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ABSTRACT: Synthetic Aperture Radar (SAR) has become one of the most effective tools in ship detection. However,
due to significant background interference, small targets, and challenges related to target scattering intensity in SAR
images, current ship target detection faces serious issues of missed detections and false positives, and the network
structures are overly complex. To address this issue, this paper proposes a lightweight model based on YOLOv8, named
OD-YOLOv8. Firstly, we adopt a simplified neural network architecture, VanillaNet, to replace the backbone network,
significantly reducing the number of parameters and computational complexity while ensuring accuracy. Secondly,
we introduce a dynamic, multi-dimensional attention mechanism by designing the ODC2f module with ODConv to
replace the original C2f module and using GSConv to replace two down-sampling convolutions to reduce the number of
parameters. Then, to alleviate the issues of missed detections and false positives for small targets, we discard one of the
original large target detection layers and add a detection layer specifically for small targets. Finally, based on a dynamic
non-monotonic focusing mechanism, we employ the Wise-IoU (Intersection over Union) loss function to significantly
improve detection accuracy. Experimental results on the HRSID dataset show that, compared to the original YOLOv8,
OD-YOLOv8 improves mAP@0.5 and mAP@0.5–0.95 by 2.7% and 3.5%, respectively, while reducing the number of
parameters and GFLOPs by 72.9% and 4.9%, respectively. Moreover, the model also performs exceptionally well on the
SSDD dataset, with AP and AP50 increasing by 1.7% and 0.4%, respectively. OD-YOLOv8 achieves an excellent balance
between model lightweightness and accuracy, making it highly valuable for end-to-end industrial deployment.
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1 Introduction
With the rapid development of the global marine economy, the marine industry has become an impor-

tant component of global economic civilization development [1]. Traditional methods involve maritime
staff monitoring images to supervise ships and gather information. However, this approach is susceptible to
visual fatigue and interference from complex environments, leading to potential safety hazards [2]. With the
continuous advancement of deep learning, deep learning methods have become the mainstream approach
for target detection in remote sensing images due to their outstanding feature representation capabilities [3].
However, due to factors such as high traffic intensity in some sea areas and complex climatic conditions, the
accuracy of ship identification still has shortcomings and poses considerable risks [4].

As an active microwave imaging sensor, the Synthetic Aperture Radar (SAR) system has unique
advantages in applications such as environmental monitoring, disaster monitoring, resource exploration,
ocean monitoring, crop yield estimation, mapping, and military fields [5]. SAR, with its all-weather, all-day,
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weather-independent, wide coverage, and altitude-independent characteristics [6], has been widely used in
both military and civilian domains.

SAR ship detection algorithms can be divided into traditional ship detection algorithms and deep
learning-based ship detection algorithms. Spectral Residual (SR) [7] and Constant False Alarm Rate
(CFAR) [8] are the most representative traditional detection algorithms. They primarily perform statistical
analysis on image pixels using thresholds [9]. The CFAR method automatically adjusts the threshold based
on a given false alarm rate and distinguishes targets from the calculated background threshold using the
estimated statistical distribution [10]. However, these algorithms generally lack sufficient feature extraction
capabilities, heavily rely on the statistical distribution of ocean clutter, and are easily affected by speckle
noise and complex environments. The complexity and significant computational load of these methods
also fail to meet real-time detection requirements effectively [11]. In recent years, with the continuous
development of deep learning technology, its applications in image segmentation, image classification,
and object recognition have become increasingly widespread, covering areas such as autonomous driving,
medical image analysis, and facial recognition. Using deep learning for ship target detection has become
the current trend. However, ship target detection is often influenced by factors such as weather, lighting,
ship size variations, and background interference. Deep learning models, by learning from massive datasets,
can more effectively detect ships of different scales, thereby improving detection accuracy and robustness in
complex environments.

