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ABSTRACT: A Distributed Denial-of-Service (DDoS) attack poses a significant challenge in the digital age, disrupting
online services with operational and financial consequences. Detecting such attacks requires innovative and effective
solutions. The primary challenge lies in selecting the best among several DDoS detection models. This study presents a
framework that combines several DDoS detection models and Multiple-Criteria Decision-Making (MCDM) techniques
to compare and select the most effective models. The framework integrates a decision matrix from training several
models on the CiC-DDOS2019 dataset with Fuzzy Weighted Zero Inconsistency Criterion (FWZIC) and Multi-
Attribute Boundary Approximation Area Comparison (MABAC) methodologies. FWZIC assigns weights to evaluate
criteria, while MABAC compares detection models based on the assessed criteria. The results indicate that the FWZIC
approach assigns weights to criteria reliably, with time complexity receiving the highest weight (0.2585) and F1 score
receiving the lowest weight (0.14644). Among the models evaluated using the MABAC approach, the Support Vector
Machine (SVM) ranked first with a score of 0.0444, making it the most suitable for this work. In contrast, Naive Bayes
(NB) ranked lowest with a score of 0.0018. Objective validation and sensitivity analysis proved the reliability of the
framework. This study provides a practical approach and insights for cybersecurity practitioners and researchers to
evaluate DDoS detection models.
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1 Introduction
Distributed denial of service (DDoS) attacks have become a pervasive and disruptive threat in the digital

landscape. The DDoS attacks are designed to overwhelm and incapacitate targeted systems, rendering them
inaccessible to legitimate users. By flooding a network, website, or online service with overwhelming traffic or
malicious requests, DDoS attacks disrupt normal operations, causing significant downtime, financial losses,
and damage to an organization’s reputation [1,2]. DDoS attacks come in multiple forms [3–5]: protocol,
volumetric, and application layer attacks.

The DDoS attack model is continually evolving to keep pace with technological advancements. Attackers
constantly devise new methods to circumvent service providers’ defenses, driven by the evolution of
distributed Denial of Service (DoS) techniques [6,7]. As the sophistication and scale of DDoS attacks
continue to evolve, organizations must implement robust and proactive defense mechanisms [8]. These
mechanisms include implementing traffic monitoring and anomaly detection systems, utilizing mitigation
techniques such as rate limiting and traffic filtering, and leveraging the services of specialized DDoS
mitigation providers [9]. Moreover, the effective identification and mitigation of DDoS attacks heavily rely
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on cooperation and the exchange of information among various entities, including organizations, Internet
Service Providers (ISPs), and security communities [10–12].

Many efforts were made to evaluate the DDoS detection model. A study by [13] used True Pos-
itive (TP), False Positive (FP), True Negative (TN), False Negative (FN), and F-measures to evaluate
the DDoS detection model [14]. The main factors the DDoS model should provide are accuracy, False
Acceptance Rate (FAR), sensitivity, and specificity. Measurement and accuracy are the main requirements for
DDoS detection models [15]. The study in [16] used accuracy as a key indicator for comparison among
the DDoS detection models. While the study by [17] relied on the misclassification rate to determine
the best DDoS detection models [18], the detection rate and FP rate were used to assess and benchmark
these models. It is challenging to compare DDoS detection models across multiple evaluation criteria
simultaneously, and the benchmarking process is hindered by the difficulty of comparing different criteria
that involve trade-offs and disputes [18].

Two primary factors must be considered when assessing the effectiveness of DDoS detection models:
reliability and computational complexity [19]. Nevertheless, the existing method of comparing the proposed
model with previous models in the reviewed studies fails to consider all evaluation and benchmarking
criteria. Instead, it focuses solely on one review aspect, overlooking the others. This approach lacks flexibility
in addressing the conflict or tradeoff between the requirements [20,21]. The contradictory nature of the
situation and the tradeoff involved are the primary challenges encountered while evaluating and measuring
DDoS detection methods [22–24].

