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ABSTRACT: Plant diseases pose a significant challenge to global agricultural productivity, necessitating efficient and
precise diagnostic systems for early intervention and mitigation. In this study, we propose a novel hybrid framework that
integrates EfficientNet-B8, Vision Transformer (ViT), and Knowledge Graph Fusion (KGF) to enhance plant disease
classification across 38 distinct disease categories. The proposed framework leverages deep learning and semantic
enrichment to improve classification accuracy and interpretability. EfficientNet-B8, a convolutional neural network
(CNN) with optimized depth and width scaling, captures fine-grained spatial details in high-resolution plant images,
aiding in the detection of subtle disease symptoms. In parallel, ViT, a transformer-based architecture, effectively models
long-range dependencies and global structural patterns within the images, ensuring robust disease pattern recognition.
Furthermore, KGF incorporates domain-specific metadata, such as crop type, environmental conditions, and disease
relationships, to provide contextual intelligence and improve classification accuracy. The proposed model was rigorously
evaluated on a large-scale dataset containing diverse plant disease images, achieving outstanding performance with
a 99.7% training accuracy and 99.3% testing accuracy. The precision and F1-score were consistently high across all
disease classes, demonstrating the framework’s ability to minimize false positives and false negatives. Compared to
conventional deep learning approaches, this hybrid method offers a more comprehensive and interpretable solution
by integrating self-attention mechanisms and domain knowledge. Beyond its superior classification performance, this
model opens avenues for optimizing metadata dependency and reducing computational complexity, making it more
feasible for real-world deployment in resource-constrained agricultural settings. The proposed framework represents
an advancement in precision agriculture, providing scalable, intelligent disease diagnosis that enhances crop protection
and food security.

KEYWORDS: Plant disease classification; EfficientNet-B8; vision transformer; knowledge graph fusion; precision
agriculture; deep learning; contextual metadata

1 Introduction
Agriculture has been the backbone of human subsistence, developing through innovations that have

propelled the production of enough food to meet the demands of a constantly growing population
[1–5]. Yet, food security is still precariously affected by a combination of many factors, including climate
change, a decrease in the population of pollinators, and plant diseases. Among those, plant diseases pose
not only a serious threat to the world’s food security but also have serious economic impacts, particularly
on smallholder farmers who depend almost entirely on crop yields [6–10]. Crop losses from plant diseases,
often accentuated by insects along with other environmental stresses, have spurred a number of solutions to
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help reduce destruction [11–13]. The development of integrated pest management systems, which emphasize
sustainable and targeted methods over conventional blanket chemical applications, has been important in
this [14–18]. More recently, the rapid proliferation of mobile technologies has facilitated access to such tools
on a previously unimaginable scale through the rapid adoption of smartphones globally [19,20].

Accurate classification of plant diseases is crucial for timely interventions that guarantee agricultural
productivity and food security.

However, present approaches suffer serious limitations, mainly when dealing with datasets that involve
inter-class similarities and intra-class variations (see Related Work). An example of such challenges is
the Plant Diseases Dataset, which encompasses about 87,000 RGB images of healthy and diseased crop
leaves for 38 classes. Variability in disease expression, visual overlaps between diseases, and environmental
inconsistencies cause difficulties in determining the exact presence of diseases using even state-of-the-
art models of machine learning. Most of the current techniques rely on convolutional neural network
(CNN)s, which, although very popular, have very limited capabilities for capturing global relationships in
images and are not really capable of incorporating domain-specific knowledge. Besides, most state-of-the-
art solutions consider only image-based features and do not include contextual information that might lead
to a significant enhancement in the classification performance. This calls for a gap in terms of a robust,
interpretable framework that integrates advanced feature extraction with domain knowledge in handling
such complexities.

This study addresses this gap by proposing a hybrid framework for classification, which fuses the
EfficientNet-B8, Vision Transformer (ViT), and knowledge graph fusion (KGF), as shown in Fig. 1. The
convolutional structure of EfficientNet-B8 extracts fine-grained local features from the leaf images, while
the global perspective is ensured by the capture of high semantic features and long-range dependencies,
enabled by a self-attention mechanism in the ViT. Complementary to these deep features, the domain-
specific contextual insights are imbued into the model through the knowledge graph extracted from disease
metadata on crop types, environmental factors, and inter-disease relationships. It enables the integration
of a framework that merges both local and global visual patterns with metadata-driven correlations for a
full-fledged, robust classification of plant diseases.