Currently, target detection algorithms are mainly divided into two categories: two-stage and one-stage
algorithms. Two-stage target detection algorithms involve two steps: generating candidate regions and then
classifying and finely locating the targets. Common two-stage detection algorithms include R-CNN [12]
and Faster R-CNN [13]. These algorithms can more precisely locate and classify targets, usually offering
higher accuracy and better adaptation to complex scenes compared to one-stage algorithms. However,
the model structure of two-stage algorithms is more complex, and generating candidate regions requires
substantial computational resources, which is not conducive to real-time monitoring. Representative one-
stage target detection algorithms include YOLO [14], SSD [15], and RetinaNet [16]. Unlike two-stage
algorithms, one-stage detection algorithms do not need an additional candidate region generation step but
directly predict the location and category of targets across the entire image. Overall, one-stage algorithms are
characterized by their end-to-end, simple, and fast nature, making them suitable for scenarios that demand
real-time monitoring.

Currently, most target detection algorithms improve detection accuracy by stacking numerous network
structures and increasing computational load. However, as the number of network layers increases, gradients
may gradually diminish to near zero during backpropagation, making deeper networks difficult to train.
ResNet alleviates the issue of gradient vanishing by introducing residual blocks, allowing gradients to flow
directly to shallower layers, thereby enhancing training stability and network performance. Nevertheless,
ResNet requires storing feature maps from previous layers in memory during training, resulting in sub-
stantial off-chip memory traffic, which is disadvantageous for real-time monitoring in resource-constrained
environments [17].

Additionally, massive network structures are not conducive to real-time ship detection and fail to
meet the requirements for end-to-end industrial deployment. Although model lightweighting can reduce
computational load and parameters, it may lead to a decrease in accuracy to some extent, thereby reducing
detection precision. Most existing ship target detection models have not successfully balanced accuracy
and efficiency. How to maintain high efficiency while ensuring that the model has sufficient generalization
capability and robustness to adapt to various complex situations has become an urgent problem to solve.
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To address the issues in SAR-based ship target detection, this paper proposes a new lightweight
algorithm called OD-YOLOv8, which is an improvement based on YOLOv8. The main research work and
contributions of this paper are summarized as follows:

(1) The original complex 10-layer backbone network of YOLOv8 has been discarded in favor of the elegant
backbone architecture VanillaNet, recently proposed by Huawei Noah’s Ark Lab and the University
of Sydney. This new structure avoids self-attention, high depth, and numerous residual operations,
resulting in a lightweight and efficient network architecture that fully demonstrates the charm of
minimalism in deep learning.

(2) We have improved the neck of YOLOv8 by integrating ODConv into the C2f module, resulting
in a new network structure called ODC2f. Additionally, we replaced the convolution operations
in the downsampling stages with GSConv, which enhances the model’s detection capability while
maintaining its lightweight nature.

(3) We removed the original detection head designed for large objects and added a new detection head
specifically for small objects, thereby enhancing the detection capability for small targets. Additionally,
we employed the WIoU loss function to mitigate the adverse gradient issues caused by low-quality
samples. WIoU uses the outlier degree as the regression loss value for bounding boxes, rather than
relying solely on the Intersection over Union (IoU). This effectively suppresses the interference from
background boxes, thereby improving the performance of object detection.

(4) Extensive experiments were conducted on the HRSID and SSDD datasets, resulting in significant
performance improvements. On the HRSID dataset, the mAP@0.5 increased from 0.898 to 0.925, and
the mAP@0.5–0.95 rose from 0.655 to 0.69, representing improvements of 2.7% and 3.5%, respectively.
Additionally, the number of parameters was dramatically reduced from 3.011 million to 816 thousand,
which is only 27.1% of the original amount. The GFlops decreased from 8.2 to 7.8, a reduction of 4.9%.
Notably, the model also achieved excellent results on the SSDD dataset, with AP and AP50 increasing
by 1.7% and 0.4%, respectively. This model successfully balances lightweight design with high accuracy.

The remainder of this paper is organized as follows: In Section 2, we introduce the related work on
ship target detection. Section 3 discusses the proposed methods. In Section 4, we analyze the experimental
results. Finally, Section 5 summarizes our work and provides an outlook for future research.

2 Related Work
To address the issues of low detection accuracy caused by multi-scale, complex environments, and

background interference, as well as the severe problems of missed detections and false detections of small
targets and high model complexity in ship detection, many scholars have made improvements and attempts.

