) and (38) that

∂2u (x, y)

∂x2
= a2

1

d2v (w)

dw2
,

∂2u (x, y)

∂y2
= a2

2

d2v (w)

dw2
. (41)

Inserting them into Eq. (1) with d = 2, yields

∂2u (x, y)

∂x2
+ ∂2u (x, y)

∂y2
+ κ2u (x, y) = (

a2
1 + a2

2

) d2v (w)

dw2
+ κ2v (w). (42)

If Eq. (37) and the condition (40) are satisfied, then Eq. (1) with d = 2 is proved. �
We extend the above results to a 3D setting. We introduce the projective variable by

w = a1x + a2y + a3z, (43)

and the triplet (a1, a2, a3) satisfy

a2
1 + a2

2 + a2
3 = 1, a1 = cos Θ sin Φ, a2 = sin Θ sin Φ, a3 = cos Φ, (44)

wherein Θ and Φ are parameters. It follows from Eq. (43) that

∂w
∂x

= a1,
∂w
∂y

= a2,
∂w
∂z

= a3 . (45)

Theorem 3. For the 3D Helmholtz equation, if w is given by Eq. (43) and Eq. (44) is satisfied, then

u (x, y, z) = v (w) (46)

satisfies Eq. (1) with d = 3, where v (w) satisfies Eq. (40).

Proof. It follows from Eqs. (46) and (45) that

∂2u (x, y, z)
∂x2

= a2
1

d2v (w)

dw2
,

∂2u (x, y, z)
∂y2

= a2
2

d2v (w)

dw2
,

∂2u (x, y, z)
∂z2

= a2
3

d2v (w)

dw2
. (47)

Inserting them into Eq. (1) with d = 3, yields

∂2u (x, y, z)
∂x2

+ ∂2u (x, y, z)
∂y2

+ ∂2u (x, y, z)
∂z2

+ κ2u (x, y, z) = (
a2

1 + a2
2 + a2

3

) d2v (w)

dw2
+ κ2v (w). (48)

If Eq. (44) and the condition (40) are satisfied, then u (x, y, z) in Eq. (46) satisfies Eq. (1) with
d = 3. �

4 New Bases for 2D and 3D Helmholtz Equations

Since v (w) satisfies Eq. (40), two linearly independent solutions can be derived as follows:

v (w) = cos (κw), v (w) = sin (κw). (49)
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Correspondingly, for Eq. (1) with d = 2 we can expand its solution by

u (x, y) =
m∑

j=1

bj cos
[
κ

(
aj

1x + aj
2y

)] +
m∑

j=1

cj sin
[
κ

(
aj

1x + aj
2y

)]
, (50)

where n = 2m is the number of undetermined coefficients bj and cj, and each
(
aj

1, aj
2

)
is given by

aj
1 = cos Φj = cos(2jπ/m), aj

2 = sin Φj = sin (2jπ/m), (51)

which satisfies Eq. (37).

Alternatively, for Eq. (1) with d = 3 we take

u (x, y, z) =
m0∑
i=1

m∑
j=1

bij

{
cos

[
κ

(
aij

1x + aij
2y + ai

3z
)] + cos

[
κ

(
aij

1y + aij
2z + ai

3x
)]

+ cos
[
κ

(
aij

1z + aij
2x + ai

3y
)]}

+
m0∑
i=1

m∑
j=1

cij

{
sin

[
κ

(
aij

1x + aij
2y + ai

3z
)] + sin

[
κ

(
aij

1y + aij
2z + ai

3x
)]

+ sin
[
κ

(
aij

1z + aij
2x + ai

3y
)]}

, (52)

where

aij
1 = sin (iπ/m0) cos(2jπ/m), aij

2 = sin (iπ/m0) sin(2jπ/m), ai
3 = cos (iπ/m0), (53)

which satisfies Eq. (44).

Up to now, the following innovation points of the paper can be highlighted:

1. When the linear PDEs encountered are equipped with constant coefficients, the problem of
finding a solution is reduced to solving the ODE with constant coefficients.

2. The problem of finding a solution is thus reduced to solving the characteristic equation, which
is a simple algebraic equation for the characteristic vector.

3. For solving the algebraic equation in the complex domain, all possible bases of the considered
PDE can be constructed, without using the technique of special functions.

4. The solution of the linear PDE is then expanded by the derived bases, which makes it easy to
determine the expansion coefficients by the meshless collocation method.