The key novel contributions of this study are as follows. First, we introduce a hybrid deep learning
framework that synergistically integrates convolution-based EfficientNet-B8, self-attention-driven ViT, and
domain-specific KGF, providing a comprehensive feature representation that surpasses conventional CNN-
based models. Unlike existing approaches that rely solely on image-based features, our framework effectively
incorporates contextual knowledge, allowing for improved interpretability and enhanced classification
performance. Second, the proposed method addresses the critical challenge of inter-class similarities
and intra-class variations in plant disease classification by leveraging the complementary strengths of
EfficientNet-B8 and ViT, where the former captures intricate local details and the latter extracts high-level
semantic relationships through long-range dependencies.
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Figure 1: Flowchart of the proposed hybrid classification framework

2 Related Work
Sanath Rao et al. [21] have illustrated the use of transfer learning techniques for the endorsement of leaf

disease recognition in grape and mango plants. Besides considering Visual Geometry Group 16 (VGG-16)
and ResNet-50 models, certain aspects of the two models were contrasted as well. From the findings of this
study, it was noted that CNN models that had been fine-tuned were capable of achieving high accuracy in
identifying the diseases in the images of mango and grape leaves. The computations of the VGG-16 model
portrayed an accuracy of 96.13% and 96.25% for grape and mango leaves, respectively, while 97.34% and
97.17% were calculated for the ResNet-50 (Residual Network) model on grape and mango leaves, respectively.
According to Goyal et al. [22], a deeper CNN architecture was suggested for the classification and detection of
leaf and spike wheat diseases. The authors state that their proposed architecture compares unfavorably with
VGG-16 and ResNet-50 on any of these criteria and thus is superior when it comes to accuracy, precision, and
recall. As for the wheat-diseased dataset, the researchers fine-tuned their CNN model using transfer learning
methods, which ultimately improved its accuracy in diagnosing the disease. Out of all the various diseases,
the authors classified them into seven; powdery tan spot and mildew being some of them. For detecting
and classifying wheat diseases, a classification accuracy of 96.5% was attained by the proposed model. It
was proven through this work that these models based on deep CNN could identify the intricate disorders
in wheat. A deep learning approach to classifying cassava leaf disease was suggested by Ayu et al. [23].
A CNN was trained on a set of 4238 images, which consisted of both healthy and infected cassava leaves
utilizing transfer learning. The accuracy achieved by the model to classify the cassava leaf infections was
97.37 percent. This focus excelled other models in terms of accuracy; however, the authors do. The study
concluded that deep learning had the capability to accurately and reliably detect infections in plants. Overall,
the research reviewed a deep learning-based approach for diagnosing cassava leaf diseases and improving
disease management techniques in agriculture. As Zhuang (2021) [24] used the ViT model, images of cassava
leaves containing 4 diseased classes along with 1 healthy class were collected by the authors. Untouched
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images were subsequently processed before introducing them to a model—Vision Transformer. An accuracy
rate of 96.23% was achieved using these methods; however, the method still surpassed most achievements.
Nishad et al. [25] in another instance also applied k-means segmentation followed by deep learning networks
in identifying and classifying potato leaf diseases. K-means was used for the segmentation of images into
regions with diseased and healthy tissues. Then the classification of the diseases was done with deep models
including ResNet-50 and VGG-19, where VGG-19 combined with k-means segmentation performed best,
achieving an accuracy result of 97.34%. The proposed system would make it easy and cheap for users to
diagnose potato diseases in the field efficiently as well as cost-effectively. More datasets can be considered
for the further testing of the system, and in this way augmenting the accuracy of the system, the article also
proposes. Pan et al. [26] came up with a diagnosis system for northern corn leaf blight that is based on deep
learning. The model is trained and tested using images of the leaves of corn. The authors have fine-tuned a
pre-trained Inception V3 model to be a deep feature extraction model. Model performance was quantified
based on metrics of accuracy, precision, and F1 score with an accuracy of 96.43%. This study concluded that
the proposed model was able to detect leaf diseases and therefore is suitable for use in precision agriculture
crop disease diagnosis. Umamageswari et al. [27] designed six models to express 18 classes related to the
diseases of banana plants based on the images of respective plant portions. They tested several models,
including ResNet-50, MobileNetV1, and Inception V2, and the former two have a greater success rate than
the latter. The proposed single shot detector (SSD) MobileNet V1 was more than 90% accurate in detecting
diseases and pests in banana plants.