The second problem that impacted the evaluation and benchmarking process was the significance of
each criterion. When evaluating DDoS detection models, multiple criteria are considered, and the relevance
of each criterion varies depending on the specific objectives of the model. However, the significance of
one evaluation criterion may be heightened while reducing the importance of another criterion, depending
on the model’s aims [24,25]. Hence, a necessary compromise and clash will arise between assessment and
benchmarking standards due to the varying significance of each criterion in distinct models [26,27]. A
challenge occurs during the benchmarking process of DDoS detection models when many criteria and
sub-criteria are considered simultaneously [28,29]. This challenge is attributed to the tradeoff between
the requirements, each of which holds varying degrees of importance [30–33]. Previously, Multi-Criteria
Decision-Making (MCDM) may have been considered appropriate for these purposes [34,35]. Various
techniques can be used to manage MCDM and solve practical problems. These methods help structure issues
for Decision Makers (DMs) and analyze, rank, sort, and score many alternatives [36–39].

This study employed the Fuzzy Weighted Zero Inconsistency Criterion (FWZIC) to calculate the
weights of evaluation criteria, as it yields more consistent results than the Analytical Hierarchy Process
(AHP) and other MCDM weighting methods. Additionally, benchmarking and ranking alternatives were
performed using the Multi-Attributive Border Approximation Area Comparison (MABAC) method, one of
the most widely applied methods for solving MCDM problems [39]. Additionally, MABAC ranks accurately
and quickly, enabling the selection of optimal options with precision. Much of the research reviewed
demonstrated that FWZIC yields satisfactory utility values when combined with MABAC because both
methods can effectively handle uncertainties related to the problem statement. Neither FWZIC nor MABAC
requires much user experience, even for those unfamiliar with MCDM literature. It is recommended that
MABAC be employed in conjunction with various scenarios, such as individual and group situations [35].
Two primary decision-making situations are emphasized: the first scenario involves a single decision-maker.
Group Decision-Making (GDM) involves multiple decision-makers [40]. GDM refers to a situation in
which individuals collaboratively select choices from a set of options. No member of the group is affected
by the decision. Individual and group dynamics, including social factors, influence the outcome. The
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methodologies employed in collective decision-making systematically collect and incorporate elements from
experts, encompassing their expertise across multiple areas. Regarding group cases, each expert is presented
with judgment criteria that require subjective assessment.

Furthermore, as shown before, the expert assigns a specific weight to each criterion. Ultimately, the
assessment and comparison of DDoS detection models indicate a requirement to incorporate FWZIC and
MABAC methods. The proposal entails assigning weights to criteria (reliability, time complexity rate).

The motivation is that attacks require detection efficiency. Many classifiers work to detect attacks.
However, selecting the most suitable classifier based on several criteria is challenging. Choosing the best
is considered one of the primary motivations for this study; this selection will undoubtedly contribute to
improving the speed and accuracy of detection.

The primary aim of this study is to propose a framework for enhancing, evaluating, and bench-
marking DDoS detection classifiers. This study is organized into four sections. Section 1 establishes the
theoretical framework, including the proposed solution. Section 2 offers evaluation and benchmarking pro-
cedures. Section 3 analyzes the findings, validates them, and discusses the proposed methodology. Section 4
provides a brief overview of the research.

2 Materials and Methods
Fig. 1 illustrates the components of the proposed framework.
The proposed framework Fig. 1 is divided into three parts: the decision matrix, the FWZIC method, and

the MABAC method. They will be explained in detail below.