On the other hand, the proposed projective variable method is limited by the following conditions:

1. The linear PDEs must be constant coefficients, and for the problem with varying coefficients,
it is not applicable.

2. The problem is limited to the continuous one, which with some kind of discontinuity the
proposed projective variable method is not applicable.

In the near future, the localization technique as applied in reference [17] may be adopted to the
projective variable method for solving the linear PDEs with varying coefficients and with discontinuity.
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5 Numerical Experiments of Helmholtz Equations

Now the numerical solutions of the 2D and 3D Helmholtz equations can be carried out by using
the projective solutions method (PSM).

We assess the errors of u (x), x ∈ Ω by the maximum error (ME) and root-mean-square-error
(RMSE):

ME of u (x) : = max
x∈Ω

|ue (x) − uN (x) |, (54)

RMSE of u (x) : =
√√√√ 1

Nt

Nt∑
j=1

[
ue

(
xj

) − uN

(
xj

)]
, xj ∈ Ω, (55)

where ue denotes the exact solution and uN the numerical solution, and Nt is the number of tested
points.

5.1 Example 1
First, the Dirichlet problem is considered by giving an exact solution:

u (x, y) = cos κx + sin κy, (56)

which is defined in a square Ω : = {(x, y) | −1 < x < 1, −1 < y < 1} .

We take a very large wave number κ = 200, and a referenced value to solve this problem is that
the maximum error (ME) = 0.01 is obtained in reference [14]. With m = 100 (n = 200) and nq = 200
collocating points on four sides, we can derive a linear system to determine coefficients bj and cj in
Eq. (50). Very small errors with ME = 2.92×10−13 and root-mean-square-error (RMSE) = 7.7×10−14

are obtained. It is much more accurate than that obtained in reference [14] by using the Trefftz method.

Next, we consider the boundary shape to be a complex amoeba-like curve:

ρ (θ) = exp (sin θ) sin2
(2θ) + exp (cos θ) cos2 (2θ), (57)

and we consider the same exact solution (56) with κ = 200. With n = 200 and nq = 200, we obtain
ME = 8.1 × 10−12 and RMSE = 3.05 × 10−12. For the mixed boundary value problem, we can obtain
ME = 2.95 × 10−11 and RMSE = 7.07 × 10−12. The high accuracy of the PSM is obvious.

Next, we consider a doubly-connected domain problem with the inner boundary given by Eq. (57)
and the outer boundary given by

ρ (θ) = 5
[
1 + cos2 (4θ)

]
. (58)

Similarly, we take a very large κ = 200, and compare the numerical solution obtained by the
PSM to the exact one in Eq. (56). With m = 100 (n = 200) and nq = 200 collocating points on the
boundaries, very small errors are obtained with ME = 4.74 × 10−13 and RMSE = 1.61 × 10−13.

To test the stability of PSM, we add a white noise with an intensity 0.01 on the Dirichlet boundary
data. Upon comparing to the noisy error 0.01, quite small errors are obtained with ME = 1.79 × 10−2

and RMSE = 6.21 × 10−3.

To demonstrate that the PSM is a well-posed method, we consider the inverse Cauchy problem on
the above doubly-connected domain, where the Dirichlet and Neumann boundary data are imposed
on the outer boundary. Upon comparing to the noisy error 0.01, quite small errors are obtained with
ME = 2.57×10−3 and RMSE = 8.55×10−4. For this problem, the resulting linear system is well-posed
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with 146 steps to obtain the expansion coefficients. If no noise perturbs the Dirichlet and Neumann
boundary data, the accuracy is very good with ME = 1.17 × 10−11 and RMSE = 3.6 × 10−12.

5.2 Example 2
Next, the Dirichlet problem is considered for a given exact solution of the 2D Helmholtz equation

with κ = √
3/2:

u (x, y) = cos x sinh
y
2

, (59)

which is defined in a domain with the boundary:

ρ (θ) = 1
2

[
1 + cos2 (4θ)

]
. (60)

With n = 50 and nq = 50, we obtain ME = 6.2 × 10−12 and RMSE = 1.27 × 10−12. Again the high
accuracy of the proposed PSM can be seen.

5.3 Example 3
We consider:

u (x, y, z) = sin (κx) + sin (κy) + sin (κz), (61)

Γ = {(x, y, z) |x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ, 0 ≤ θ ≤ 2π , 0 ≤ φ ≤ π} , (62)

where

ρ (φ) =
[

cos (3φ) +
√

8 − sin2
(3φ)

] 1
3

, (63)

is the boundary shape of Ω.

