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ABSTRACT

Intrusion detection (ID) is a cyber security practice that encompasses the process of monitoring network activities
to identify unauthorized or malicious actions. This includes problems like the difficulties of existing intrusion
detection models to identify emerging attacks, generating many false alarms, and their inability and difficulty
to adapt themselves with time when it comes to threats, hence to overcome all those existing challenges in this
research develop a Prairie Araneida optimization based fused Convolutional Neural Network model (PAO-CNN)
for intrusion detection. The fused CNN (Convolutional Neural Netowrk) is a remarkable development since it
combines statistical features that are extracted from the processed data and provide enhanced capabilities for the
model to capture complicated patterns existing in intrusion datasets. The adoption of a fused architecture represents
an integrated way towards intrusion detection where the model can significantly interpret various features to
achieve higher accuracy. On top of this, the Prairie Araneida stage which is based on coyote behavior and social
spider colonies respectively plays a role in enabling to handling of intricate optimization landscapes. The dual
contribution of a fused CNN and novel optimization strategies strengthens the research’s goal to design an effective
intrusion detection system that can evolve with new cyber threats. When the Training percentage (TP) is set to 90,
the model’s performance can be assessed using metrics like Accuracy, Sensitivity, and Specificity. In this particular
dataset, these metrics reach approximately 97.78%, 96.25%, and 96.15%, respectively, which are crucial values.
Additionally, when using a k-fold value of 6, the model achieves metrics of 97.04% Accuracy, 97.37% Sensitivity,
and 96.48% Specificity.
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1 Introduction

Intrusion Detection (ID) serves as a pivotal cornerstone in the realm of cyber security, playing a
vital role in fortifying digital ecosystems against the persistent and ever-evolving landscape of cyber
threats [1]. This multifaceted approach encompasses a spectrum of strategies and techniques aimed
at identifying unauthorized and potentially malicious activities that could compromise the security
of computer networks and systems [2], as the digital realm becomes increasingly interconnected
and complex, the need for proactive measures that can rapidly detect and respond to emerging
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threats becomes paramount [3-5]. By meticulously scrutinizing network traffic, system logs, and
user behaviors, Intrusion Detection distinguishes anomalies and deviations from established patterns,
sounding the alarm on potential breaches or unauthorized access attempts. This dynamic defense
mechanism has evolved beyond mere reactive responses, incorporating elements such as real-time
monitoring, continuous learning, and automated countermeasures [6—8]. Through these means, Intru-
sion Detection stands as a formidable guardian, tirelessly patrolling the digital frontier to uphold the
integrity, confidentiality, and availability of critical data and resources in a dynamic and interconnected
world [9].

IDS (Intrusion Detection Systems) finds versatile applications across industries and sectors,
playing a pivotal role in enhancing cyber security. By continuously monitoring network activities
and system behaviors, IDS can swiftly detect and mitigate potential threats, contributing to data
protection, operational continuity, and public safety. From safeguarding financial transactions, critical
infrastructure, and healthcare systems to securing government networks, cloud environments, and
Internet of Things (IoT) ecosystems, IDS acts as a proactive defense mechanism [10]. It ensures
the integrity of online businesses, connected vehicles, and aerospace systems, and even extends its
protective reach to individual homes and educational institutions. Additionally, IDS aids incident
response teams and feeds into threat intelligence platforms, bolstering global cyber security efforts.
Overall, the diverse and essential applications of IDS underscore its significance in fortifying digital
landscapes against the ever-evolving array of cyber threats [1 1-14].

IDS offers several compelling advantages that bolster cyber security efforts. By constantly
monitoring network activities and system logs in real-time, IDS enables the prompt detection of
unauthorized and malicious activities, allowing for swift intervention to thwart potential threats
before they escalate [15]. Their diverse range of detection techniques, including signature-based
and anomaly-based methods, ensures comprehensive coverage across various attack vectors. IDS
also adapts to evolving network behaviors, providing continuous protection even as the threat
landscape changes [16—19]. Their ability to trigger automated responses streamlines incident handling
and reduces response time, minimizing the potential impact of attacks. Furthermore, IDS aid in
regulatory compliance, assist in forensic analysis and contribute to proactive defense strategies [20].
Ultimately, their role in enhancing incident response efficiency, reducing false positives, and mitigat-
ing financial and reputational costs positions IDS as a crucial component in safeguarding digital
environments [21,27].

In Machine Learning (ML), ID refers to the process of utilizing algorithms and models to
automatically identify unauthorized or anomalous activities within computer networks or systems.
It involves analyzing patterns in data collected from various sources, such as network traffic and
system logs, to distinguish between normal and potentially malicious behavior. By training models on
labeled data, Intrusion Detection Systems (IDS) can recognize deviations from established patterns
and generate alerts, enhancing cyber security by swiftly identifying potential threats [23]. In essence,
the working of ID in machine learning involves training models to recognize patterns of normal
and malicious behavior, deploying them in real-time monitoring scenarios, and generating alerts
when anomalous activities are detected, contributing to maintaining the security of networks and
systems [24].

Existing intrusion detection models face a range of challenges that impact their effectiveness in
safeguarding digital systems. Some difficulties that need to be addressed include dealing with datasets
that are skewed towards normal instances rather than anomalies, adjusting to new attack methods that
were not encountered during training, and managing data drift resulting from legitimate changes in
network behavior [25]. Feature engineering, essential for accurate detection, can be intricate, while the
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complexity of high-dimensional data strains processing efficiency [9,10,26]. Balancing false alarms
and misses is crucial, and the transferability of models across different network environments is a
concern. Models must perform real-time analysis, maintain privacy, and be interpretable to build
trust. Furthermore, the emergence of adversarial attacks poses a threat to the reliability of these
models. Overcoming these challenges demands continuous innovation to develop robust, adaptable,
and accurate ID solutions [27-29].

This research mainly contributes to creating a PAO-CNN model that significantly improves the
efficiency of IDS. This novel approach involves data acquisition followed by preprocessing feature
extractions and using fused CNN (Convolutional Neural Network) architecture. The optimization
refines the model for greater accuracy. Significantly, the model shows adaptive behavior during testing
by changing reactivity to data drift. This adaptability ensures effective retraining when drifts are
identified so that the model remains viable for capturing emerging attack patterns. On the other hand,
when no drift is observed things are minimized in terms of unnecessary processing and ensure that an
optimized configuration for the model remains effective. This innovation helps this specific problem
of successfully adjusting to evolving attack behaviors and further enhances the general effectiveness
of IDS. The major contributions are listed as follows:

o Prairie Araneida Optimization (PAO): The PAO algorithm is incorporated with the classification
model that combines the characteristics of the coyotes and social spiders and aids in enhancing
the efficiency of the classification model to detect intrusions accurately.

e Prairie Araneida Optimization Based Fused Convolutional Neural Network Model (PAO-CNN):
The standard CNN model is combined with the PAO algorithm and achieves high-efficiency
outcomes of ID. Further, the inclusion of the drift mechanism is named fused, which detects
the drift and ensures testing the drift-free data again. Overall, the research model achieves
maximum efficacy with the contributed mechanisms.