2.1 Research on Improving Low Detection Accuracy
In the research on improving low detection accuracy, Cui et al. [18] proposed a novel detection

method based on a Dense Attention Pyramid Network (DAPN) using SAR images. This method connects
Convolutional Block Attention Modules (CBAM) to each cascaded feature map through a pyramid structure,
thereby improving detection accuracy. Zhang et al. [19] designed a new Cross-Scale Region Prediction
Perception Network (CSRP-Net) and introduced a Cross-Scale Self-Attention (CSSA) module to tackle
complex environments. Wang et al. [20] designed a component called the Dilated Convolution Feature
Enhancement Module (DFEM) and integrated it into the backbone network, proposing a new Feature
Pyramid Network called NAS-FPN. Li et al. [21] proposed an Attention-Guided Balanced Feature Pyramid
Network (A-BFPN) and designed a Channel Attention-Guided Fusion Network (CAFN) model to reduce
aliasing effects in feature maps. Yang et al. [9] introduced an improved single-stage object detection
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framework that combines the ideas of RetinaNet and Rotatable Bounding Boxes (RBox). Zhao et al. [22]
designed an Attention Perception Pyramid Network (ARPN), which adopts Convolutional Block Attention
Modules (CBAM) and Receptive Field Blocks (RFB) to construct a top-down fine-grained feature pyramid.

2.2 Research on Severe Missed and False Detections of Small Items
To address the issue of serious missed and false detections of small objects, Guo et al. [23] designed

a single-pole detector called CenterNet++. They proposed a head enhancement module to mitigate the
impact of complex backgrounds and designed a feature refinement module to enhance the detection of small
objects. Zhu et al. [24] proposed an anchor-free detection method based on FCOS (Fully Convolutional
One-Stage Object Detection), redesigning sample definition and feature extraction to reduce the influence of
anchor effects on detection. Liu et al. [25] improved YOLOv5 and introduced YOLO-Extract. By integrating
a coordinate attention mechanism into the network, the model better captures important features in both
spatial and channel dimensions. Additionally, a residual network was introduced to better capture fine-
grained features, thereby improving the detection of small objects. Wang et al. [26] proposed an improved
real-time framework based on YOLOv3, focusing on enhancing the detection accuracy of small objects in
remote sensing datasets. This method simplifies the network structure by removing some large and medium-
sized layers and increasing the detection weight for small objects to achieve better detection performance for
small objects.

2.3 Research on Implementing Model Lightweighting
To achieve model lightweighting, Chen et al. [27] proposed a lightweight network model based on

YOLOv3, significantly reducing the number of parameters by leveraging the ShuffleNetv2 network. Fan
et al. [28] introduced a detection algorithm based on an improved RetinaNet, enhancing network depth and
feature extraction capability by incorporating grouped convolutions and attention mechanisms. Ma et al. [29]
proposed a lightweight model named YOLOv8n-ShuffleNetv2-Ghost-SE. This model replaces the Conv
module with the Ghost module, substitutes the C2f module in the Neck part with C2fGhost, and alternately
connects the ShuffleNetv2 base module and downsampling module, improving the backbone and achieving
model lightweighting while enhancing detection speed. Yang et al. [30] proposed a lightweight detection
algorithm that combines feature enhancement and attention mechanisms to balance model size and accuracy.
They replaced standard convolutions with depthwise separable convolutions (DSConv) to significantly
reduce computational complexity. Additionally, they designed and added a Dual Path Attention Gate (DPAG)
module and a Feature Enhancement Module (FEM) to improve detection accuracy. Jiang et al. [31] proposed
a lightweight forest pest image recognition model based on YOLOv8. This model adopts the Slim Neck
design paradigm, replacing conventional convolutions in the neck with lightweight convolutions (GSConv),
significantly reducing the computational load. They also introduced the CBAM attention mechanism and
improved the loss function to compensate for the accuracy loss caused by lightweighting.

2.4 YOLOv8
The YOLO algorithm has achieved remarkable results in tasks such as object detection, instance

segmentation, and image classification. Ultralytics released YOLOv8 [32] on January 10, 2023. Compared to
its predecessors YOLOv5 and YOLOv7, YOLOv8 features higher accuracy and faster inference speed, and it
is an anchor-free algorithm.