Under κ = 1, m0 = 15, m = 30, and n = nq = 900 the PSM is used to find the solution, which
is compared to the exact solutions on (r = ρ/2, 0 ≤ θ ≤ 2π , φ = π/4), where ME = 1.79 × 10−5 and
RMSE = 2.32 × 10−7. It is remarkable that when we take m0 = 1, very accurate solution with ME =
2.8 × 10−14 and RMSE = 1.37 × 10−17 is obtained. Although for κ = 10, ME = 1.22 × 10−14 and
RMSE = 2.65 × 10−16 is obtained. This example shows that the PSM is effective.

Next, we consider a bumpy sphere as the boundary:

ρ (θ , φ) = 1 + 1
6

sin 7θ sin 6φ. (64)

The PSM is compared to the exact solution on (r = ρ/2, 0 ≤ θ ≤ 2π , φ = π/4), of which ME =
3.78 × 10−6 and RMSE = 3.04 × 10−8 are obtained. When we take m0 = 1, very accurate solution with
ME = 1.26 × 10−14 and RMSE = 1.31 × 10−16 is obtained.

Although κ is raised to κ = 5, ME = 4.29 × 10−3 and RMSE = 3.42 × 10−5 are obtained, which
compared to the maximum value 2.89 is acceptable. When we take m0 = 1, very accurate solution with
ME = 1.78 × 10−15 and RMSE = 8.64 × 10−18 is obtained.

6 The g-Analytic Function Theory for Wave Equation

The g-analytic function for the one-dimensional wave equation has been derived by Liu [18] based
on the g-number theory. In order to derive the g-analytic function for the multi-dimensional wave
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equation we introduce

w = η + gτ , g2 = 1, τ = ct, (65)

η = d · x, ‖d‖ = 1, (66)

∂u (x, τ)

∂η
= d · ∇u (x, τ), (67)

where d is a d-dimensional director and ∇ is a d-dimensional gradient operator with respect to x.
∂u (x, τ)/∂η is a directional derivative of u (x, τ) along the direction d.

In terms of τ , we can recast Eq. (3) to

Δu (x, τ) − uττ (x, τ) = 0. (68)

By Eq. (66), we have

∂2u
∂x2

1

= d2
1

∂2u
∂η2

, . . . ,
∂2u
∂x2

d

= d2
d

∂2u
∂η2

. (69)

Summing these equations yields

Δu = ∂2u
∂x2

1

+ · · · + ∂2u
∂x2

d

= (
d2

1 + · · · + d2
d

) ∂2u
∂η2

= ∂2u
∂η2

, (70)

due to ‖d‖ = 1. Thus, from Eqs. (68) and (70), a 2D like wave equation is available:

uηη (x, τ) − uττ (x, τ) = 0. (71)

Liu [19] has introduced the g number w = η + gτ ∈ M
1,1 which is the Minkowski space, where 1

and g obey the product rule:

· 1 g
1 1 g
g g 1

(72)

Using

egΘ = 1 + gΘ + 1
2

g2Θ2 + · · · , (73)

we can deduce

egΘ = cosh Θ + g sinh Θ. (74)

Let

w = η − gτ (75)

be the conjugation of w given in Eq. (65). By the chain rule we have

∂u
∂η

= ∂u
∂w

+ ∂u
∂w

,
∂u
∂η2

= ∂2u
∂w2

+ 2
∂2u

∂w∂w
+ ∂2u

∂w2 , (76)

∂u
∂τ

= g
∂u
∂w

− g
∂u
∂w

,
∂u
∂τ 2

= g2 ∂2u
∂w2

− 2g2 ∂2u
∂w∂w

+ g2 ∂2u

∂w2 = ∂2u
∂w2

− 2
∂2u

∂w∂w
+ ∂2u

∂w2 , (77)
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where g2 = 1 was used. Subtracting the second in Eq. (76) by the second in Eq. (77) and using Eq. (71),
yields

4
∂2u

∂w∂w
= 0. (78)

Accordingly, we can derive the following result.

Theorem 4. The d-dimensional wave equation, d ≥ 1, possesses a general solution u (x, τ) =
F (w) + G (w), where F and G are twice differentiable functions. The function f (w) = u (x, τ) +
gv (x, τ) is an g-analytic function if and only if

d · ∇u (x, τ) = ∂v (x, τ)

∂τ
,

∂u (x, τ)

∂τ
= d · ∇v (x, τ). (79)

Moreover, u (x, τ) and v (x, τ) satisfy

Δu (x, τ) − uττ (x, τ) = 0, Δv (x, τ) − vττ (x, τ) = 0, (80)

by which u (x, τ) + gv (x, τ) is an g-analytic function in the d = n + 1-dimensional space-time.