With these contributions, the proposed methodology of the research is depicted in Fig. 1, which
is illustrated as follows:
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Figure 1: Architecture of the proposed intrusion detection model
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Organization

The research article is organized as: Section 2 describes the literature review, Section 3 elaborates
on the proposed research methodology, Section 4 depicts the research outcomes, and Section 5 ends
the research with the conclusion and future work.

2 Motivation

Nowadays we are living in a digitally interconnected world and because of this increased cyber
threats to data and systems pose great risks. ID models have a crucial role in preventing such threats,
as they monitor and analyze network activities. The motivation is to strengthen cyber security in an
effort of detecting unauthorized access and averting breaches besides ensuring smooth operation of
critical services. To have a secure digital landscape, it is essential to improve intrusion detection models
as attacks change.

2.1 Literature Review

Jin et al. [1] focused on the problem of prompt ID in high-speed networks and suggested
deployment by the Swift IDS system. The dataset used in this paper was the CIC-IDS-2017 dataset.
It was the technology that enabled the analysis of large traffic data without compromising timely
detection, which promised a potential improvement in network security. Furthermore, the parallel ID
approach introduced complications regarding the synchronization and control of numerous detection
processes. In this digitally interconnected world, a wave of cyber threats posed significant risks to data
and systems. Network ID Models were critical in combating these threats by tracking and evaluating
Mohammed et al. [2] developed a new Network IDS that overcame the limitations of current systems,
delivered high detection accuracy while demonstrating the potential for powerful intrusion occurrence
prevention within contemporary networks idea. The datasets used in this research were NSL-KDD
and CIC-IDS2017 datasets. However, it faces difficulties in the detection of accuracy. Iram et al. [3]
created a powerful ID system in which ML classifiers were used to effectively distinguish between
typical and intrusive activities, thus improving network security, with high-performance identification
rates above 99% for diverse attack classes. The dataset employed in this work for training and testing
the model was the NSL-KDD dataset. However, the performance of such an approach might depend
on constantly changing ways by attackers. Naderi et al. [4] sought to increase network ID by using
a hybrid approach, incorporating deep neural networks as well as sophisticated ML algorithms.
This work utilized a real-time UNB ISCX 2012 dataset to validate the performance of the model.
This model united the advantages of Deep Learning (DL) and ML increasing both accuracy and
efficiency in handling a huge amount of data about network traffic, however, this approach might
differ to be effectiveness depending on the complexity and nature of network intrusions. Tuan et al. [5]
sought to improve ID in computer networks by creating a new algorithm that combines multiple
approaches leading to better detection performance as well as general applicability in real network
settings. In this work, the NSL-KDD dataset was employed to validate the performance of the
model. Here the KDDtrain+ was used for the training set and KDDtest+ and KDDtest-21 were
utilized for the validation and test set. However, the algorithm performance depends on network
complexity and choice of parameters. Zhang et al. [0] attempted to improve ID by designing a
unified model that combined Multi-Scale CNN (MSCNN) and Long Short-Term Memory (LSTM)
networks to provide an overall understanding of spatial-temporal features for enhanced accuracy
and fewer false positives. This research employed a UNSW-NBI15 dataset as an experimental training
and testing set to validate the model performance. However, the performance of such models could
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be impacted due to dataset variability effectiveness was subjective especially when it came as per
intrusion patterns. Abhishek et al. [7] sought to encourage the adoption of ensemble learning for IoT
security enhancement, concentrating specifically on DoS attacks. The research targeted the urgent
necessity for strong IoT security by discussing ML classifiers and promoting state-of-the-art IDS
development in this work, the CIDDS-001, UNSW-NB15, and NSL-KDD datasets were employed to
validate the performance of the model. However, the success of the proposed methodology might also
depend on how fast was changing landscape of IoT threats and whether classifiers could be usefully
adapted to specific IoT applications. Vikash et al. [§] created an innovative IDS that could accurately
detect Exploits, DoS Probe and Generic categories of network activities as well as Normal category
ones IDSs were capable of identifying specific threats in networks, these systems contributed greater
accuracy and efficiency. This research employed a UNSW-NB15 and RTNITP18 dataset to validate
the performance of the model. but their weakness layed within the lack of Apache adaptability for
developing techniques. Omar et al. [30] presented an enhanced anomaly-based ID DL Multi-class
classification model. The dataset used in this research is CICIDS2017 dataset. A separate DL model
could be used to identify the attack type among grouped similar classes. However, the model had
issues with computational complexity. Jiawei et al. [31] introduced a network ID classification model
(NIDS-CNNLSTM) based on DL. The datasets used in this research were KDD CUP99, NSL-KDD,
and UNSW_NBI5 datasets. It was more suitable for large-scale and multi-scenario network data
in the IIoT. However, it suffered from data imbalance and a limited number of training samples.
Saheed et al. [32] developed an ensemble approach with the integration of a grey wolf optimizer
(GWO), which effectively detected intrusion attacks in IoT networks. In the method, hybridization
of principal component analysis (PCA), and information gain (IG) was implemented to efficiently
eliminate the parameter dimensions. However, the reliability of the network was reduced and caused
severe security threats in the IoT environment. The model worked with the Bot-IoT dataset and
UNSW-NBIS5 dataset.

Saheed et al. [33] introduced a Bat Metaheuristic Algorithm (BMA) integrated with a Residue
Number System (RNS) to detect the intrusion in the network and enhance the processing speed
effectually. The provided model is evaluated with the NSL-KDD dataset. In the method, the RNS
technique was used to explore the feature selection process whereas, the BMA extracted the features
with the inclusion of PCA analysis. Based on these techniques, the model enhanced the processing
speed and detection accuracy. However, when attacks were imposed in the network the model suffered
from an imbalance problem and caused interpretability and scalability issues. The conventional
methods described are precisely described in Table 1.

Table 1: Literature summary table

Ref. No. Authors Method Dataset Advantages Disadvantages

[1] Jin et al. Swift IDS CIC-IDS- The model The model raised
2017 provided a complications
dataset potential regarding the

improvement in synchronization and
network security.  control of numerous
detection processes.