2.1 Evaluation and Benchmarking of DDOS Attack Detection Classifiers through the Integration of FWZIC
and MABAC Methods
The evaluation and benchmarking framework that was developed relies on MCDM techniques. This

study’s strategy is formulated by combining FWZIC to assign weights and MABAC for ranking, enabling
the identification of optimal alternatives within the suggested decision matrix. The literature analysis on
MCDM techniques highlights FWZIC and MABAC as suitable methods for benchmarking and ranking
DDoS detection models. The mathematical model of MABAC is proposed for addressing specific issues, such
as simultaneously handling multiple evaluation criteria within the suggested decision matrix, even in cases of
conflict among the requirements. Furthermore, FWZIC is utilized to assign weights to criteria, addressing the
understanding of the significance of these criteria within the proposed decision matrix. Therefore, integrating
FWZIC and MABAC methodologies is suitable for assessing and comparing DDoS detection models and
their hierarchical ranking.

2.2 Suggested Decision Matrix
Table 1 shows the suggested decision matrix. The rows represent the classifier’s metrics (criteria), while

the columns represent the classifiers (alternatives). The values of this matrix are obtained after executing the
first part of Fig. 1.

To get the decision matrix. The CiC-DDoS2019 dataset has been used. Preprocessing this dataset may
reveal irregularities, missing values, outliers, and similar issues that necessitate correction before analysis or
modeling endeavors (see Fig. 2). After processing the dataset, it was divided into two parts: 80% for training
and 20% for testing.
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Figure 1: The proposed framework

Table 1: The decision matrix

Alternatives C1 C2 Cn
A1 (A1, C1) (A1, C2) (A1, Cn)
A2 (A2, C1) (A2, C2) (A2, Cn)
An (An, C1) (An, C2) (An, Cn)

Different five machine learning algorithms, DPRCT, SVM, LR, NB, KNN, and Stacked Classifiers (SCs),
were used to train and test the CiC-DDoS2019 dataset; SC is an ensemble technique that aims at improving
the accuracy of results in models by combining multiple classifiers instead of using a single classifier [35].
After that, a set of metrics (ACC, REC, F1, and T) was applied to the classifiers to assess their quality and
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performance criteria. The decision matrix can be constructed from the measurements obtained. All work
was done using Python.

CiC-DDoS2019

Preprocessing

Split The Dataset

Train and Test

Evaluate criteria

Decision Matrix

Figure 2: Steps to obtain the suggested decision matrix

2.3 Applying the FWZIC Method for Assigning Criteria Weights
The second part of Fig. 1 represents the implementation of the FWZIC method, which can be

summarized in five steps as follows:

1. Collection of evaluation criteria (from the decision matrix)
• Examination of the pre-agreed set of evaluation criteria.
• Classify all the criteria, sub-criteria, and relevant indicators based on their behavioral patterns and

the assessment employed.
2. The technique of Structured Expert Judgment (SEJ)

• Identify Experts: The term ‘expert’ cannot be defined by any quantitative measure of resident
knowledge. In this context, the term ‘expert in a given subject’ refers to an individual who possesses
specialized knowledge in a specific field and is recognized by others as an authority.

• Select Experts: Following the identification of the collection of experts, the selection process for the
experts to be utilized in the study is undertaken. Broadly speaking, selecting at least four specialists
for a specific subject is necessary.

• Develop the Evaluation Form: Creating an assessment form is essential, as it is a tool for gathering
expert consensus.

• Experts are identified and selected in the relevant subject domains (e.g., DDoS detection models)
to evaluate and determine the importance of the criteria. A SEJ panel has been created, and a form
has been designed to gather the collective agreement of all SEJ panelists for each criterion.

Transforming a language scale into a corresponding numerical scale is necessary to facilitate further
research. Therefore, during this stage, the experts reported that the level of importance or significance for
each criterion on the Likert linguistic scale is transformed into a corresponding numerical scale, as depicted
in Table 2. The Likert scale is predicated on the notion that varying levels of relevance are associated with
the evaluation criteria. The spectrum of importance levels spans from the lowest to the highest.