Proof. It is straightforward from Eq. (78) that

u (x, τ) = F (w) + G (w) (81)

is the general solution of Eq. (3).

Take the operator ∂/∂τ to the second equation in Eq. (79),

∂2u (x, τ)

∂τ 2
= d · ∇ ∂v (x, τ)

∂τ
. (82)

Take the operator d · ∇ to the first equation in Eq. (79),

d · ∇ [d · ∇u (x, τ)] = d · ∇ ∂v (x, τ)

∂τ
, (83)

which by Eq. (67) changes to

d · ∇ ∂u (x, τ)

∂η
= ∂

∂η
[d · ∇u (x, τ)] = ∂2u (x, τ)

∂η2
= d · ∇ ∂v (x, τ)

∂τ
. (84)

Subtracting Eqs. (84) by (82) leads to
∂2u (x, τ)

∂η2
− ∂2u (x, τ)

∂τ 2
= 0; hence by Eq. (70), we prove the

first equation in Eq. (80).

Conversely, the operator ∂/∂τ acting on the first equation in Eq. (79) generates

∂2v (x, τ)

∂τ 2
= d · ∇ ∂u (x, τ)

∂τ
. (85)

Take the operator d · ∇ to the second equation in Eq. (79),

d · ∇ [d · ∇v (x, τ)] = d · ∇ ∂u (x, τ)

∂τ
, (86)
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which by Eq. (67) changes to

d · ∇ ∂v (x, τ)

∂η
= ∂

∂η
[d · ∇v (x, τ)] = ∂2v (x, τ)

∂η2
= d · ∇ ∂u (x, τ)

∂τ
. (87)

Subtracting Eqs. (87) by (85) leads to the second equation in Eq. (80). This ends the proof. �
In Theorem 4, Eq. (79) is the g-analytic Cauchy-Riemann equations for the multi-dimensional

wave equation, which is appeared in the literature for the first time. As a demonstration of Theorem
4, we take a simple g-analytic function

F (w) = w3 = (d1x + d2y + d3z + gτ)
3 ,

such that

u = (d1x + d2y + d3z)
3 + 3 (d1x + d2y + d3z) τ 2, v = 3 (d1x + d2y + d3z)

2
τ + τ 3.

Using d2
1 + d2

2 + d2
3 = 1, it is easy to verify

d · ∇u = 3
(
d2

1 + d2
2 + d2

3

)
(d1x + d2y + d3z)

2 + 3
(
d2

1 + d2
2 + d2

3

)
τ 2 = 3 (d1x + d2y + d3z)

2 + 3τ 2,
∂v
∂τ

= 3 (d1x + d2y + d3z)
2 + 3τ 2.

Hence, the first g-analytic Cauchy-Riemann equation in Eq. (79) is verified. By

∂u
∂τ

= 6 (d1x + d2y + d3z) τ ,

d · ∇v = 6 (d1x + d2y + d3z)
(
d2

1 + d2
2 + d2

3

)
τ = 6 (d1x + d2y + d3z) τ ,

the second g-analytic Cauchy-Riemann equation in Eq. (79) is identified.

Lemma 2. The g-analytic function f (w) = u (x, τ) + gv (x, τ) for the wave equation satisfies

∂f (w)

∂w
= 0,

∂f (w)

∂τ
− g

∂f (w)

∂η
= 0, (88)

where w = η + gτ and w = η − gτ .

Proof. In view of Eq. (67) the Cauchy-Riemann equations in Eq. (79) can be written as

∂u (x, τ)

∂η
= ∂v (x, τ)

∂τ
,

∂u (x, τ)

∂τ
= ∂v (x, τ)

∂η
, (89)

which are sufficient and necessary conditions for f (w) = u (x, τ)+ gv (x, τ) to be g-analytic. Inserting
f (w) = u (x, τ) + gv (x, τ) into the second one in Eq. (88), leads to

∂f (w)

∂τ
= ∂u

∂τ
+ g

∂v
∂τ

= g
(

∂u
∂η

+ g
∂v
∂η

)
= g

∂u
∂η

+ ∂v
∂η

, (90)

which by equating the real part and g part proves Eq. (89). By the chain rule as that done in Eqs. (76)
and (77), we have

∂f
∂τ

= g
∂f
∂w

− g
∂f
∂w

, (91)

∂f
∂η

= ∂f
∂w

+ ∂f
∂w

. (92)



158 DEDT, 2024, vol.2

Inserting them into the second one in Eq. (88), yields

g
∂f
∂w

− g
∂f
∂w

= g
∂f
∂w

+ g
∂f
∂w

, (93)

which renders

2g
∂f
∂w

= 0. (94)

Thus, the first one in Eq. (88) is proved. �
Lemma 2 is interesting that any differentiable function f (w) = u (x, τ) + gv (x, τ) is a g-analytic

function, where u (x, τ) and v (x, τ) satisfy the wave equation. The g-analytic function theory bears
certain similarities to the analytic function theory for complex functions. The polynomial wk is a very
useful solution of the wave equation, which can generate powerful bases to expand the solution.