Ishengoma et al. [28] tackled the challenge of maize plant disease detection by proposing a hybrid CNN
model. Their system, which fused InceptionV3 and VGG16 architectures in a parallel structure, outperformed
existing CNN models (VGG16, XceptionNet, ResNet50) by achieving a 16%–44% reduction in training
time and an accuracy of 96.98%. Despite its high accuracy, the hybrid model increased system cost and
computational complexity.

Sharma et al. [29] developed a deeper lightweight multiclass CNN architecture (DLMC-Net) for
detecting diseases in citrus, cucumber, grape, and tomato leaves. By integrating collective blocks and a
passage layer, the model mitigated the vanishing gradient problem and reduced parameter size through low-
rank matrix approximation. The model attained accuracies of 93.56% for citrus, 92.34% for cucumber, 99.50%
for grapes, and 95.56% for tomatoes, highlighting its effectiveness in multi-class classification.

Kaya and Gürsoy (2023) [30] proposed a multi-headed DenseNet-based architecture that fuses seg-
mented and RGB (red, green and blue) images for plant disease detection. Their evaluation of the PlantVillage
dataset, consisting of 54,183 images across 38 classes, yielded an average accuracy, recall, precision, and F1-
score of 98.17%, 98.17%, 98.16%, and 98.12%, respectively. While their model demonstrated high resilience,
its complexity could hinder real-time applications.

Dai et al. (2023) [31] introduced the ITF-WPI (Image and text based cross-modal feature fusion model
for wolfberry pest recognition) cross-modal feature fusion model, leveraging a transformer-based structure
with Pyramid Squeezed Attention (PSA) to improve multi-scale feature extraction. Their model achieved
97.98% accuracy, 93.19% F1-score, and reduced computational complexity by 30% compared to CNN-LSTM-
based models, making it a competitive alternative in deep learning-based plant disease detection.

Gogoi et al. (2023) [32] suggested a 3-stage CNN architecture with transfer learning. After assessment,
the acquired findings emphasized an outstanding accuracy of 94% with tenfold cross-validation, surpassing
prior approaches in order to stress the efficacy of the suggested method for disease detection in rice.

Chakrabarty et al. (2024) [33] addressed the challenge of rice leaf disease identification by combining
lightweight CNNs with optimized Bidirectional Encoder Representations from Transformers (BEiT). Their
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model surpassed previous deep learning and transformer-based approaches, including ViT, Xception,
InceptionV3, DenseNet169, VGG16, and ResNet50, by achieving an F1-score of 0.97. The incorporation of
local interpretable segmentation techniques further enhanced model explainability, making it a promising
tool for real-time agricultural disease detection.

Shwetha et al. (2024) [34] introduce a MobileNetV3-based CNN for detecting leaf spot disease in
jasmine plants. The model integrates depthwise convolution layers and max pooling for feature extraction,
while conditional generative adversarial network (GAN)-based data augmentation and Particle Swarm
Optimization enhance robustness. It achieves 97% training accuracy and 94%–96% test accuracy under real-
world conditions, demonstrating resilience to varied lighting and camera angles. Compared to existing CNN
classifiers, LeafSpotNet offers improved generalization and computational efficiency, making it a promising
tool for real-time plant disease detection.

Adopting depthwise separable convolution with inverted residual blocks for the detection of illnesses
in leaves in plants, Thanjaivadivel et al. (2025) [35] presented an enhanced convolutional neural network.
The model is developed with regard to the morphological characteristics of color, intensity, and size for data
categorization. Reaching an accuracy of 99.87% using a dataset of 39 classes of plants.