3. Constructing the evaluation decision matrix

During this process, the evaluation decision matrix is fabricated. Table 3 presents the fundamental
components of this matrix, including the criteria and alternatives.
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Table 2: The criteria’s importance

Numerical scoring scale Linguistic scoring scale
1 Not important
2 Slightly important
3 Moderately important
4 Important
5 Very important

Table 3: The evaluation decision matrix

Experts Criteria

C1 C2 Cn
E1 Imp*(E1/C1) Imp(E1/C2) Imp(E1/Cn)
E2 Imp(E2/C1) Imp(E2/C2) Imp(E2/Cn)
E3 Imp(E3/C1) Imp(E3/C2) Imp(E3/Cn)
Em Imp(Em/C1) Imp(Em/C2) Imp(Em/Cn)

Note: * The variable “Imp” denotes the level of importance.

4. Utilization of a decentralized membership function

The fuzzy membership function is applied to the data of the previous step, followed by a defuzzification
procedure. This transformation aims to enhance precision and facilitate further data analysis. The fuzzy
technique offers the benefit of handling unclear situations by employing ambiguous numbers instead of crisp
ones to ascertain the relative value of the criteria. Due to their conceptual and computational simplicity, the
primary type of fuzzy number used in fuzzy MCDM is the Triangular Fuzzy Number (TFN). The TFNs are
represented as A = (a, b, c), as shown in Fig. 3.

Figure 3: The triangular fuzzy numbers (TFNs)
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The TFN membership function (x) is defined as:

μA (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a
x − a
b − a

if a ≤ x ≤ b
c − x
c − b

if b ≤ x ≤ x where a ≤ b ≤ c

0 if x > c

(1)

Based on the findings shown in Table 4, it is recommended that all linguistic variables be converted into
triangular fuzzy numbers. This translation assumes that the fuzzy number is equivalent to the variable linked
to each criterion for expert K.

Table 4: Linguistic terms and their equivalent (TFNs)

Linguistic terms TFNs
Not important (0.00, 0.10, 0.30)

Slight important (0.10, 0.30, 0.50)
Moderately important (0.30, 0.50, 0.75)

Important (0.50, 0.75, 0.90)
Very important (0.75, 0.90, 1.00)

5. Make the weight coefficients associated with the evaluation criteria ultimate values
The weight coefficients for the evaluation criteria (w1, w2, . . . , wn) are concluded using the fuzzification

data acquired in the preceding step. The ratio of fuzzification data can be calculated using Eq. (2), which is
commonly employed in conjunction with TFNs, as illustrated in Table 5.

Imp (Em/Cn)
∑k

j=1 Imp (Em/C j)
(2)

k is the number of criteria, m = 1, 2, 3 (the current expert), n = 1, 2, 3 (the current criteria).

Table 5: Fuzzy expert decision matrix

Experts Criteria

C1 C2 Cn

E1 Imp(E1/C1)
∑n

j=1 Imp(E1/C j)
Imp(E1/C2)

∑n
j=1 Imp(E1/C j)

Imp(E1/Cn)
∑n

j=1 Imp(E1/C j)

E2 Imp(E2/C1)
∑n

j=1 Imp(E2/C j)
Imp(E2/C2)

∑n
j=1 Imp(E2/C j)

Imp(E2/Cn)
∑n

j=1 Imp(E2/C j)

Em Imp(Em/C1)
∑n

j=1 Imp(Em/C j)
Imp(Em/C2)

∑n
j=1 Imp(Em/C j)

Imp(Em/Cn)
∑n

j=1 Imp(Em/C j)

The mean values must be found to get the values of the evaluation criteria’s weight coefficients
(w1, w2, . . . , wn). Each column in the fuzzy expert decision matrix in Table 5 has its elements added together,
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and the sum is divided by the number of experts. For instance, w1 will represent the final fuzzy weight of the
criteria C1.