Lemma 3. The polynomial wk is given by reference [20].

wk = Rk cosh (kΘ) + gRk sinh (kΘ) = 1
2

[
(η + τ)

k + (η − τ)
k
] + g

2

[
(η + τ)

k − (η − τ)
k
]

, (95)

where

(R, Θ) : =
(√

η2 − τ 2, ln

√
η + τ

η − τ

)
, (96)

η = R cosh Θ, τ = R sinh Θ. (97)

Proof. The Minkowski length of (η, τ) is

R = √
η2 − τ 2, (98)

where we suppose that (η, τ) is a space-like vector with η2 − τ 2 > 0.

Thus from Eq. (65), we have

w = η + gτ = R
( η

R
+ g

τ

R

)
. (99)

Let

cosh Θ = η

R
, sinh Θ = τ

R
, (100)

and from

tanh Θ = sinh Θ

cosh Θ
= τ

η
, (101)

we can derive

Θ = ln

√
η + τ

η − τ
. (102)

By Eqs. (99) and (74), we have

w = RegΘ; (103)

hence the first identity in Eq. (95) is proven by taking the power wk.
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By Eq. (98), Eq. (102) can be recast to

Θ = ln
R

η − τ
= ln

η + τ

R
. (104)

Taking the exponential generates

Θ = ln
R

η − τ
= ln

η + τ

R
. (105)

which makes

η − τ = Re−Θ, η + τ = ReΘ. (106)

The powers are given by

(η − τ)
k = Rke−kΘ, (η + τ)

k = RkekΘ, (107)

and the combinations of them yield

Rk cosh (kΘ) = 1
2

[
(η + τ)

k + (η + τ)
k
]

, Rk sinh (kΘ) = 1
2

[
(η + τ)

k − (η + τ)
k
]
. (108)

We end the proof. The derivation of Eq. (95) is similar to the time-like vector with η2 − τ 2 < 0.�
Eq. (95) is a novel polynomial solution of the wave equation. As a demonstration of Lemmas 2

and 3, we consider

f (w) = w3 = (d1x + d2y + d3z + gct)3 ,

such that

u (x, y, z, t) = (d1x + d2y + d3z)
3 + 3 (d1x + d2y + d3z) c2t2, v (x, y, z, t) = 3 (d1x + d2y + d3z)

2 ct + c3t3.

It is easy to verify c2Δu − utt = c2Δv − vtt = 0, by

c2Δu − utt = 6c2
(
d2

1 + d2
2 + d2

3

)
(d1x + d2y + d3z) − 6c2 (d1x + d2y + d3z)

= 6c2 (d1x + d2y + d3z) − 6c2 (d1x + d2y + d3z) = 0,

and by

c2Δv − vtt = 6c2
(
d2

1 + d2
2 + d2

3

)
ct − 6c3t = 6c3t − 6c3t = 0.

7 New Projective Bases for Multi-Dimensional Wave Equations

For the wave equations, we have the following results.

Theorem 5. For the 2D wave equation of Eq. (3) with d = 2, there exist four types projective
solutions:

u (x, y, t) = cos [β (d1x + d2y + ct)], u (x, y, t) = sin [β (d1x + d2y + ct)] , (109)

u (x, y, t) = cos [β (d1x + d2y − ct)], u (x, y, t) = sin [β (d1x + d2y − ct)] , (110)

where d1 = cos Φ, d2 = sin Φ and β > 0 is a real number.

Proof. We begin with

w = a0t + a1x + a2y, (111)
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where the pair (a1, a2) satisfy

a2
1 + a2

2 = −β2, a1 = iβd1 = iβ cos Φ, a2 = iβd2 = iβ sin Φ. (112)

Φ is a parameter, i2 = −1, i.e., i is an imaginary number and β > 0 is a real number. Hence, (a1, a2)

is a 2D imaginary vector.