3 Methods

3.1 Dataset Collection
The dataset used in this work is available on Kaggle [36]. It consists of about 87k images of healthy and

diseased leaves, categorized into 38 distinct classes, as shown in Fig. 2. The dataset has been structured in a
way that will allow efficient training and validation processes. The dataset is divided into an 80%:20% ratio
of a training set and a validation set, respectively. Care has been taken to maintain the directory structure
such that all images are organized class-wise. Later, a separate directory containing 33 test images was created
for prediction purposes, allowing independent evaluation of the model. The training set consists of a wide
variety of crop-leaf images with different disease conditions. For example, the training set contains 2016
images of apple leaves infected with apple scab, 1987 images infected with black rot, 1760 images infected
with cedar apple rust, and 2008 images of healthy apple leaves. Similarly, the dataset includes healthy and
diseased images of other crops such as blueberries (1816 healthy images), cherries (1683 images with powdery
mildew and 1826 healthy images), and corn (e.g., 1642 images with Cercospora leaf spot and 1907 images with
common rust). Other notable entries include 1888 images of grape leaves affected by black rot, 2010 images
of orange leaves infected with Huanglongbing, also known as citrus greening, and 1920 images of tomato
leaves affected by early blight. This ensures a wide coverage of the conditions of the plants regarding their
diseases and healthy state, hence being a strong dataset for classification purposes. For testing purposes, the
dataset contains a similar number of images distributed across the same categories. For instance, the testing
set consists of 504 images of apple leaves infected by scab of apples, 497 infected with black rot, 440 with
cedar apple rust, and 502 healthy apple leaf images. Similarly, it consists of 454 images of healthy blueberry
leaves, 421 images of cherry leaves infected with powdery mildew, and 456 healthy cherry leaf images. Other
examples include grape leaves with black rot, where there are 472 images; orange leaves suffering from
Huanglongbing at 503; and 480 images of tomato leaves suffering from early blight.
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Figure 2: Class distribution in the datasets

3.2 Proposed Classification Approach
The proposed classification methodology in this work is a multistage framework to improve the accuracy

and interpretability of plant disease detection. The first stage of the classification methodology differentiates
between healthy and diseased leaves. This binary classification step lays the foundation for further steps
by reducing the overall task complexity. Let the input image be denoted as x ∈ RH×W×C , where H, W,
and C represent the height, width, and number of channels, respectively. The feature extraction process is
performed using a ViT model [37–39], which applies a self-attention mechanism to encode the input image
into a high-dimensional feature representation, f (x) ∈ Rd , where d is the feature dimension. This stage is
mathematically expressed as f (x) = ViT(x).

Subsequent stages further categorize the diseased leaves into specific disease types after binary classifica-
tion. This kind of hierarchical classification technique will ensure subtle inter-class variations are captured by
the model. Further processing of the extracted features is performed through fully connected layers, mapping
the feature space onto the disease categories. For a given class c, the probability P(c ∣ x) is computed using
a softmax function:

P(c ∣ x) = exp(wT
c f (x) + bc)

∑C
j=1 ex p(wT

j f (x) + b j)
(1)

where wc and bc are the weight vector and bias term for class c, and C is the total number of classes. This
probabilistic formulation facilitates robust multi-class classification.

A key innovation in this framework is the integration of deep feature representations from EfficientNet-
B8 [40,41] and ViT with domain knowledge via KGF as shown in Fig. 3. EfficientNet-B8 captures
fine-grained, local visual patterns through convolutional operations, providing a rich feature vector fE f f (x),
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while ViT extracts global context and long-range dependencies using its self-attention mechanism, produc-
ing a complementary feature vector fViT (x). These two feature vectors are concatenated to form a unified
representation:

fconcat (x) = concat ( fE f f (x) , fViT (x)) (2)

where fconcat denotes the concatenation operation. To further enhance this representation, domain knowl-
edge is injected through a knowledge graph that is built from metadata on crop types, environmental factors,
and disease relationships. The nodes in the graph represent specific crops and diseases, while edges encode
meaningful associations. Node embeddings Zi , generated using graph representation learning techniques
such as Node2Vec, provide additional contextual information. The final combined feature representation is:

hx = concat ( fconcat (x) ,Zi) (3)

which fuses local features, global patterns, and domain knowledge.

Figure 3: Illustration of the hybrid classification framework for plant disease detection

This concatenated representation hx is passed through fully connected dense layers to map it to class
probabilities. For a given class c, the probability P(c∣x) is computed using the softmax function:

P(c ∣ x) = exp(wT
c hx + bc)

∑C
j=1 ex p(wT

j hx + b j)
(4)

Cross-resolution augmentation is performed before training to handle variability in the quality of
images and for robustness. This technique preprocesses images in different resolutions to improve the
generalization capability of the model. The network was trained on an 80/20 train-validation split and the
categorical cross-entropy loss:

L = −
N
∑
i=1

C
∑
c=1

yi ,c log P(c ∣ xi) (5)
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where yi ,c is the ground truth label for image xi , N is the total number of training samples, and C is
the number of classes. This loss function minimizes the divergence between the predicted and true class
distributions, enabling accurate classification. By combining advanced feature extraction, knowledge graph
embeddings, and robust training techniques, this hybrid architecture achieves enhanced performance for
plant disease classification.