(Continued)
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Table 1 (continued)

Ref. No. Authors Method Dataset Advantages Disadvantages
[2] Mohammed New Network NSL-KDD The model tried ~ The model faced
et al. IDS and its best to detect  difficulties in the
CIC-IDS2017 IDS. detection of accuracy.
datasets
[3] Irametal. ML-based NSL-KDD The model The model needed to
IDS dataset attained high be updated on the
efficiency in advanced network
detecting IDS. attacks.
[4] Naderi Hybrid Real-time The model had The efficiency of the
et al. approach with  UNB ISCX the efficiency in ~ research model varied
DNN 2012 handling the high based on the nature
amount of data.  and complexity of the
attacks.
[5] Tuanetal. Multiple NSL-KDD The The parameter choice
approach- dataset generalizability as and the attack
based new well as the complexity affected
algorithm in efficiency of the  the performance of the
IDS research model research model.
was high.
[6] Zhang et al. Combined UNSW-NBI15 The model The achieved
MSCNN and dataset achieved performance of the
LSTM high-efficiency model in IDS was
networks performance. affected by the data
variability.
[ Abhishek  Ensemble CIDDS-001,  The model The adaptability
et al. learning for UNSW- worked with towards different
IoT security  NBI15, and DDoS for which  attacks remained poor.
NSL-KDD high accuracy was
datasets obtained.
[%] Vikash DoS Probe UNSW-NBI15 The model The model lacked
et al. and Generic  and detected specific ~ Apache’s adaptability.
categories of RTNITPIS threats and
network dataset attained efficient
performance.
[20] Omar et al. Enhanced CICIDS2017  The model had The model exhibited
anomaly- dataset high efficiency in  computational
based ID DL detecting specific complexity.
Multi-class attacks among
classification the grouped ones.
model

(Continued)
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Table 1 (continued)

Ref. No. Authors Method Dataset Advantages Disadvantages
[31] Du et al. NIDS- KDD CUP99, The model The model had data
CNNLSTM  NSL-KDD, worked with imbalance and the
and large-scale and training samples issues.
UNSW_NBI5 multiple network
datasets data.
[32] Saheed An ensemble  Bot-1oT, The PCA and IG  The model had less
et al. approach with  UNSW-NBI15 incorporated in reliability.
grey wolf the research
optimizer model eliminated
the dependency of
the parameters.
[33] Saheed A Bat NSL-KDD The extraction of The model had data
et al. Metaheuristic dataset. the features aided imbalance issues and
algorithm the research data interpretability.
(BMA) model in attaining
integrated high efficiency.
with a Residue
Number
System (RNS)

Hence, the conventional methods in the research of ID exhibited several technical gaps. The
existing models addressed the challenges concerning the dataset, and the one utilized in former
research was highly imbalanced, which created a bias in the classifiers. Moreover, the existing research
models incorporated hand-crafted mechanisms to perform feature extraction, which identified the
irrelevant features that in turn affected the detection outcomes. In addition, the basic ID model was
exhibited in the network traffic datasets, which were prone to dynamic changes that enabled the issue
of drift. Moreover, the convergence issue arose due to improper training as well as the initialization of
the hyperparameters of the model. Though this issue was addressed by most of the existing research
through optimization, the hybrid and the advanced combination of optimization remained vacant.
Thus, to address all the issues described and to achieve high-efficiency ID, the PAO-CNN model is
proposed in the research.

2.2 Challenges

> Network intrusion datasets were often highly imbalanced, with a small proportion of attacks
compared to normal traffic. This imbalance could lead to biased classifiers that prioritize the
majority class and struggle to detect minority class attacks effectively [1].

> Identifying relevant features from a large pool of attributes is challenging. Selecting irrelevant
or redundant features could lead to decreased classification performance and increased
computational overhead [3].

> Balancing the trade-off between capturing complex patterns (avoiding underfitting) as well as
avoiding noise and overemphasizing outliers (avoiding overfitting) was crucial [4].
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> Choosing the right classification algorithm that suited the data distribution, class imbalance,
and problem complexity was essential for achieving optimal performance [5].

> Changes in network traffic patterns over time could lead to concept drift, where the model’s
training data became less relevant. This could result in decreased classification accuracy [6].

3 Methodology for the Proposed Intrusion Detection Model Using the Prairie Araneida Optimization-
Based Fused Convolutional Neural Network

The research aims at creating a PAO-CNN model to improve the performance of IDS. To start
the process, an intrusion dataset is obtained and class labels are assigned for purposes of training. The
labeled datasets [34—36] are then used to train an initial model. Later, data preprocessing guarantees the
quality and readiness of this data for analysis. Data is processed and statistical features are obtained,
which generate a new feature matrix. These features are combined into a fused CNN that is optimized
with the aid of the Social Spider Algorithm and Coyote Optimization steps. Before the drift detection
process, test data is preprocessed during testing. If data drift is spotted, the optimized fused CNN re-
trains itself to accommodate new patterns in the evolving data. However, if there is no drift detected the
model proceeds with its optimized setup minimizing unnecessary processing. This adaptive behavior
means that the model is relevant and useful in capturing evolving attack behaviors. The proposed
architecture is schematically represented in Fig. 1.

3.1 Input
The ID model receives input from the sources [34—36], which can be outlined as follows:

M=3N (n

The input data N; comprises values ranging from 1 to a, M is the dataset. The input datasets
utilized in the research are described in the following section:

Dataset Description

1) BoT-IoT Dataset [36]: The BoT-IoT dataset is focused on the Detection of Intrusions in
IoT environments which covers realistic data that closely resembles actual traffic in IoT
networks from benign devices and malicious botnets. It is used by researchers in developing
and testing ID systems that are targeted toward the identification of botnet-related threats in
IoT networks. The utilized data set is obtained from the https://research.unsw.edu.au/projects/
bot-iot-dataset (accessed on 04 November 2024) source.

i) CIC-IDS2017 [35]: ID research uses the dataset CIC-IDS 2017 obtained from “https://www.
unb.ca/cic/datasets/ids-2017.html” (accessed on 04 November 2024). It covers a wide array of
network traffic data ranging from benign activities to malicious ones such as cyber-attacks.
Data labeled aids in the evaluation of ID systems, and as it is scalable to meet various
requirements, such data would be useful for research in cyber security development.

i) UNSW-NBI5 [36]: ID research uses the UNSW-NB15 dataset from the source “https://www.
kaggle.com/datasets/dhoogla/unswnbl15” (accessed on 04 November 2024). It includes a wide
range of network traffic information such as normal and many types of cyber attacks.
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3.2 Data Labeling

After putting together the dataset, each data point is labeled with a class that describes its
characteristics. These categories within the domain of ID are normal network behavior and different
kinds of attacks from a Denial-of-Service (DoS) case to malware activities or an intrusion. The
classification of each data point depends on its observed behavior, determining whether it signifies
a normal network operation or an invasive action. Employing this annotated dataset is essential in the
field of ML as it serves as a crucial component for training models. The primary goal is to train the
model to recognize intricate patterns and relationships within the input data (features). When it comes
to ID, this involves training a model to differentiate between normal network operations and various
types of harmful cyber attacks.