It follows from Eq. (111) that

∂w
∂t

= a0,
∂w
∂x

= a1,
∂w
∂y

= a2. (113)

Let

u (x, y, t) = v (w). (114)

Then, we have

utt (x, y, t) = a2
0v

′′(w), uxx (x, y, t) = a2
1v

′′(w), uyy (x, y, t) = a2
2v

′′ (w). (115)

Inserting them into Eq. (3) with d = 2, yields

utt (x, y, t) − c2
[
uxx (x, y, t) + uyy (x, y, t)

] = [
a2

0 − c2
(
a2

1 + a2
2

)]
v′′ (w) = 0. (116)

By Eq. (112), it reduces to

utt (x, y, t) − c2
[
uxx (x, y, t) + uyy (x, y, t)

] = [
a2

0 + β2c2
]

v′′ (w) = 0. (117)

To satisfy this equation we must take a2
0 + β2c2 = 0, such that

a0 = ±icβ. (118)

Any twice differentiable function v (w) together with Eqs. (112) and (118) satisfy the wave
equation. Because a0, a1, a2 are imaginary numbers, we take

v (w) = exp (w). (119)

Then, in view of Eqs. (114), (118), (119), (111) and (112), we can obtain Eqs. (109) and (110) by
taking the real and imaginary parts of

u (x, y, t) = exp (iβd1x + iβd2y ± icβt) = exp [iβ (d1x + d2y ± ct)] , (120)

where (d1, d2) is a 2D director satisfying d2
1 + d2

2 = 1. �
Theorem 6. For the 3D wave equation of Eq. (3) with d = 3, there exist four projective solutions:

u (x, y, z, t) = cos [β (d1x + d2y + d3z + ct)], u (x, y, z, t) = sin [β (d1x + d2y + d3z + ct)] , (121)

u (x, y, z, t) = cos [β (d1x + d2y + d3z − ct)], u (x, y, z, t) = sin [β (d1x + d2y + d3z − ct)] , (122)

where d1 = cos Θ sin Φ, d2 = sin Θ sin Φ, d3 = cos Φ and β > 0 is a real number.

Proof. Since the proof is similar to that in Theorem 5, we omit it. �
Eqs. (109) and (110) alone cannot form the bases. Therefore, we generalize them to a series of

numbers dj
1 for d1, dj

2 for d2 and k/T for β by
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dj
1 = cosΦj = cos (2jπ/m0), dj

2 = sinΦj = sin (2jπ/m0), β = k
T

. (123)

Consequently, for Eq. (3) with d = 2 we can expand the solution by

u (x, y, t) = b0 +
m0∑
j=1

m∑
k=1

b1
jk cos

[
k

(
dj

1x + dj
2y + ct

)
/T

] +
m0∑
j=1

m∑
k=1

b2
jk sin

[
k

(
dj

1x + dj
2y + ct

)
/T

]

+
m0∑
j=1

m∑
k=1

b3
jk cos

[
k

(
dj

1x + dj
2y + ct

)
/T

] +
m0∑
j=1

m∑
k=1

b4
jk sin

[
k

(
dj

1x + dj
2y + ct

)
/T

]

+
m0∑
j=1

m∑
k=1

b5
jk

(
dj

1x + dj
2y + ct

)k +
m0∑
j=1

m∑
k=1

b6
jk

(
dj

1x + dj
2y − ct

)k
, (124)

where the last two bases are obtained from Lemma 3. The number kc/T is the frequency of the kth-
order cosine and sine bases, and T is a given value. For low-frequency waves, we take a large value of
T , while for high-frequency waves we take a small value of T .

Alternatively, for Eq. (3) with d = 3 we can expand the solution by

u (x, y, z, t) = c0 +
m0∑
i=1

m0∑
j=1

m∑
k=1

c1
ijk cos

[
k

(
dij

1 x + dij
2 y + dij

3 z + ct
)
/T

]

+
m0∑
i=1

m0∑
j=1

m∑
k=1

c2
ijk sin

[
k

(
dij

1 x + dij
2 y + dij

3 z + ct
)
/T

]

+
m0∑
i=1

m0∑
j=1

m∑
k=1

c3
ijk cos

[
k

(
dij

1 x + dij
2 y + dij

3 z + ct
)
/T

]

+
m0∑
i=1

m0∑
j=1

m∑
k=1

c4
ijk sin

[
k

(
dij

1 x + dij
2 y + dij

3 z + ct
)
/T

]