The experiments and results presented in this study were conducted using Python in Google Colab,
a cloud-based computational environment that provides access to high-performance GPUs and TPUs. The
platform utilized an NVIDIA Tesla T4 or A100 GPU with a memory allocation of up to 32 GB RAM and
seamless integration with Google Drive for data storage. The deep learning models were implemented using
Python 3.9, with TensorFlow 2.9 and PyTorch 1.12 as the primary deep learning frameworks, while Keras was
employed for high-level model construction.

3.3 Performance Evaluation
The performance of the model has been evaluated using accuracy, precision, recall, and the F1-

score [21,35,42]. Additionally, a confusion matrix is generated to analyze classification errors. The
explainability of Grad-CAM is done to verify that the decision of the model agrees with clinically relevant
features in the images.

Accuracy is the ratio of correctly classified samples to the total number of samples. It is defined as:

Accurac y = TP + TN
TP + TN + FP + FN

(6)

where:

• TP stands for True Positives (accurately anticipated positive instances).
• TN stands for True Negatives (refers to accurately anticipated negative instances).
• FP stands for False Positives (refers to mistakenly projected positive instances).
• FN stands for False Negatives (refers to improperly anticipated negative situations).

Precision refers to the fraction of accurately predicted positive samples among all anticipated positive
samples. It is defined as:

Precision = TP
TP + FP

(7)

Recall, also known as sensitivity, is the fraction of properly anticipated positive samples among all
positive samples. It is defined as:

Recal l = TP
TP + FN

(8)

The F1-score:

F1 − Score = 2 ⋅ Precision ⋅ Recal l
Precision + Recal l

(9)

The confusion matrix contains a thorough breakdown of predictions, including the number of TN, FN,
TP, and FP classifications for each class.
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4 Results
Fig. 4 represents the training vs. validation accuracy and loss for the proposed model through 30 epochs.

It can be analyzed that the accuracy of training increased linearly, reaching almost 100% around the 25th
epoch and then remaining at 100% in the last epochs with minor fluctuations. Similarly, the validation
accuracy increased gradually, reaching 99.3% at the end of the 30th epoch, which reflects that the model
has generalized well on unseen data. The loss curve displays a persistent training loss decline from a high at
the first epochs to stabilization in later epochs around approximately 0.1, whereas the validation loss comes
down consistently and stabilizes around 0.15, although there is very slight overfitting. The close alignment
of the training and validation curves underlines the robustness of the model and shows the efficiency of the
proposed framework to handle such a complex dataset.

Figure 4: Training and validation performance over 30 epochs, showing accuracy and loss trends with dual y-axes

Fig. 5 illustrates the different performance metrics obtained on average for both the training and testing
phases using the proposed model. In this case, the model showed outstanding results on the training with
99.7% accuracy, 99.26% precision, 99.58% recall, and 99.61% F1-score. It assures high values of these measures
that support the model learned nicely from the training dataset for correct classification for all disease
categories with consistency. It also fares pretty well during the testing phase with an accuracy of 99.3%,
a precision of 98.9%, a recall of 98.92%, and an F1-score of 98.67%. These results indicate that the model
generalizes to unseen data quite well, along with high predictive accuracy and balanced precision and recall.
The slight differences in the metrics for training and testing suggest expected generalization behavior, as the
model performance is almost exactly the same for both datasets. The balance here ensures the model does
not overfit and thus remains reliable when applied in practical scenarios.

Fig. 6 presents the class-wise precision and recall of the proposed plant disease classification framework
in detail. The high precision and recall values from all 38 classes show the effectiveness of the model in terms
of accurate and complete identification of diseases. For most of the classes, the values of precision and recall
are more than 98%, indicating the efficiency of the model in reducing both false positives and false negatives.
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Notable examples include “Corn (maize)/Cercospora leaf spot” and “Blueberry/healthy”, both of which reach
or approximate perfect scores, indicating the model is highly proficient in those respective categories. The
close alignment between precision and recall values for each class further underlines the balance achieved
by the model in making sure both specificity and sensitivity are attained for disease detection. Although
there are minor variations within some classes, such as “Tomato/Bacterial spot” and “Apple/Black rot”, the
metrics remain very well above 94%, thus justifying the model’s reliability even for challenging categories
with possible inter-class similarities.