3.3 Preprocessing with Data Cleaning Technique

First, a very important preprocessing phase is conducted to ensure the integrity and reliability of
data. This phase entails a set of important operations, data cleaning among them all with an underlying
aim to eliminate surplus noise and inconsistencies. Through identifying errors and improving the
standard, preprocessed data is subject to careful refinement that ensures its suitability for feature
extraction in subsequent phases.

=3 N @
i=1

The preprocessed output is denoted as N;.

3.4 Feature Extraction with Statistical Features

Feature extraction marks one of the most crucial parts where relevant information is obtained
from the processed dataset. This entails the calculation of several statistical characteristics on the
inherent properties of network traffic. These statistical characteristics provide useful information
about the nature of network activities by quantifying patterns, distributions, and relationships within
the data. As a result, these extracted features are sorted into a cleaned feature matrix that contains all
the significant characteristics vital for further analysis and modeling.

Statistical Features

ID has statistical features which are quantifiable attributes drawn from the analysis of network
traffic data. These features include a broad set of attributes ranging from data distribution to behavior
patterns and relationships. These include mean, standard deviation, skewness, kurtosis, min, and max.
Statistical features or characteristics assist in differentiating between normal and abnormal network
activities through quantification of these aspects. This way, potential intrusions can be identified.

a) Mean: The mean is considered a statistical property computed from network traffic informa-
tion which is the arithmetic mean of values taken within a defined data sample for an attribute
in question. For example, when considering the mean of packet sizes in network traffic it shows
what is an average size for a given sample. Such mean values may help provide insights into the
baseline behavior related to network activities, thus facilitating the detection of anomalies or
deviations from normal patterns that could indicate intrusion attempts. The mean outcome of
the input N is T

b) Variance: The measure of dispersion or spread of values in a dataset using statistics is known
as variance. It tells how much the individual values differ from the mean or average. A higher
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variance is indicative of a greater variability, meaning that the data points are further off from
the mean while a low variance means they scatter close to around it. In the field of network
traffic data analysis, variance can classify deviations or anomalies to attributes that assist in
identifying potential intrusion efforts.

=1 > (v-1) (3)

a

where, T is the mean of the input.

¢) Standard Deviation (SD): The SD quantifies the variability or range of values within a dataset
through statistical analysis. It is an indicator of how much the values diverge from the mean of
a dataset. Mathematically, the SD (o) is calculated as the square root of the variance:

SD(0) = \/ P MNCS) 4)

d) Skewness: Skewness is a statistical indicator that allows assessing the asymmetry of the
probability distribution for a dataset. It gives clues as to how much, and in what direction,
data distribution deviates from a symmetric bell-shaped curve. Positive skewness means that
the distribution is shifted to yield a longer tail on the right-hand side of the curve. Negative
skewness means a prominent left tail, which is longer.

| 3

- Zi=1 (Nl* - T)
S: [4)

((a—1).8SD (o))’

e) Kurtosis: Kurtosis is a statistical measure used to quantify the shape of the probability
distribution for any set dataset. It describes the tails and peaks of the distribution, showing
how far off from a normal distribution this data’s spread is. Kurtosis assists in determining the
“heaviness” or “lightness” nature of tails when compared to a normal distribution.

1. ‘s
; Zi:l (Nz* - T)
((a—1).SD (o))"

f) Min: Min stands for the minimum of a certain attribute in the dataset or data sample. It stands
for the lowest observed value of that attribute from the accessible data points. For instance, if
we consider the minimum packet size in network traffic data it illustrates the smallest value of
recorded packets per sample. Analyzing the bottom values of attributes in network traffic could
help to understand limitations for normal behavior. Unusual or anomalously small minimum
values could be indicative of abnormal activities, or potential intrusion attempts. Therefore,
monitoring and comparison of the minimum values can be helpful in tracer deviations from
anticipated patterns.

min = min (N}, N3, ....N?) (7

)

kurtosis =

(6)

g) Max: Max is the highest value in a dataset or data sample which represents the highest
numerical value among an element in a dataset providing insight into how far one attribute
can go. Max may be used in network traffic analysis to find unusually large values that could
flag potential anomalies or security threats.

max = max (N}, Nj,...N?) ®)
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3.5 Updated Feature Matrix

Once feature extraction is completed, the statistical features extracted are compiled into the
updated feature matrix. This matrix is a structured depiction of the basic statistical features obtained
from preprocessed data. Each row in the matrix stands for a particular data, and each column signifies
an individual statistical trait such as mean-variance standard deviation skewness kurtosis minimum
maximum. The importance of an updated feature matrix is that it allows for the capturing and
condensing of complex information about the dataset into a form to be analyzed. By incorporating
these statistical aspects, the matrix gives a general overview of how the data is distributed and variable.
This is more than just a compressed view which also helps in efficient processing and the ability of
the model to recognize meaningful patterns during further stages. In the general context of the study,
a new feature matrix becomes an integral factor that enters into the fused CNN contributing to its
adaptability and overall efficacy in ID. It essentially serves as a highly refined and informative data
structure that captures the most important statistical insights gleaned from raw input data by way of
performing feature extraction. The overall outcome of feature extraction is denoted as, X.

3.6 Working of Prairie Araneida Optimized Fused CNN in Intrusion Detection

Having updated the feature matrix, CNN has become a strong extractor of features in IDS. The
modified feature matrix inclusive of critical statistical properties feeds into the CNN. Convolutional
layers present within the network analyze local patterns and features, while activation functions
introduce non-linearity to capture complex relationships. Then, there are fully connected layers that
learn global patterns followed by an output layer that classifies data points either as normal or
intrusive. As the CNN is trained, it optimizes its parameters using backpropagation and adapts to
details of complexity present in the labeled dataset. In testing, the CNN treats new data and its adaptive
nature happens during drift detection. If a data drift is detected, implying changes in the distribution
of items within sets, the model can adjust itself by possibly retraining ensuring it remains relevant
for capturing evolving characteristics under attack behaviors. Moreover, the fused CNN classifier is
optimized with the PAO algorithm that optimizes the parameters to attain high-efficiency outcomes.
Further, the usage of this optimization solves the issue with the class imbalance as the data imbalance
remains the major concern in several conventional models to retain the model as the biased one.
Hierarchical feature learning of CNN means that the network is capable not only of adapting itself for
changing data patterns but also becomes a highly effective tool in terms of ID. The proposed model
architecture is depicted in Fig. 2.