2.4 MABAC for Benchmarking and Ranking DDoS Detection Models
Compared to the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and VlseKri-

terijumska Optimizacija I Kompromisno Resenje (VIKOR) methods, MABAC is a recent method introduced
MABAC is grounded in the measurement of the distance of alternatives from the Border Approximation Area
(BAA). It follows a systematic process with a straightforward computational procedure, making it competent
in addressing real-world decision-making problems. The steps of the MABAC method are as follows:

1. Get the decision matrix obtained from Section 2.1.
2. Normalizing the decision matrix.

Eq. (3). For beneficial criteria (ACC, PREC, REC, and F1):

Normal ized value = Xi j −min(X j)
max (X j) −min(X j)

(3)

Eq. (4). For non-beneficial criteria (T):

Normal ized value = max(X j) − Xi j
max (X j) −min(X j)

(4)

where (Xi j) represents the current element of the decision matrix, while min and max represent the
highest and lowest values for the same criterion.

3. Determine the weighted normalized decision matrix as in Eq. (5).
• Assign weights W j to each criterion.
• Compute the weighted normalized values:

vi j =W j ∗ xi j (5)

The weight values obtained from the FWZIC method will be multiplied by the normalized decision
matrix. Table 6 shows the output of the decision matrix.

Table 6: Weighted normalized decision matrix [41,42]

Alternatives Criteria

ACC PREC REC F1 T
DT ACC (1) ∗ w1 PREC (1) ∗ w2 REC (1) ∗ w3 F1 (1) ∗ w4 T (1) ∗ w5

SVM ACC (2) ∗ w1 PREC (2) ∗ w2 REC (2) ∗ w3 F1 (2) ∗ w4 T (2) ∗ w5
LR —- —- —- —- —-
NB —- —- —- —- —-

KNN —- —- —- —- —-
SC ACC (n) ∗ w1 PREC (n) ∗ w2 REC (n) ∗ w3 F1 (n) ∗ w4 T (n) ∗ w5

Note: (w1, w2, w3, w4, and w5) are the weights obtained from the FWZIC method for each criterion
(ACC, PRC, REC, F1, and T) in sequence.
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4. Calculate the border approximation area (BAA).
For simplicity, let us assume the BAA is the mean value of the weighted normalized decision matrix

for each criterion by applying Eq. (6). Table 7 shows the BAA matrix.

G j = ∑C j
N

(6)

G j represents the current element of a BAA array.
∑C j The sum of elements of column j for the weighted normalized decision matrix.
N The number of alternatives.

5. Compute the distance of each alternative from the BAA as in Eq. (7).
Calculate the distance Qi j:

Qi j = vij −G j (7)

vij represents the current element of the weighted normalized decision matrix.
6. Rank the alternatives.

• Compute the overall performance score for each alternative.

Qi =
n
∑
j=1

Qi j (8)

Qi represents the sum of the elements of each row in the matrix.

Rank the alternatives in descending order of Qi, where a higher score indicates a better alternative.
Table 8 presents the algorithm of the proposed work, which is divided into three sections. The first

section explains how to obtain the decision matrix, the second section shows the FWZIC method, and the
third section offers the MABAC method.

Table 7: BAA matrix [42,43]

G1 = ∑C1
N G2 = ∑C2

N G3 = ∑C3
N G4 = ∑C4

N G5 = ∑C5
N

Table 8: Proposed work algorithm

Step 1: Decision matrix
1. Input: DDoS attack dataset (CiC-DDoS2019).
2. Preprocess the dataset to clean and structure the data.
3. Split the dataset into training and testing sets.
4. Train and test machine learning (ML) algorithms.
5. Evaluate criteria based on the ML model results.
6. Generate the decision matrix.

Step 2: FWZIC
7. Define a set of decision criteria.
8. Assign an expert numerical scale to the criteria.
9. Convert the expert numerical scale into a fuzzy scale.
10. Normalize the fuzzy scale values.
11. Compute the final weights of the criteria.

(Continued)
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Table 8 (continued)

Step 3: MABAC
12. Input: Decision matrix and final weights.
13. Normalize the decision matrix.
14. Find the weighted normalized decision matrix.
15. Compute the border approximation area matrix.
16. Calculate the distance to the border approximation area.
17. Rank the alternatives based on computed distances.