Figure 5: Average performance metrics of the proposed model during training and testing, represented in terms of
accuracy, recall, and F1-score

Figure 6: Class-wise precision and recall values for the proposed model, showcasing its performance across diverse
plant disease categories

Table 1 shows a comparison of the proposed model performance against the state-of-the-art techniques.
On the other hand, the proposed technique has used an integrated hybrid network architecture comprising
EfficientNet-B8, Vision Transformer, and Knowledge Graph Fusion and performed well compared to the
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state-of-the-art architectures for different types of crops and diseases. The paper proposed by Nishad et al.
2022 concentrates on potato leaf diseases with VGG and ResNet models, along with k-means segmentation.
While the model proposed by Nishad et al. achieved a very good accuracy of 97.34%, it had a very limited
scope, and no domain-specific knowledge was integrated into it. Pan et al. (2022) proposed a fine-tuned
Inception V3 model for northern corn leaf blight detection and achieved an accuracy of 96.43%. In contrast,
the proposed work not only achieves a higher accuracy of 99.3% in testing but also generalizes to 38
disease classes, which proves scalability and robustness. Similarly, Umamageswari et al. (2022) utilized
MobileNetV1 and SSD MobileNetV1 for banana plant disease detection, achieving 90% accuracy with SSD
MobileNetV1. The proposed framework significantly outperforms this work by leveraging ViT’s ability to
capture global image features and incorporating knowledge graphs for context-aware classification. Gogoi
et al. (2023) introduced a 3-stage CNN with transfer learning for rice disease detection, achieving 94%
accuracy through tenfold cross-validation. However, these CNNs are limited to small datasets and lack
domain-specific knowledge integration, narrowing their applicability. The proposed model overcomes such
limitations by considering domain-specific metadata through knowledge graph fusion and gains not only
higher accuracy but also much better explainability. Thanjaivadivel et al. (2025) proposed an enhanced
CNN architecture that achieved a higher accuracy of 99.87% across 39 classes with the help of advanced
convolutional techniques. While true, this does not employ knowledge-based methods that contextualize the
relationship between diseases or metadata. Competitive in performance at 99.3% test accuracy, the model
proposes a new fusion of visual and insight-driven, knowledge-based approaches that are arguably more
robust and more interpretable. Summarily, the work outperforms or at least matches the accuracies of the
earlier approaches with the added advantages consequent on its hybrid design. It brings high performance,
scalability, and contextual understanding together with EfficientNet-B8, ViT, and knowledge graph fusion in
a way that is different from previous methods.

Table 1: Comparison of related work with proposed work

Reference Model Cases Results
Nishad et al. (2022) [25] VGG-19 with k-means Potato leaf diseases

(healthy and diseased)
97.34% accuracy (VGG-19

with k-means)
Pan et al. (2022) [26] Inception V3 (fine-tuned) Northern Corn Leaf Blight

(NCLB)
96.43% accuracy

Umamageswari et al.
(2022) [27]

MobileNetV1, ResNet-50,
Inception V2, SSD

MobileNetV1

Banana plant illnesses and
pests

90% accuracy (SSD
MobileNetV1)

Ishengoma et al.
(2022) [28]

Hybrid CNN (InceptionV3
+ VGG16)

Maize disease detection
using UAV images

96.98% accuracy; 16%–44%
reduction in training time

Gogoi et al. (2023) [32] 3-stage CNN with transfer
learning

Rice disease detection
(limited dataset)

94% accuracy (tenfold
cross-validation)

Sharma et al. (2023) [29] DLMC-Net (Deeper
Lightweight Multiclass

CNN)

Citrus, cucumber, grape,
and tomato leaf diseases

93.56% (citrus), 92.34%
(cucumber), 99.50%

(grapes), 95.56%
(tomatoes)

Kaya et al. (2023) [30] Multi-headed
DenseNet-based model

38-class leaf disease
detection (PlantVillage

dataset)

98.17% accuracy, 98.17%
recall, 98.16% precision,

98.12% F1-score
Dai et al. (2023) [31] ITF-WPI cross-modal

feature fusion
(Transformer + PSA)

38-class disease detection
(multi-modal input)

97.98% accuracy, 93.19%
F1-score; 30% reduction in

MACCs

(Continued)
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Table 1 (continued)

Reference Model Cases Results
Chakrabarty et al.