1) Convolutional Layers: Convolutional layers employ the input X, and let conv (X, W) show a
convolution operation on an input X with respect to a filter W. This operation involves a slide
of the filter over input, where element-wise multiplication takes place and results are added
together to give an output feature map.

Lj=Conv(X[i:i+i+f, j:j+f, W])+b ©)

Here, i and j are indices, f is the filter size, and b is the bias term.

1) Activation Functions: They are nonlinear hence allowing the model to capture complex
relationships and patterns within data. One of the common activation functions is ReL U, also
known as Rectified Linear Activation or sigmoid Function. Mathematical Equation for ReLU
Activation:

RELU (i,j) = max (0, i, ) (10)
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iil) Pooling Layers: The activation functions follow the pooling layers that involve down down-
sampling of data to conserve useful information with reduced dimensionality. Common
pooling techniques include max-pooling and average-pooling. Pooling assists in the extraction
of appropriate information and enhances the resilience of the model to variations.

P(RELU (i,))) = max (RELU (i,j)[i: i+ p, j: j+p) (11)

Here, p is the pooling size.

iv) Fully Connected Layers: The data is then handed over to fully connected layers after the pooling
layers. These layers link every neuron to every other neuron in the adjacent layers. It is therefore
easier to learn complicated relationships and high-level representations of the data in fully
connected layers.

FC (P (RELU (i,))) = W*P(RELU (i,j)) + b (12)

Here, I represents the weight matrix, while » denoting the bias term.
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Figure 2: Architecture of the fused CNN model in the ID

3.7 Testing Phase

In the testing stage, preprocessing of test data is done to make sure it’s ready for analysis. This
processed test data enters the drift detection process. Significant changes in data patterns over time
are called Data Drift. If such drift is traced, it implies that the behavior of the network has changed
and this change can be related to new types or variations in normal activities. It is possible to retrain
the optimized fused CNN in response to identifying data drift, where the retraining is based on the
threshold. If the threshold obtained is less than the constant parameter of drift, then the retraining
process is initiated, and when the threshold is above the constant then the drift is declared. Retraining
is a process of updating the internal parameters and architecture of the model to fit with new patterns
in data. This adaption allows the model to be able to readily identify new attack behaviors that have
developed since initial training. On the one hand, no detected data drift points to relatively stable and
consistent behavior of the network. In this scenario, the model proceeds to use its optimized setup
without going into needless retraining. This method minimizes the computational burden and ensures
effective use of resources. Thus, this adaptive behavior of the ID model to re-learn when significant
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changes take place while maintaining its configuration under normal conditions contributes largely to
improving an accuracy that captures both evolving attack patterns and normal network behaviors.

4 Proposed Prairie Araneida Optimization

The PAO model is created through the combination of features from both coyotes [37] and
social spiders [38]. PAO fine-tunes classifier parameters which is an iterative process of optimizing
the classifier whose goal is to tweak hyper-parameters, weights, and biases in order to find that
configuration that gives optimal results for minimizing any classification error. The CNN detection
model undergoes overfitting as well as less training performance, which is overcome by the PAO
algorithm. The evolution of coyote-type cooperative group hunting behaviors into the foraging
practices of spiders could revolutionize their ways of hunting. By using synchronized group techniques,
spiders could be able to hunt tougher or bigger prey in a cooperative manner. This may involve tactful
placement, herding prey for more effective capture chances, and designating certain tasks that will
improve the probability of success when hunting an elusive quarry. This cooperative participation
could help to save energy, reduce individual risk, and increase collective foraging effectiveness.
Substantial evolutionary adaptations would be essential, but the rewards of more effective cooperative
group hunting could have a profound impact on the spider ecosystem. The workflow of the proposed
PAO model is shown in Fig. 3.
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Figure 3: Workflow of PAO algorithm
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Motivation: The idea behind the PAO model is based on combining characteristics borrowed
from coyotes and social spiders to improve classifier performance by employing inspiration through
Prairie Araneida optimization. This is an iterative process of tweaking hyperparameters, weights, and
biases to reduce misclassification errors until the optimum configuration is found. The fact that the
cooperative group hunting behaviors of a coyote were integrated into spider foraging indicates an
innovative approach, where coordinated strategies allowed spiders to engage in collective action and
tackle tougher prey. This cooperative approach saves energy, minimizes individual risk, and improves
overall foraging performance.

4.1 Population Initialization

The PAO consists of random population initialization steps that intervene multiple times. PAOs
are characterized by the predominance of females. Historically, the density of females K,, which is
a fraction in percent values (from 65% to 90%) relative to the total K, population was used. K,, is
calculated through the use of this equation:

K, = floor[(0.9 — rand (0, 1) % 0.25) * K,] (13)

The male PAO count, represented as K, is achieved by the difference of K,, and K,
K(} - Kv - Km (14)

4.2 Evalaution of Fitness

The competency level is measured as the ability of PAO being able to effectively carry out assigned
tasks. In the specified strategy, each PAO is assigned its weight denoted as P, characterizing the
quality of a solution related to mth individual in K, population. The fitness for separate individuals is
calculated with the help of these formulas:

_ D(K,,) — worst,

m =

(15)

besty, — worst,,

Here, we use D (K,,,) to denote the fitness value obtained from an evaluation of how good a PAO
is at position K,,,. One can then employ this equation:

besty, = max (D (K,,)) (16)
worsty, = max (D (K,,)) (17)

4.3 Modeling of the Vibrations

The colony uses a communal web to communicate, with the vibrations varying based on the size
and distance of the PAO producing them. The vibrations (Egi) coming from the node g are assumed
to be individual approaching with equation:

Egi,, = p.a ¢ (18)
The formula determines the distance between PAO, which is represented by the symbols m2 and g.
xm,g = HBm - Bg ” (19)

The SSO (Social Spider Optimization) method considered three separate correlations, which
correspond to three different vibrations:
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a) Egj,, Vibration arises from information received by individuals m (B,,) about members i (B,,).
i is the closest one to m with a higher weight.

Egiim = pi'a_xghb (20)

b) The Egj,, Vibration is an individual m (B,,) that breeds from the information given by the
member n (B,) whereby; n signifies a secondary messenger with biggest body mass called p,.

Egi,, = pn.a"‘%ﬂ" (21)

¢) Egj,, Vibration comes from the individual m (B,) as a result of information provided by
member m (B,) where y stands for the closest female to m.