YOLOv8 is composed of a backbone network, neck, and head, as shown in Fig. 1.
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Figure 1: The network structure of YOLOv8

The backbone network consists of convolutional layers, C2f layers, and an SPPF layer [33]. The
convolutional layers operate in three steps: first, they process the input information through convolution
operations; next, they perform batch normalization; and finally, they apply the SiLU activation function to
generate the output [32]. The C2f layer draws inspiration from the ELAN concept in YOLOv7, replacing
the original C3 module to obtain richer gradient flow information [34]. As the final layer of the backbone
network, the SPPF layer uses three max-pooling operations with a kernel size of 5 × 5 to aggregate feature
maps and then passes the result to the neck layer [35].

In YOLOv8, the primary function of the neck network is to integrate features at different scales [36].
The neck adopts an FPN-PAN structure, combining the advantages of a Feature Pyramid Network (FPN)
and Path Aggregation Network (PAN). By introducing the path aggregation network mechanism, it better
integrates multi-scale features, improving detection accuracy and robustness. At the same time, the con-
volution in the upsampling stage is removed, significantly reducing inference time and making the model
more streamlined.

YOLOv8 adopts the current mainstream decoupled head structure, where the tasks of object classifi-
cation and localization are handled separately [37]. The model uses three detection heads to detect large,
medium, and small objects, respectively. The detection head for the localization task is evaluated using
Bbox Loss, with the loss function comprising two parts: CIoU and DFL (Distribution Focal Loss). For the
classification task, the detection head uses the binary cross-entropy (BCE) loss function and is evaluated
using Varifocal Loss (VFL).

The network structure of YOLOv8 is shown in Fig. 1.

3 Main Methods

3.1 OD-YOLOv8
To address the issue of YOLOv8’s poor performance in detecting small objects, while also speeding

up detection and inference, and making the network as lightweight as possible, we propose a novel object
detection algorithm, OD-YOLOv8, based on the YOLOv8n baseline model that balances accuracy and speed.

First, we improved the backbone network. YOLOv8’s 10-layer backbone network, while focusing on
feature extraction, is relatively deep with many layers, leading to a large amount of computation. We
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replaced the original backbone with a 5-layer VanillaNet network, which, through its minimalist design,
significantly reduces the number of parameters and computational load while maintaining decent accuracy.
By eliminating a lot of complex computations, this approach highlights the elegance of minimalism in
deep learning.

Next, we replaced the neck with ODNeck using ODConv. ODConv leverages multi-dimensional atten-
tion mechanisms and uses a parallel strategy to learn complementary attention along the four dimensions
of the convolutional kernel, improving the model’s accuracy and robustness. We also employed GSConv, a
convolution method combining global and local adaptive attention mechanisms, which enhances the model’s
adaptability while reducing the number of parameters.

To address the serious problem of missing and false detections of small objects, we added a new
detection head, making small objects harder to escape detection. To balance the computational load, we
removed one detection head dedicated to large objects. Experimental results show that not only did the
detection accuracy for large objects not decrease, but it improved by 6.1%, proving the rationality of
this adjustment.

Finally, we introduced Wise-IoU as the loss function, which uses a weighted Intersection over Union
(IoU) approach to guide the model to focus more on samples of regular quality, alleviating the harmful
gradient issues caused by extreme samples and enhancing the model’s generalization capability.

The structure of the OD-YOLOv8 model is shown in Fig. 2.

Figure 2: The network structure of OD-YOLOv8

3.1.1 VanillaNet
As neural networks evolve, increasing layers and complexity for accuracy has become common.

However, this increases structural complexity, hindering real-time detection. To address this, Huawei Noah’s
Ark Lab and the University of Sydney introduced VanillaNet, a simple yet powerful architecture [38]. It
maintains high accuracy while reducing the model depth and parameters, ideal for resource-constrained
environments. VanillaNet balances accuracy and speed, showcasing minimalism in deep learning [38].