Output:
18. Obtain ranked alternatives for decision-making.

3 Results
The results of the suggested framework are as follows: Section 3.1 presents the evaluation findings of the

proposed decision matrix. Section 3.2 presents the outcomes of the FWZIC, which are used to calculate the
weight of the evaluation criteria. Section 3.3 presents the findings of MABAC for benchmarking and rating
the outcomes of DDoS detection models.

3.1 Results of the Classifiers and the Decision Matrix
The current section presents the results of six classifiers evaluated according to the identified criteria

in Table 9. The numerical values in the matrix cells represent the performance values of each detection
classifier, depending on the corresponding criteria.

Table 9: Decision matrix results

Alternatives Criteria

ACC PREC REC F1 T
DT 93.11 93.12 93.11 93.11 15.7

SVM 99.32 99.33 99.32 99.32 9.1
LR 99.13 99.14 99.13 99.13 12.5
NB 76.22 75.25 76.22 80.02 4.1

KNN 97.82 97.81 97.82 97.84 3.9
SC 99.57 99.46 99.45 99.45 143.5

The SC with the classification group (DT, SVM, LR, and KNN) outperformed all other classifiers,
achieving an accuracy of 99.57%, the highest value obtained in this study. The LR appears consistently
in high-performing stacks, indicating its strength across different combinations and its effectiveness in
complementing other classifiers. This analysis confirms that utilizing diverse classifiers in stacking can
significantly enhance accuracy, underscoring the importance of carefully selecting model combinations to
achieve optimal results. Conversely, the NB single classifier was more conservative, reaching the lowest
accuracy of 76.22%. The algorithms are ordered from best to worst performance, according to accuracy:
SC > SVM > LR > KNN > DT > NB.
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Regarding execution time, the KNN algorithm was the fastest (3.9 s), whereas the SC took the longest. It
takes the longest (143.5 s) because it deals with several classifiers. This time is relatively long compared with
the rest of the classifier implementation times. Also, this conflicts with one of the interests of this work, in
which the time factor is essential for eliminating the attack as quickly as possible.

The superiority of the single linear SVM classifier over the other single classifiers highlights the
dataset’s inherently linear nature. This conclusion arises from the linear SVM’s ability to effectively establish
clear boundaries among different categories via linear techniques. Therefore, classifiers based on the linear
data separation technique are the best choice for this problem. In contrast, the naive Bayes (NB) single
classifier, which relies on a probabilistic approach, demonstrated the lowest performance with the given
problem because it is incompatible with the dataset structure. This contradiction suggests the limitations of
probability-based classifiers when applied to challenges of this nature.

All the other mixed classifiers accuracy values except the value of the combination
“DT + SVM + LR + KNN” are less than the accuracy value of the SVM single classifier (99.32%), so the
work does not rely on them; also, their implementation time is larger than the SVM implementation time
due to the integration of more than one classifier in Table 10.

Table 10: Stacked classifiers ACC

Stacked classifiers Accuracy
DT + SVM + LR + KNN 99.57%

DT + SVM + LR 99.22%
KNN + NB 97.52%

LR + NB 98.78%
LR + KNN 98.73%
SVM + NB 99.17%

SVM + KNN 99.31%
DT + NB 92.86%

DT + SVM 99.17%

3.2 FWZIC results
The weights of the evaluation criteria utilize the FWZIC approach. The first process begins with

FWZIC by identifying the evaluation criteria (ACC, PREC, REC, F1, and T). The relevance level of each
evaluation criterion is determined by gathering the viewpoints of three professional specialists using a
specially designed evaluation form. The recommendations provided by experts are subsequently converted
into a standardized scoring scale, as seen in Table 4, Section 2.2. Afterward, the expert decision matrix
(EDM) is built, as shown in Table 11. The numbers in Table 11 indicate the significance levels for each
evaluation attribute, as determined by expert judgment. As in step four of the FWZIC steps, the EDM is
transformed into a Fuzzy Matrix, as illustrated in Table 12. The procedure involves converting crisp values
into fuzzy numbers with equal values. The final weight is ultimately determined by applying it throughout
the defuzzification process. Table 13 displays the ultimate weights assigned to the five evaluation criteria of
the DDoS detection models.
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Table 11: The EDM