Egl‘ym — py‘a_x%'l,y (22)

4.4 Initializing Population

In the initial phase, an iterative approach is employed that is comparable to the evolutionary
algorithms used in previous PAO processes. It starts by randomly initializing the entire population,
both male and female. This initialization starts by creating the collection B, which consists of K
positions. Each PAO, marked as y,, or 0,,, holds a position defined by means of a -dimensional vector
holding parameter values arranged for improvement. These parameter values are located within the
initial upper bound for €' and preliminary lower endpoint of ¢/. The following equations outline
this process:

Voo =€ 4 rand (0,1) * (egfg” — eif’”') m=12,...K,and g=1,2,...1 (23)
0, = e +rand (0,1) % (" — &) m=1,2,...Koand g =1,2,...t (24)

The indexes are denoted by g and m represent individual variables, the (rand (0, 1)) function
generates a random number within the range of 0 to 1 as well as zero denotes the initial population.

4.5 Cooperative Operators

Factors that affect the cooperative behavior in PAO may include their gender, curiosity, and
reproductive cycle in addition to random occurrences.

4.5.1 Integrating Phase

Incorporating group hunting behaviors in foraging could redesign their successful hunting prac-
tices. So, PAOs adopt coordinated group hunting strategies that allow them all to launch synchronized
attacks on prey simultaneously with groups capable of taking down larger or more challenging targets
collectively. This could be through strategic positioning; herding prey into positions that favor the end
effect, and specialized roles within a group to provide them with an upper hand in capturing elusive or
formidable game. This cooperative hunting model may also reduce energy use and lower the chance
of injury to any single spider, leading toward increased foraging effectiveness as well as survival odds.
Adopting such behaviors would necessitate evolutionary changes of a major scale, and the potential
advantages that could be brought by increased collaborative group hunting might greatly influence
PAO ecosystems.
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4.5.2 Group Hunting

The hunting skills of PAO show amazing in identify and surround their prey while hunting, in
this hunting dynamic, alpha usually takes a leading role sometimes accompanied by beta and delta.
However, in the operation of a far-field search space where no optimal prey location is revealed, we
assume that alpha beta and delta have better information about possible locations for potential prey.
So, we keep the first three of, so far found best solutions and make other search agents including
omegas modify their positions based on those. The following formulas clarify this strategic strategy,
allowing a more efficient and harmonious search for the elusive best solution:

ﬁa:‘ﬁl'ﬁa_; ,ﬁﬂ: ‘@.Eﬂ_;‘,ﬁgz ‘Iﬁ3.ﬁs—}‘ (25)
El:ﬁ;_é)].(;[a),ﬁzzﬁﬁ_Ez.(Ij[)ﬁ), ;3:ﬁ5_§3.(;[3) (26)

Here, the symbol d represents the current iteration, while B and m are vectors containing

coefficient values, P indicating the coyote’s position in vector form.

4.5.3 Female Cooperative

The subsequent examples demonstrate how females can either attract or deter other spiders:

C=05/"+0.5P@d+1) (27)
yfn + 5.Vib,,,,,. (B[, - yf”) + E-Vibm' (Bb - yfn)
+y. (rand — 0.5) with probability e H E I; 1§
A=05 v-( ' ) p . Y & (28)
V. — 8.viby,. (B, — ") — e.vib,. (B, — ") + 3

y. (rand — 0.5) with probabilityl — eH

In this regard, b establishes the number of cycles, whereas 8, ¢, y is a random integer spanning
[0, 1], respectively. The B, and B, of the individual represents the top member of the population and
the one with the highest weight.

4.5.4 Male Cooperative

Male individuals are divided into dominant and non-dominant groups based on their weights.
The non-dominant individuals are drawn towards the weighted mean of the male population to learn
about resources that are being used by dominant spiders. As a result, the spider position update is as
follows:

B=0.50"+05P(d+1) (29)
0!, + 8.vib,. (B, — o%) + p. (rand — 0.5)

when Fy > Fy . .
) ” P +P,+ P
D=05] ; Z:(il o'.TS,, + — (30)
o +8 | L

Zj—l TSH!/

m
| when Fy,,,, < Fy,,,
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In this scenario, it is insightful to point out that the individual B, symbolizes the closest female

>0, FK ., : -
character related to the male m and ZWT symbolizes the total mean characteristic
g—1 tar

of both populations in its entirety with much more accentuation being put on representatives of
dominant individuals. The pseudo code of the proposed prairie Araneida optimization is depicted in
Algorithm 1.

Algorithm 1: Pseudo code of the proposed Prairie Araneida optimization
S.No. Pseudocode

1 Population initialization: K
. . D (B,) — worst
2 Assignation of fitness: p,, = (B.) 2
besty — worsty
3 Modeling of the vibrations: The formula calculates the distance between PAO represented
bym and g
xm,g = \ Bm - Bg”
4 Population initializing:
Ve, =€ +rand (0,1) % (el — ™) m=1,2,..K,and g=1,2,...t
0, = e +rand (0,1) * (egig” — eg’“') m=1,2,..Koand g =1,2,...t
5 Cooperative Operators:
i) Hunting: ;’1 = I;a — g,. (ﬁa)lgz = 13 — 132. (1-23)

ii) Female coordinates: C = 0.5y + 0.5P(d + 1)
6 Male cooperative:
i) B=0.50""+0.5P(d + 1)
0" + 8.vib,,. (B, — 0") + p. (rand — 0.5)
When FKy+m > FKerm — — —
P+ P, + P,
D=05]1 . > b TS, + %
Om + . T o
Zj—l T. S.V+t/

| when F, Kyim = F Kyto

7 Termination:

5 Result and Discussion

The PAO-CNN model creates an ID system, which is then evaluated for its effectiveness compared
to other existing methods.

5.1 Experimental Setup

The ID experiment is carried out using Python with 8 GB of RAM and the Windows 10 operating
system. The clock speed of the system is 3 GHz, the storage of the implemented system is 128 GB,
and the RAM is 16 GB. Further, the implementation is carried out in PyCharm Software of the latest
version 2024.2.1. The hyperparameters of the proposed model as well as the optimization are provided
in the following Table 2.
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Table 2: Hyperparameter details

Learning rate 0.01

Batch size 32

Epoch 500

Default optimizer Adam optimizer

Proposed optimizer Prairie araneida optimization
Fitness of the model Categorical loss entropy
Fitness of the proposed optimization Accuracy

5.2 Performance Metrics

The performance of the PAO-CNN model is evaluated with metrics such as accuracy, sensitivity,
and specificity. Accuracy measures the overall effectiveness of the ID in correctly identifying both
legitimate and malicious activities. It is calculated as the ratio of correctly identified instances to
the total number of instances. A higher accuracy indicates that the IDS is generally reliable in
distinguishing between normal and intrusive activities. Sensitivity measures the IDS’s ability to
correctly identify actual intrusions. It is the ratio of correctly identified intrusions to the sum of missed
intrusions. Specificity measures the IDS’s ability to correctly identify legitimate activities, avoiding false
alarms. It is the ratio of correctly identified legitimate activities to the sum of incorrectly identified
intrusions. High specificity indicates that the IDS is good at minimizing false alarms, ensuring that
normal activities are not incorrectly flagged as intrusions.