VanillaNet-6 is known for its six-layer convolutional design, which effectively extracts and outputs
features through downsampling, channel doubling, average pooling, and fully connected layers. Convolution
is based on the vanillanetBlock and involves: Conv2d for feature extraction, feature channel normalization,
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Leaky ReLU activation function, transformation dimension and maximum pooling, Conv2d and renormal-
ization, etc. These steps simplify the training process. The network structure of VanillaNet-6 is as follows
(Fig. 3):
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Figure 3: VanillaNet-6 model architecture diagram

Although the original backbone of YOLOv8 has good feature extraction capabilities, its network
structure is relatively complex and contains redundancy. Inspired by the concept of VanillaNet, we designed
an improved five-layer backbone based on VanillaNet to replace the original backbone of YOLOv8, thereby
achieving a lightweight model. Our five-layer backbone network structure is as follows (Fig. 4):
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Figure 4: The schematic diagram of the backbone we designed

In the first layer of our backbone, we use a convolution operation with a stride and kernel size of 4 to
adjust the number of channels to 64, while reducing the size of the output feature map to one-fourth of the
original. The second layer has a convolution stride of 1, which does not change the size of the feature map but
doubles the number of channels to 128 and merges the output with the neck. The operations of the third and
fourth layers are similar, continuing to double the number of channels while halving the size of the output
feature map by setting the convolution stride to 2, and merging the output with the neck. The fifth layer does
not further increase the number of channels, and other operations are similar to the second and third layers.
The convolution kernel size for the second to fifth layers is set to 1, aiming to retain as much information of
the feature map as possible with minimal computational cost.

To enhance integration with the neck part, reduce feature loss, and improve detection accuracy, we
have implemented the following design: The output from the last vanillanetBlock is upsampled and fused
with the output from the third vanillanetBlock. After another ODC2f operation and upsampling, this fused
result is combined with the output from the second vanillanetBlock. The same steps are repeated until fusion
with the output from the first vanillanetBlock. The results of these three fusions, after undergoing an ODC2f
operation, serve as inputs for the large, medium, and small object detection heads, respectively.

This design aims to fully utilize feature information from different layers and improve the model’s ability
to detect objects of various sizes through gradual fusion and ODC2f operations. Experimental results show
that this backbone design is well-compatible with the newly added small object detection head, achieving
good results while also making the model lightweight.
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3.1.2 ODC2f
Currently, most neural networks use static convolution kernels as a general training paradigm. However,

when processing different input information, this convolution method results in fixed convolution kernels for
each filter, which can easily lead to information loss. Recent research on dynamic convolution has found that
using a linear combination of multiple convolution kernels as the learning target, and dynamically weighting
them through an attention mechanism, makes the convolution operation dependent on the input [39].
This approach can enhance the fusion of contextual information, thereby significantly improving detection
accuracy. The operation of dynamic convolution is defined as follows:

y = (αw1w1 + . . . + αw iwi + . . . + αw nwn) ∗ x (1)

here, wi represents the i-th set of convolution filters, and αw i is the weighting coefficient for wi. αw i is
calculated by an attention function that depends on the input features.

Traditional dynamic convolution methods such as CondConv [40] and DyConv [41] only focus on
the number of convolution kernels, while ODConv, as a multidimensional attention mechanism, learns
complementary attention in four dimensions: kernel size, input channel number, output channel number,
and convolution kernel number, enhancing feature adaptability and information fusion, improving efficiency
and generalization ability.

The network structure of ODConv is shown in Fig. 5.

Figure 5: The structure of ODConv

The output y of ODConv can be expressed using the following formula:

y = (αw1 ⊗ α f 1 ⊗ αc1 ⊗ αs1 ⊗W1 + . . . + αw i ⊗ α f i ⊗ αc i ⊗ αsi ⊗W1 + . . . + αw n ⊗ α f n ⊗ αcn ⊗ αsn ⊗Wn)
(2)

where αw i represents the i-th group of convolution filters, α f i represents the learnable weight for the output
dimension, αc i represents the learnable weight for the input dimension, and αsi represents the learnable
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weight for the spatial dimension. ⊗ denotes the weighted operation across different dimensions of the
convolution filters.