+
m0∑
i=1

m0∑
j=1

m∑
k=1

c5
ijk

(
dij

1 x + dij
2 y + dij

3 z + ct
)k

+
m0∑
i=1

m0∑
j=1

m∑
k=1

c6
ijk

(
dij

1 x + dij
2 y + dij

3 z − ct
)k

, (125)

where T is a parameter, and

dij
1 = sin (iπ/m0) cos (2jπ/m0), dij

2 = sin (iπ/m0) sin (2jπ/m0), dij
3 = cos (iπ/m0). (126)

Remark 1. Let us consider the one-dimensional wave equation utt = c2uxx in a finite rod with a
length L and subject to homogeneous boundary conditions u (0, t) = u (L, t) = 0. From the Fourier
series method the following series solution is known:

u (x, t) =
∞∑

j=1

Bj cos
(
λjt

)
sin

jπx
L

+
∞∑

j=1

Cj sin
(
λjt

)
sin

jπx
L

, (127)
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where λj = cjπ/L are the eigenvalues. Indeed, Eq. (127) is a special case of Eq. (124) when it is
reduced to one dimension. It is interesting that the present theory can reduce the problem of multi-
dimensional wave propagation problem in a finite bounded domain to solve a second-order ordinary
differential equation (ODE) with constant coefficients in Eq. (116). The key of this method is the new
concept of projection in Eq. (111), where the projective variable w is obtained by projecting (t, x, y) to
(a0, a1, a2) . Next, the imaginary wave number vector in Eq. (112) helps us to derive the related series
solution. Indeed, the present theory can be deemed as an extension of the Fourier series theory, but
without going into the details of the methods of the separation of variables and the determination of
eigenfunctions and eigenvalues. The present theory is easily tailored to the problem in an arbitrary
domain, which is a main restriction to hinders the application of Fourier series theory.

Remark 2. The present theory is also an extension of the d’Alembert solutions f (x + ct) and
g (x − ct) of the one-dimensional wave equation utt = c2uxx. Indeed, we can derive

u (x, y, z, t) = F (a0t + a1x + a2y + a3z),

a0 = ick, a2
1 + a2

2 + a2
3 = −k2, a2

0 − c2
(
a2

1 + a2
2 + a2

3

) = 0 (128)

to be the general solution of Eq. (3) with d = 3 where F (w) is any differentiable function of w as
proved in Lemma 2.

8 Numerical Tests of 2D and 3D Wave Equations

Now we are in a good position to test the bases in Eqs. (124) and (125) used in the solutions of 2D
and 3D wave equations.

8.1 Example 4
We consider the following exact solution [20,21]:

u (x, y, t) = 3 + cos
πx
10

cos
πy
10

sin

√
2πt
10

, (x, y, t) ∈ (0, 1)
2 × (

0, tf

]
, (129)

and the boundary shape of the 2D domain is given by the following parametric equation:

Γ = {(x, y) |x = ρ cos θ , y = ρ sin θ , 0 ≤ θ ≤ 2π} , (130)

where

ρ (θ) =
[

cos (2θ) +
√

1.1 − sin2
(2θ)

] 1
2

. (131)

We take nq = 1200 collocated points to satisfy the Dirichlet boundary condition and two initial
conditions. As suggested by the solution in Eq. (129), we may get rid of the last two bases in Eq. (124).
With m0 = 5, m = 8, T = 10.8, n = 161 unknown coefficients are to be determined from a linear
system, which is scaled by R0 = 0.01, such that all the column norms equal to R0 [22]. Up to tf = 2,
ME = 8.51 × 10−7 and RMSE = 1.73 × 10−7 are obtained, which is quite accurate. However, when we
raise to tf = 10, whose results are not so good with ME = 5.62 × 10−6 and RMSE = 1.41 × 10−6 as
shown in Fig. 2 by a solid line.

Therefore, we take the full bases in Eq. (124) into account with m0 = 5, m = 5, T = 10.8 and
n = 151 unknown coefficients. For tf = 2, ME = 2.95 × 10−7 and RMSE = 6.95 × 10−8 are more
accurate than that using the partial bases. Up to tf = 10, ME = 1.81 × 10−6 and RMSE = 3.56 × 10−7

are obtained, which is quite accurate as shown in Fig. 2 by a dashed line.
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Figure 2: For Example 4 of the 2D wave equation, comparing numerical solutions with partial and full
bases for a long-term solution

To compare with [20], the spatial domain is changed to a unit square. With m0 = 5, m = 5,
T = 10.8, n = 151 and tf = 5, ME = 7.04 × 10−7 and RMSE = 1.7 × 10−7 are more accurate than that
obtained in reference [20]. ME with respect to t is plotted in Fig. 3.