5.3 Comparative Methods

The PAO-CNN model is compared with several benchmark classifiers such as SVM [39], BILSTM
[40], deep CNN [41], PSO-based deep CNN [42], SSO-based deep CNN [43], ASO-opt deep CNN [44],
and KNN [45], to assess its performance.

5.3.1 Comparative Analysis Concerning TP for BoT-1oT

Fig. 4 visualizes the TP 90 metric, which serves as a basis for comparing the effectiveness of the
PAO-CNN model against other comparative techniques. In Fig. 4a, the ID accuracy of the PAO-CNN
model is showcased. The PAO-CNN demonstrates an accuracy of 96.97% with a TP of 90, surpassing
the ASO-opt deep CNN by 1.05%. Fig. 4b illustrates the ID sensitivity of the PAO-CNN model, which
reaches a sensitivity of 97.09% with 90 TP, surpassing the ASO-opt deep CNN by 2.13%. Fig. 4c
displays the ID specificity of the PAO-CNN, which achieved a specificity of 97.16% with a TP of 90.
This surpassed the ASO-opt deep CNN by a notable margin of 0.57%.
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Figure 4: Comparative analysis based on TP for BoT-10T (a) accuracy, (b) sensitivity, and (c) specificity

5.3.2 Comparative Analysis Concerning TP for CIC-IDS 2017

In Fig. 5a, the ID accuracy of the PAO-CNN model is showcased. The PAO-CNN demonstrates
an accuracy of 97.12% with a TP of 90, surpassing the ASO-opt deep CNN by 1.56%. Fig. 5b displays
the ID sensitivity of the PAO-CNN model, which reaches a sensitivity of 97.98% with a TP of 90. This
surpasses the ASO-opt deep CNN by 2.10%. Fig. 5c illustrates the ID specificity of the PAO-CNN,
which achieves a specificity of 97.78% with a TP of 90. This is significantly higher than the ASO-opt
deep CNN by 0.84%.
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Figure 5: Comparative analysis based on TP for CIC-IDS 2017 (a) accuracy, (b) sensitivity, and (c)

specificity

5.3.3 Comparative Analysis Concerning TP for UNSW-NBI5

In Fig. 6a, the ID accuracy of the PAO-CNN model is showcased. The PAO-CNN demonstrates
an accuracy of 96.25% with a TP of 90, surpassing the ASO-opt deep CNN by 1.30%. Fig. 6b shows
the ID sensitivity of the PAO-CNN model, which reaches 96.15% sensitivity with a TP of 90, slightly
surpassing the ASO-opt deep CNN by 2.24%. Fig. 6¢ displays the ID specificity of the PAO-CNN.
The PAO-CNN achieves a specificity of 98.20% with a TP of 90, outperforming the ASO-opt deep
CNN by a significant difference of 2.24%.
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Figure 6: Comparative analysis based on TP for UNSW-NBI15 (a) accuracy, (b) sensitivity, and (c)
specificity

5.3.4 Comparative Analysis Concerning K-Fold for BoT-IoT

Fig. 7 visualizes the k-fold 6 metric, which serves as a basis for comparing the effectiveness of the
PAO-CNN model against other comparative techniques. In Fig. 7a, the ID accuracy of the PAO-CNN
model is showcased. The PAO-CNN demonstrates an accuracy of 97.70% with a k-fold 6, surpassing
the ASO-opt deep CNN by 3.05%. Fig. 7b illustrates the ID sensitivity of the PAO-CNN model, which
successfully achieves a sensitivity of 96.80% with a k-fold 6. This outperforms the ASO-opt deep CNN
by 1.29%. Fig. 7c displays the ID specificity of the PAO-CNN, highlighting its performance. The PAO-
CNN achieves a specificity of 97.23% using a k-fold 6, outperforming the ASO-opt deep CNN by a
significant margin of 4.23%.
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5.3.5 Comparative Analysis Concerning K-Fold for CIC-IDS 2017

In Fig. 8a, the ID accuracy of the PAO-CNN model is showcased. The PAO-CNN demonstrates
an accuracy of 97.75% with a k-fold 6, surpassing the ASO-opt deep CNN by 2.17%. Fig. 8b displays
the ID sensitivity of the PAO-CNN model, which reaches 96.43% using k-fold 6. This outperforms
the ASO-opt deep CNN by 0.62%. Fig. 8c displays the ID specificity of the PAO-CNN model. Using
a k-fold 6, the PAO-CNN shows a specificity of 97.75%, which is 2.81% higher than the ASO-opt
deep CNN.

100 - 100
80 - B0 1
£ 601 £ 60
g B KNN E EEE KNN
< 404 =3 SVM & 401 mm svMm
B BiLSTM B BiLSTM
[ DeepCNN ] DeepCNN
20 1 I PSO based DeepCNN 204 [ PSO based DeepCNN
B 550 based DeepCNN B 5SO based DeepCNN
3 ASO opt DeepCNN Model [0 ASO opt DeepCNN Model
[ PAO-CNN 0 PAO-CNN
0 B B L En )| bd WM il 0 E BETEEEN N BECENENCE L
1 2 3 1 2 3 4 5 6
KFold KFold
(@) (b)
100 4
B0 4
g 60 4
z
5 EE KNN
& 404 == svm
. BILSTM
[ DeepCNN
204 3 PSO based DeepCNN
BB 550 based DeepCNN
[ ASO opt DeepCNN Model
3 PAD-CNN
0| e s s |
1 2 3 4 5 6
KFold
(0
Figure 7: Comparative analysis based on k-fold for BoT-IoT (a) accuracy, (b) sensitivity, and (c)
specificity
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Figure 8: Comparative analysis based on k-fold for CIC-IDS 2017 (a) accuracy, (b) sensitivity, and (c)
specificity

5.3.6 Comparative Analysis Concerning K-Fold for UNSW-NBI15

In Fig. 9a, the ID accuracy of the PAO-CNN model is showcased. The PAO-CNN demonstrates
an accuracy of 97.04% with a k-fold 6, surpassing the ASO-opt deep CNN by 2.00%. In Fig. 9b, the
ID sensitivity of the PAO-CNN model is presented. The PAO-CNN achieves a sensitivity of 97.37%
with a k-fold 6, edging ahead of the ASO-opt deep CNN by 2.43%. In Fig. 9¢, the ID specificity of
the PAO-CNN is showcased. With a k-fold 6, the PAO-CNN demonstrates a specificity of 96.48%,
surpassing the ASO-opt deep CNN by a substantial margin of 0.50%.