In highly complex environments and adverse weather conditions, such as storms, typhoons, waves,
and ocean currents, the accuracy and reliability of detection are often significantly affected. ODConv, as
a dynamic multi-dimensional convolution method, can effectively extract target features by dynamically
adjusting the direction and weight of convolutional kernels, thereby enhancing the distinction between
targets and backgrounds. This is particularly beneficial for handling SAR images with high noise levels. Given
that ships have varying positions and postures in the ocean, ODConv’s multi-directional characteristics allow
it to adapt to different target directions and shape changes, capturing both local and global information of
the targets more effectively, thus improving detection accuracy. Moreover, in adverse weather conditions like
strong winds and heavy rain, ODConv can dynamically adjust convolution operations to effectively suppress
the impact of noise on detection results, thereby enhancing detection robustness.

Therefore, to further improve the performance of the target detection model, we decided to improve
the bottleneck part of the neck C2f module. Specifically, we replaced all the conventional convolution
operations in this part with ODConv. Through this replacement, we successfully constructed a new feature
extraction module named ODC2f. This improvement has brought significant results: the accuracy and
efficiency of feature processing have been greatly improved, and the generalization ability of the network has
also been significantly enhanced. This is particularly critical for detecting small objects, as it provides us with
considerable performance gains. The structure of ODC2f and ODBottleneck is shown in Fig. 6.

Figure 6: ODC2f (left) and ODBottleneck (right)
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3.1.3 GSConv
GSConv was first applied in the field of autonomous driving [42]. Autonomous driving requires strict

precision and speed, and traditional lightweight networks like MobileNets [43–45] and ShuffleNets [46,47],
significantly reducing the number of model parameters, sacrificing a considerable amount of accuracy.
Against this backdrop, GSConv emerged, aiming to balance model accuracy and speed.

GSConv first downsamples the input information through a standard convolution, followed by the use
of depthwise separable convolution (DW separable convolution). Then, the results of the two convolutions
(SC and DSC) are concatenated. Finally, a shuffle operation is performed to rearrange the corresponding
channels of the first two convolutions to be adjacent. The details of GSConv are illustrated as follows (Fig. 7):

Figure 7: GSConv

If GSConv is used at all stages of the network, it may lead to an excessively deep network, thereby
increasing data flow resistance and significantly increasing inference time. Therefore, we choose to replace
only the two standard convolutions in the neck downsampling process with GSConv. This helps to better
learn features and enhance the correlation between local features. By doing so, we achieve a lightweight
model while maintaining accuracy.

3.1.4 Improvements in Detection Head
Before the improvement, YOLOv8 had three detection heads corresponding to feature map sizes of 80×

80, 40 × 40, and 20 × 20. The 80 × 80 feature map was used for detecting small objects larger than 8 × 8, the
40 × 40 feature map for medium objects larger than 16 × 16, and the 20 × 20 feature map for large objects
larger than 32 × 32.

However, due to the large downsampling factor in YOLOv8, deeper feature maps struggle to capture
information about small objects, leading to deficiencies in small object detection and increased occurrences
of missed detections and false positives. To address this, in the FPN module of the neck, after the second
upsampling step that generates the 80 × 80 feature map, we performed an additional upsampling operation.
We then fused the result with the second Van layer in the backbone network to generate a large-scale 160× 160
feature map. This was output to the head, where we added a 160× 160 detection head to enhance the detection
of small objects.

To balance the computational load introduced by the new small object detection head, we removed one
of the original detection heads used for large objects (the one corresponding to the 20 × 20 feature map),
thus eliminating redundant computations.

The schematic diagram of our improved detection head is shown in Fig. 8.
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Figure 8: Improvements in detection head

3.1.5 Wise-IoU
In the traditional YOLOv8 detection algorithm, CIoU (Complete Intersection over Union) is commonly

used to evaluate the accuracy of bounding boxes. CIoU provides a comprehensive evaluation by considering
the overlap of boxes, the distance between their center points, and the aspect ratio. However, the training
data may contain low-quality samples, and overemphasis on these samples can affect detection performance.
Furthermore, CIoU is overly sensitive to output parameters and object proportions. To address these issues,
we have introduced the Wise-IoU loss function, which uses “outlierness” to evaluate anchor boxes. This
approach reduces the interference of extreme samples and allows the model to focus more on ordinary
samples, thereby improving detection performance [48].