(2024) [33]
Lightweight CNN + BEiT

Transformer
Rice disease detection
(PlantVillage dataset)

0.97 F1-score; surpasses
ViT, Xception,

InceptionV3, DenseNet169,
VGG16, and ResNet50

Thanjaivadivel et al.
(2025) [35]

Enhanced CNN with
residual blocks

39 plant disease classes
(e.g., tomato, corn, apple,

potato)

99.87% accuracy

Shwetha et al. (2024) [34] MobileNetV3 with
Conditional GAN

augmentation and PSO

Jasmine leaf spot disease 97% training accuracy,
94%–96% test accuracy

This work EfficientNet-B8, vision
transformer, knowledge

graph fusion

38 plant disease classes
(e.g., apple, corn, grape,

potato)

99.7% accuracy (training),
99.3% accuracy (testing)

5 Discussion
The proposed hybrid framework had a very promising result for plant disease classification. It has

attained 99.7% for training accuracy and 99.3% for testing accuracy. Also, the precision, recall, and F1-score
of all classes are relatively well-balanced, which states that the model is strong enough and scalable for various
classes of plant diseases. It integrates local feature extraction with EfficientNet-B8, global pattern capture with
ViT, and contextual insights with Knowledge Graph Fusion, thereby allowing the framework to outperform
the existing approaches. This architecture achieves state-of-the-art accuracy with added interpretability by
integrating domain knowledge, which is often missing in traditional deep learning models.

Contrasting the proposed framework with related work, the framework does not share its weaknesses.
Various models, such as that proposed by Nishad et al. (2022) and that by Pan et al. (2022), did report high
values of accuracy in the case of a few crops or diseases but did have limited scopes and did not make use of
contextual knowledge. Similarly, works like Gogoi et al. (2023) and Umamageswari et al. (2022) could hardly
be generalized when working on a particular dataset or crop. The advanced CNN architecture was proposed
by Thanjaivadivel et al. (2025) with very high performance; however, they failed to provide any knowledge-
based approach to enhance the contextual understanding of diseases. It overcame such lacunas by effectively
combining advanced feature extraction with metadata-driven knowledge graph embeddings and thus has
shown high accuracy and scalability for plant diseases into 38 classes. The comprehensive design thus lets
the model handle complex patterns in diseases and similarities between classes with much efficiency.

Despite these strengths, the proposed model has certain limitations that need to be addressed in future
work. In fact, knowledge graph integrations enhance the understanding of contexts; however, such a graph
construction itself relies on rich metadata, which might not be accessible in all crop types or regions.
Moreover, the computational cost of training and inference using both EfficientNet-B8 and ViT models can
be very high, which may challenge their deployment on low-resource devices in rural farming areas. Further
studies must be directed to optimizing the framework for computational efficiency without compromising
its performance. Besides, the knowledge graph can further be extended for more comprehensive results by
including different metadata like time-varying patterns of diseases, environmental factors enhancing the
classification result, and broad applicability of models to a wide scenario.

The proposed multi-component approach advances the field by leveraging different strengths of deep
learning architectures and domain knowledge, providing insights beyond traditional image-based classifi-
cation. EfficientNet-B8, with its self-attention mechanisms, excels at capturing small yet critical details in
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leaf images, such as lesion shapes, color variations, and texture anomalies, while ViT complements this by
identifying global spatial patterns, enabling the model to detect disease progression stages and structural
damage in plants. KGF introduces domain-specific knowledge into the model, incorporating relationships
between crop types, disease symptoms, and environmental factors, which enhances the interpretability of
results and aligns with plant pathology principles. Unlike black-box deep learning models, KGF provides
contextual explanations by linking predicted diseases to known agricultural phenomena, such as disease co-
occurrence in certain climates or susceptibility of specific plant species. The model can distinguish visually
similar diseases that previously required expert intervention, improving early detection and precision. By
combining image-based learning with structured knowledge, our approach aligns predictions with plant
physiology, such as how stress-induced symptoms differ from fungal or bacterial infections. This hybrid
framework not only improves classification accuracy across 38 plant disease classes but also enhances
interpretability, making it a valuable tool for researchers and agricultural experts.