Figure 3: For Example 4 of the 2D wave equation in a unit square, showing maximum errors for a
long-term solution

8.2 Example 5
We consider the vibrating problem of a 2D circular membrane with zero boundary condition and

zero initial velocity but with the following initial displacement:

u (x, y, 0) = 1 − x2 − y2. (132)

The radius is r = 1 and c = 2. The analytical solution is expressed by the Bessel functions:

u (x, y, t) =
10∑

k=1

ak cos (2αkt) J0 (αkr), (133)

where J0 is the zeroth order first kind Bessel function and the first ten eigenvalues λk = 2αk are given
in the textbook [23].
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We take nq = 1200 collocated points to satisfy the Dirichlet boundary condition and two initial
conditions. With m0 = 5, m = 10, T = 1, and n = 301 unknown coefficients to be determined, up to
tf = 2, the numerical solution is compared to the one in Eq. (133) with m = 10 at the point x = y = 0.5
in Fig. 4. They are quite close.

Figure 4: For Example 5 of the 2D wave equation of a vibrating circular membrane, comparing
numerical solution with that obtained from the zero-order first kind Bessel function

8.3 Example 6
Consider

u (x, y, z, t) = xy + z + cos
πx
8

cos
πy
8

cos
πz
8

sin

√
3πt
8

, (x, y, z) ∈ Ω, t ∈ (
0, tf

]
,

ρ (φ) =
[

cos (3φ) +
√

8 − sin2
(3φ)

] 1
3

. (134)

We take nq = 3000 collocated points, and with m0 = 3, m = 5, T = 8, and n = 271 up to
tf = 10, ME = 2.67 × 10−3 and RMSE = 3.83 × 10−4 are obtained. ME with respect to t is plotted in
Fig. 5 by a solid line. The numerical solution at t = 10, and on (r = ρ, 0 ≤ θ ≤ 2π , φ = π/4) is with
ME = 3.51×10−4 and RMSE = 2.45×10−4, which is more accurate than that obtained in [20], whose
maximum error is 1.54 × 10−3.

Figure 5: For Examples 6 and 7 of the 3D wave equation showing maximum errors



DEDT, 2024, vol.2 165

8.4 Example 7
We give

u (x, y, z, t) = xy + cos
πx
10

cos
πy
10

cos
πz
10

sin

√
3πt
10

, (x, y, z) ∈ Ω, t ∈ (
0, tf

]
,

ρ (θ , φ) =
[

cos (3φ) +
√

5 − sin2
(3φ)

] 1
3

(1 + cos θ). (135)

We take nq = 3000 collocated points, and with m0 = 5, m = 4, T = 5, and n = 601 up to tf = 10,
ME = 1.35×10−3 and RMSE = 1.87×10−4 as plotted in Fig. 5 by a dashed line. The numerical solution
at t = 10, and on (r = ρ, 0 ≤ θ ≤ 2π , φ = π/4) is with ME = 8.53 × 10−4 and RMSE = 3.44 × 10−4,
which is more accurate than that obtained in [20], whose maximum error is 9.76 × 10−4.

9 Conclusions

Three major topics were treated in the paper to develop the new projective solutions of linear
partial differential equations (PDEs) with constant coefficients, 2D and 3D Helmholtz equations,
and 2D and 3D wave equations. A new concept of projective variable is introduced, such that we
can transform the PDE to the second-order ODEs with constant coefficients, whose leading term is
multiplied by the characteristic form. These results are novel and not yet reported in the literature.
Depending on the value of the characteristic form we can derive particular solutions involving the
parameters, which are used as the useful bases to expand the solutions of linear PDE with constant
coefficients. We project the field point to a unit characteristic vector to obtain a new coordinate,
which can reduce the 2D and 3D Helmholtz equations to the constant ODE, and then two linearly
independent projective solutions involve the unit vector as parameters. The solutions of 2D and 3D
Helmholtz equations are easily expanded in terms of these functions as the bases and a powerful
numerical technique was created to solve the 2D and 3D Helmholtz equations. We have established the
g-analytic function theory for the wave equations. The necessary and sufficient conditions for the g-
analytic function were proved to be the g-analytic Cauchy-Riemann equations. The cosine functions,
sine functions, and polynomial functions are combined as the bases for the wave equations. Owing
to its simple bases, the projective solutions method (PSM) outperforms the conventional methods.
Numerical experiments verified the accuracy and efficiency of the PSM for solving the Helmholtz and
wave equations.
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