The definition of the overall network loss is as follows:

L =Wbox Lbox +Wcl s Lcl s +Wob jLob j (3)
Lbox = LW IoU (4)

where Lbox , Lcl s and Lob j represent the bounding box loss, classification loss, and confidence loss, respec-
tively. Wbox , Wcl s and Wob j denote the weights for the corresponding types of loss, respectively. The total loss
L is obtained by computing the weighted sum of the above three losses. Additionally, Lbox here specifically
refers to LW IoU .

The bounding box regression model is shown in Fig. 9. In this model, the predicted bounding box is
represented as Cp(x, y, w, h), and the ground truth bounding box is represented as Cgt(xgt, ygt, wgt, hgt). The
relevant calculation formula for LW IoU is as follows:

LW IoU = rLIoU RW IoU (5)

LIoU = 1 − IoU = 1 − wi hi

wh +wg t hg t −wi hi
∈ [0, 1] (6)

RW IoU = ex p(
(x − xg t)2 + (y − yg t)2

(w2 R + h2 R)∗
) ∈ [1, e) (7)
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Figure 9: Bounding box regression model

The IoU metric is used to measure the degree of overlap between the anchor box and the target box.
RW IoU improves the LIoU of ordinary anchor boxes, while LIoU reduces the RW IoU of high-quality anchor
boxes, and reduces the focus on the distance between the center points when the overlap is good. wR and
hR are the length and width of the minimum bounding box. To avoid the impact of RW IoU on gradient
convergence, w2

R and h2
R are separated from the calculation and marked with *. The formula for calculating

r is as follows:

r = β
∂αβ−∂ (8)

β = L∗IoU
LIoU

∈ [0,+∞) (9)

where r represents the non-monotonic focusing factor, we introduce β to describe the degree of outlierness
of the predicted bounding box quality. In the formula, L∗IoU and LIoU respectively denote the monotonic
focusing factor and the moving average of momentum m. Both ∂ and β are hyperparameters that we set.
Through experiments, we found that replacing the loss function with Wise-IoU significantly enhances the
robustness of our model, greatly improving the performance of ship detection.

4 Experiment
In this section, the performance validation experiments for the proposed SAR ship detection algorithm

will be conducted. First, we will introduce the experimental environment and hardware equipment. Next,
we will describe the two SAR image datasets used—HRSID [49] and SSDD [50]. Then, we will verify the
effectiveness of the employed modules through ablation experiments. Finally, we will compare our algorithm
with other existing object detection algorithms to validate its effectiveness.

To address the issue of model overfitting, we implemented a series of measures. We applied data
augmentation techniques by adjusting the color, hue, saturation, and brightness of images to generate
more training samples, increasing the diversity of the data and allowing the model to perform well under
various lighting conditions. Additionally, we performed geometric transformations on the images, including
translation, scaling, and horizontal flipping, altering the spatial position and size of the images. This enabled
the model to learn how objects appear in different positions and scales, thereby enhancing its generalization
ability. We also employed mosaic augmentation, which involves combining multiple images into one for
training, resulting in a single image containing multiple different scenes and objects, greatly enriching the
diversity of the training samples. Furthermore, we introduced weight decay, adding a penalty term related
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to the weights in the loss function to prevent the weights from becoming too large. This helps control the
complexity of the model and avoids overfitting to noise in the training data.

4.1 Experimental Environment and Parameter Settings
Our experiments were conducted in the following environment: The hardware setup includes an

NVIDIA RTX 3080 Ti GPU (12 GB memory) and a 12-core Intel Xeon(R) Silver 4214R CPU, running on the
Ubuntu 20.04 operating system. The experiments utilized the mm detection [51] framework, developed with
PyTorch 2.0.0 and Python 3.8. CUDA 11.8 was used for GPU acceleration. During training, we employed the
AdamW optimizer for a total of 150 epochs, with a batch size of 16. The initial and final learning rates were
both set to 0.01. The software and hardware parameter settings for the experiment are shown in Table 1.

Table 1: Software and hardware parameter settings for the experiment

Platform Configuration
Memory 90 G

CPU Intel Xeon Silver 4214R
GPU NVIDIA RTX 3080 Ti

GPU accelerator CUDA 11.8
Programming language Python 3.8

Development environment PyTorch 2.0.0

4.2 Introduction to the Dataset
In this paper, we evaluate the OD-YOLOv8 network using the HRSID [49] and SSDD [50] datasets.