For inference, our model demonstrates efficient real-time performance, with an average testing time of
1.1 s per image, making it feasible for deployment in real-world agricultural applications. The integration of
KGF enhances interpretability without significantly increasing inference time, as the additional metadata is
preprocessed and utilized efficiently. To address scalability concerns, we plan to explore lighter versions of
the model by leveraging EfficientNet variants with lower computational footprints (e.g., EfficientNet-B0 to
B5) and experimenting with pruned Vision Transformer architectures. Additionally, knowledge distillation
techniques could be employed to optimize the model further for edge devices.

To mitigate this limitation, our framework is designed to be flexible and adaptable to varying levels of
metadata availability. When metadata is missing or incomplete, the model still functions effectively using
only image-based features from EfficientNet-B8 and ViT, as KGF serves as an enhancement rather than a
strict requirement. Additionally, the knowledge graph can be dynamically updated and expanded over time
as more agricultural data becomes available.

While our model achieves high accuracy across a diverse dataset, its real-world applicability may
be influenced by variations in environmental conditions, imaging devices, and regional disease patterns.
To enhance generalization, future work should validate performance on external datasets and employ
domain adaptation techniques such as transfer learning and fine-tuning on region-specific data. Additionally,
synthetic data augmentation and semi-supervised learning could mitigate metadata limitations, improving
robustness in data-scarce environments. Our framework focuses on single-image diagnosis and does not
incorporate temporal dynamics, which are crucial for tracking disease progression over time. Future work
could integrate recurrent models, such as LSTMs or TCNs, to analyze sequential image data and improve
long-term disease monitoring. Additionally, leveraging remote sensing or time-series vegetation indices
could enhance predictive capabilities for better disease management.

The integration of temporal data, and multi-modal inputs, such as satellite imagery combined with
close-up images of leaves, and environmental sensors, is another promising direction in the search for
a truly robust model with respect to ever-changing conditions. Testing the scalability of the framework
within diverse geographies and crop types would further demonstrate its adaptability and scalability.
Overcoming these limitations and further exploring these future directions might finally allow even more
robust, interpretable, and resource-efficient models for plant disease diagnosis, which could enable precision
agriculture with food security.

6 Conclusion
This study presents a novel hybrid framework integrating EfficientNet-B8, Vision Transformer (ViT),

and Knowledge Graph Fusion (KGF) for plant disease classification across 38 distinct disease classes. The
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proposed model effectively leverages deep learning and domain-specific knowledge, achieving high accuracy,
precision, recall, and F1-score, demonstrating its robustness and scalability in real-world agricultural appli-
cations. EfficientNet-B8 excels at detecting fine-grained image details, while ViT captures global structural
features, and KGF enhances interpretability by integrating contextual knowledge of plant species, disease
relationships, and environmental factors.

The experimental results indicate that our framework significantly outperforms existing approaches by
efficiently handling inter-class similarities and intra-class variations, which are major challenges in plant
disease classification. Unlike traditional deep learning models, which often operate as black-box classifiers,
our approach incorporates agricultural knowledge graphs, making the system more interpretable and
valuable for precision agriculture applications. The ability to contextualize disease predictions ensures that
the model’s decisions align with agronomic and plant pathology principles, further increasing its reliability.

Despite the strong performance, certain limitations remain. The model’s dependency on metadata
availability and computational cost may limit its real-time deployment in resource-constrained environ-
ments. Additionally, while knowledge graph integration improves model explainability, constructing and
maintaining an extensive and domain-specific knowledge base requires continuous updates and expert input.

For future research, optimization techniques such as model pruning and quantization can be explored
to reduce computational overhead, making the framework more efficient for deployment on edge devices.
Further work could also focus on integrating multi-modal data sources, such as hyperspectral imaging,
climate data, and soil conditions, to enhance disease diagnosis beyond visual symptoms. Extensive field
testing in diverse geographic regions with different crop varieties would further validate the model’s
generalizability and adaptability to real-world agricultural settings.

This study lays the foundation for intelligent and scalable plant disease diagnostic systems, contributing
to sustainable agriculture and global food security. By integrating advanced deep learning with domain-
specific knowledge, the proposed framework not only enhances classification performance but also provides
a more interpretable and practical solution for early disease detection in crops.
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