5.4 Comparative Analysis on GD, MFE, Spacing, Spread, and Weighted Sum

Table 3 shows the comparison of the proposed method with other existing methods based on
quality metrics such as generation distance (GD), maximal Perito front error (MFE), spacing, spread,
and weighted sum. Based on the described quality metrics, the comparison is carried out, which
evaluates the quality of the model as well as the combination of the proposed PAO algorithm into
the model.
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Figure 9: Comparative analysis based on k-fold for UNSW-NBI5 (a) accuracy, (b) sensitivity, and (c)

specificity

Table 3: Comparative analysis on GD, MFE, spacing, spread and weighted sum

Models GD MFE Spacing Spread Weighted sum
PSO-based Deep CNN [42] 0.11 0.37 0.10 0.097 0.097
SSO-based Deep CNN [43] 0.09 0.29 0.06 0.057 0.057
ASO-opt Deep CNN Model [44] 0.06 0.26 0.04 0.038 0.038
PAO-CNN 0.02 0.20 0.03 0.027 0.027

5.5 Comparative Discussion

The proposed PAO-CNN model effectively addresses the existing challenges by utilizing the PAO
technique, which integrates the cooperative group hunting behaviors into their foraging, it could
completely change their hunt. Using synchronized group strategies, Prairie Araneida could work
together to attack bigger or more challenging prey. This could include tactical placement, herding of
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prey for more effective hunting opportunities, and certain roles that need to be played out to perform
effectively in capturing difficult prey. This could save on energy, reduce individual risk levels, and
increase overall productivity in foraging. These enormous rewards of cooperative group hunting would
likely prompt substantial evolutionary adaptations. In the field of ID research, the table allows for a
structured and organized manner in which to compare various techniques used by those attempting to
administer successful system invasion detections and characterize the accomplishments made possible
through the proposed model. The added comparative methods exhibited various challenges, which
are described as follows, KNN was slow, especially with large datasets, as it required calculating
the distance between the query and all training samples [45]. SVMs were computationally expensive,
especially with large datasets, and required careful tuning of parameters like the kernel, regularization,
and margin parameters [39]. BILSTMs were slow to train due to their complexity and they overfit if not
properly regularized, especially with small datasets [40]. Deep CNN was prone to overfitting, especially
with small datasets. Further, the model required a large amount of labeled data and extensive tuning of
hyperparameters [41]. PSO-deep CNN was computationally expensive and had increased complexity
[3], Similar to PSO-deep CNN, ASO-deep CNN, and SSO-deep CNN exhibited the same drawbacks.
Thus to tackle these limitations, the PAO-CNN model is proposed in the research. The comparative
discussion of TP and K-fold analysis of PAO-CNN is depicted in Tables 4 and 5, respectively.

Table 4: Comparative discussion table for TP 90%

Model TP 90%

BOT-IOT CIC-IDS 2017 UNSW-NBI5
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
(%) () () () () () (%) (%) (%)

KNN [45] 85.90 84.85 84.62 76.56 81.25 81.63 80.60 79.33 79.00
SVM [30] 87.18 84.85 87.18 80.07 81.25 83.67 81.40 83.60 80.00
BiLSTM [31] 88.46 88.89 87.18 81.27 87.50 87.88 82.20 85.20 82.00
Deep CNN [32] 90.00 90.91 90.00 85.75 87.50 92.00 87.25 85.60 86.00
PSO-based Deep CNN [33] 92.50 93.94 92.31 90.16 89.80 92.00 87.75 89.00 87.50
SSO-based Deep CNN [34] 93.22 94.95 95.00 92.12 93.88 96.00 91.67 90.67 92.67
ASO-opt Deep CNN Model [35] 95.95 95.00 96.61 95.61 95.92 96.96 95.00 94.00 96.00
PAO-Deep CNN 96.97 97.07 97.16 97.12 97.98 97.78 96.25 96.15 98.20

Table 5: Comparative discussion table for K-fold 6

Model K-fold =6

BOT-IOT CIC-IDS 2017 UNSW-NBI15
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

) ) ) o) o) o) o) 0] )

KNN 85.43 80.85 81.41 86.70 83.33 75.00 83.89 84.44 81.45
SVM 87.32 83.30 84.88 92.44 87.50 80.00 87.22 85.56 87.78
BiLSTM 91.07 86.12 84.88 92.44 90.00 85.71 87.22 87.10 88.89
Deep CNN 91.98 91.00 86.61 92.44 92.86 90.00 87.91 88.71 89.19
PSO-based Deep CNN 93.50 92.75 86.71 92.44 94.44 91.67 89.11 88.71 90.10
SSO-based Deep CNN 94.27 92.75 88.92 93.50 95.83 93.75 95.00 94.00 95.00
ASO-opt Deep CNN Model 94.71 95.55 93.12 95.63 95.83 95.00 95.09 95.00 96.00

PAO-Deep CNN 97.70 96.80 97.23 97.75 96.43 97.75 97.04 97.37 96.48
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5.5.1 Limitations

Though the research attained high performance in the detection of intrusions, the model failed to
analyze the Cybil attacks as well as various types of attacks, which remained the major drawback of
the proposed model.

5.5.2 Future Scope

The proposed PAO-CNN model in the research of ID achieves high proficiency outcomes. Though
the outcomes are highly efficient, the model can include advanced data correlation mechanisms as well
as alert mechanisms. Further, the model can work with several advanced attack mechanisms and source
determination algorithms.

6 Conclusion

In conclusion, the research aims to improve ID systems through its novel PAO-CNN model
that shows better performance in combating dynamic cyber threats. A fused CNN is considered a
significant contribution because statistical features are effectively integrated, enabling an in-depth
analysis of intrusion datasets. Also, the innovative application of Prairie Araneida optimization for
CNN optimization is one key advantage. Motivated by nature, these optimization layers make the
model adaptive to changing data patterns, thus enabling it to deliver robust performance in an
ever-changing cybersecurity scene. The responsiveness of the model’s adaptive behavior in response
to drift detection during testing highlights this. The research offers a practical, efficient solution
minimizing unnecessary processing when no drift is detected and retraining where necessary. Finally,
the combination of sophisticated CNN architecture and biological inspiration optimization methods
forms a universal approach that makes the PAO-CNN model an effective tool for improving IDS in
practical instances. The model’s performance is assessed through metrics such as Accuracy, Sensitivity,
and Specificity, particularly noteworthy during TP 90 where the values reach 96.25%, 96.15%, and
98.20% on the dataset. Additionally, in the context of k-fold 6, the achieved metrics stand at 97.04%
for Accuracy, 97.37% for Sensitivity, and 96.48% for Specificity.
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