Expert Accuracy Precision Recall F1 score Time (s)
E1 5 4 4 2 2
E2 5 4 4 3 3
E3 4 4 4 3 3

Table 12: Fuzzy-EDM

Expert Accuracy Precision Recall F1 score Time (s)
E1 (0.75, 0.9, 1) (0.5, 0.75, 0.9) (0.5, 0.75, 0.9) (0.1, 0.3, 0.5) (0.1, 0.3, 0.5)
E2 (0.75, 0.9, 1) (0.5, 0.75, 0.9) (0.5, 0.75, 0.9) (0.3, 0.5, 0.75) (0.3, 0.5, 0.75)
E3 (0.5, 0.75, 0.9) (0.5, 0.5, 0.9) (0.5, 0.75, 0.9) (0.3, 0.5, 0.75) (0.3, 0.5, 0.75)

Table 13: Final weights

Evaluation criteria Weight
T 0.2585

ACC 0.22833
PREC 0.22027
REC 0.14647

F1 0.14644

The final weights indicate that all experts have close opinions in Table 9. The highest weight values
correspond to time and accuracy, two crucial elements in detecting DDoS attacks. Coordination between
these two criteria is essential. High accuracy is required in detecting the attacks, but the time the classifier
takes during the detection is also crucial. This dispute is referred to as a “criteria conflict”, which involves
calibrating all criteria to achieve optimal results.

3.3 MABAC Results
The MABAC method calculates the ranking of the DDoS detection models based on determined criteria.

The MABAC results are in Table 14. They demonstrate that the SVM algorithms achieved the best ranking
among other algorithms. This algorithm is the most suitable for our work (DDoS attack detection) because
it has high accuracy and a short execution time compared to other algorithms.

So after training and testing with the CiCDDoS2019 dataset, passing them to many classifiers, taking the
opinions of the experts, and putting it all in MCDM, it turns out that the SVM classifier is the most ideal for
working in the environment of DDoS attacks, no wonder, it has many characteristics and good compatibility
between all criteria so, the sound tuning of this classifier has made it stand out from the rest. This result, in
turn, does not diminish the status of the other classifiers; if the goal is high detection accuracy, then the SC
classifier can be chosen, of course, provided the time factor is not a significant concern in this case.
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Table 14: Detection models ranking results

Detection models Score Rank
SVM 0.04440 6
KNN 0.01518 5

LR 0.01366 4
DT 0.01356 3
SC 0.01182 2
NB 0.00184 1

3.4 Validation
Below is a description of the two methods used to verify the results.

3.4.1 Objective Validation
Objective validation is a step that validates the work we have done. The classifiers were divided into two

groups: Group 1, comprising SC, NB, and DT, and Group 2, consisting of LR, SVM, and KNN. The average and
variance for each group were calculated. In general, the objective validation results, as presented in Table 15,
indicate that the average and variance values provide evidence supporting the validity and systematic ranking
of the groups, as determined by the MABAC results of the DDoS detection models. It shows that SVM
remained within the group with lower average and variance values in Table 15.

Table 15: Objective validation results

Alternatives Accuracy Precision Recall F1 score Time
SC 0.995700 0.994600 0.994500 0.994500 0.996500
NB 0.765492 0.243414 0.233585 0.195375 0.028571
DT 0.935121 0.063744 0.063751 0.063751 0.109408

0.9002042 0.102386 0.099112 0.0863753 0.3793263 Average 0.3134808
0.1210906 0.126224 0.1207406 0.099633 0.5390366 Variance 0.201345

LR 0.995581 0.003217 0.003218 0.003218 0.087108
SVM 0.997489 0.001307 0.001307 0.001307 0.063415
KNN 0.982424 0.01659 0.01639 0.016189 0.027178

0.9918315 0.007038 0.0069717 0.0069047 0.0592337 Average 0.2143959
0.0082025 0.0083272 0.0082123 0.008097 0.030183 Variance 0.0126044

3.4.2 Sensitivity Analysis
Sensitivity Analysis examination in MCDM helps to understand the stability and robustness of the

proposed solution and comprehend which parameter changes affect preferences for alternatives. It shows
how various conditions influence the stability of ranking in Fig. 4.

It shows the alternatives and their rankings for the proposed solution and the other three scenarios
in Fig. 4. As seen in all scenarios, the experts agreed that the proposed solution yielded the best result for
the SVM classifier, which ranked 6th. Their opinions again agreed with our proposed solution regarding the
NB classifier, which took the lowest rank (1). As for the remaining classifiers (DT, LR, KNN, and SC), the
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experts’ opinions varied. For instance, the rank of the DT was not fixed in all scenarios with the proposed
solution; it took ranks 2, 3, and 4. The same goes for the remaining classifiers (LR, KNN, and SC). It changes
in all scenarios, indicating their susceptibility to alterations in terms of criterion or weight.
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Figure 4: Sensitivity analysis

4 Conclusion
The infected devices used in DDoS attacks act as soldiers, executing commands from an attacker

simultaneously. This attack exhausts the server’s resources, preventing legitimate users from accessing it or
making it invisible. A considerable amount of research has been conducted in this field; however, selecting
the appropriate classifier for the current work is challenging, particularly when multiple criteria are involved.
It cannot depend on a classifier that achieves high accuracy while ignoring other criteria.

Therefore, the contribution of this research was to enhance the accuracy of the detection by adding the
stacked classifier, benchmarking, and evaluating (choosing the best among a group of classifiers) by using
two methods of the MCDM, which are FWZIC and MABAC, under the presence of several criteria (accuracy,
F1 score, Precision, Recall, and Time). A questionnaire was directed at three experts with a long history in
cybersecurity to set the criteria weights. Two methods were also used to verify the results: objective validation
and sensitivity analysis.

The FWZIC and MABAC methods proved that the SVM algorithm was superior to the rest and more
suitable for the current work. Objective validation divided the classifiers into two groups. The average
and variance were calculated for each group, where the SVM classifier was in the group with the lowest
variance and average, so it is superior to the rest. Sensitivity Analysis also yielded the highest rank for the
SVM classifier in all ranking scenarios, indicating that it is superior to the rest. This progress represents
the benchmarking aspect of this work, which aims to select the most suitable classifier for the current
study. Another notable achievement of this work was the Stacked classifier, which demonstrated that
combining these algorithms (DT, SVM, LR, and KNN) yields the best results, with a high accuracy of 99.57%,
representing a significant enhancement over this work.

FWZIC and MABAC have demonstrated their ability to select the most suitable classifiers based on
several criteria, making them the most appropriate options in this field. Stacked classifiers achieve the highest
accuracy due to their ability to integrate multiple models from each classifier. The SVM classifier is more
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efficient and superior to the rest due to its short execution time and high accuracy. Therefore, this classifier
is handy for applications on high-priority websites, such as renowned e-commerce sites or those related to
national security. For other websites, where time is not a critical factor, the stacked classifier can be used with
high accuracy, albeit at the expense of time.

This study’s limitations are the data set and classifiers used to make it more comprehensive. Another set
of datasets and classifiers can be added to make the framework more comprehensive.

Acknowledgement: This study was produced from the doctoral thesis “Cyber Security Defense Mechanism against
Distributed Denial of Service Attacks” at Karabük University Graduate Education Institute.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Alaa
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