Below is a brief introduction to these two datasets.
HRSID is a high-resolution, large-scale SAR ship dataset released in 2020. This dataset includes 5604

images, each sized 800 × 800, acquired from Sentinel-1 and TerraSAR-X. It contains a total of 16,951 ship
targets and is widely used for tasks such as instance segmentation, semantic segmentation, and ship detection.
The dataset consists of large, medium, and small ships, which account for 54.5%, 43.5%, and 2% of the total
dataset, respectively. On average, each image contains three ships. Compared to SSDD, the SAR images in
the HRSID dataset have a higher resolution (below 3 m), with ship features being more accurate and detailed.
We divided the dataset into training, validation, and test sets in a 7:1:2 ratio, containing 3922, 561, and 1121
images, respectively.

SSDD, constructed by Li et al., is the first published and publicly available dataset for ship detection in
SAR images. The images in this dataset are sourced from RadarSat-2, Sentinel-1, and TerraSAR-X sensors,
comprising a total of 1160 images with 2456 ships. The ship sizes range from 7 × 7 to 211 × 298, with an
average of 2.11 ships per image. The dataset includes various sea conditions (favorable and unfavorable),
polarization modes (HH, HV, VV, and VH), resolutions (ranging from 1 to 15 m), and offshore scenes
(complex and simple). We divided the dataset into training and test sets in an 8:2 ratio, containing 928 and
232 images, respectively.

Comparison of parameters between HRSID and SSDD datasets is shown in Table 2, and examples of
images from the HRSID and SSDD datasets are shown in Fig. 10.
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Table 2: Comparison of parameters between HRSID and SSDD datasets

Dataset categories HRSID SSDD
Data source TerraSAR-X, Sentinel-1 TerraSAR-X, RadarSat-2, Sentinel-1
Resolution 0.5–3 1–15
Image size 800 × 800 500 × 500

Polarization mode HH, VV, HV HH, HV, VV, VH
Number of vessels 16,951 2456
Training set size 3922 928

Test set size 1121 232

HRSID

SSDD

Figure 10: HRSID and SSDD dataset examples

4.3 Evaluation Metrics
We use Average Precision (AP) as our primary evaluation metric and adopt the COCO evaluation

metrics. The calculation method for mAP50–95 involves computing 10 mAP values at IOU thresholds
ranging from 50% to 95% (in 5% increments) and then averaging these 10 values. AP50 and AP75 are the
AP values at IOU thresholds of 0.5 and 0.75, respectively, which measure the accuracy of the model in
detecting objects. APL, APM, and APS represent the AP values for large, medium, and small object detection,
respectively. As common performance evaluation metrics, TP (True Positives), FP (False Positives), TN
(True Negatives), and FN (False Negatives) represent correctly classified positive samples, incorrectly
classified positive samples, correctly classified negative samples, and incorrectly classified negative samples,
respectively. The calculation formulas for Recall (R), Precision (P), and mean Average Precision (mAP) are
as follows:

R = TP
TP + FN

(10)

P = TP
TP + FP

(11)

mAP = ∫
1

0
P (R) dR (12)

4.4 Ablation Experiments
To validate the effectiveness of each proposed strategy, we conducted ablation experiments on the

HRSID dataset. The experimental results show that improving the detection head, optimizing the Wise-
IoU loss function, and introducing the ODC2f module significantly enhance detection accuracy. Although
replacing the Van backbone network slightly sacrifices some accuracy, it significantly reduces the number
of parameters and improves the model’s detection and inference speed. Moreover, while maintaining other
accuracies, the use of GSConv significantly boosts the detection capability for large ships by 7.8% and reduces
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the computational load and the number of floating-point operations. The experimental results are shown
in Table 3.

Table 3: Ablation experiments

Method AP AP50 AP75 APS APM APL Params GFlops
YOLOv8 (Baseline) 65.5 89.8 75.7 53.1 77.8 47.5 3,011,043 8.2

Replace the head 68.1 91.4 79.3 58.6 78.5 38.7 2,070,595 11.9
Replace the

head+Wise-IoU
69 92.8 80.7 59.6 78.4 37 2,070,595 11.9

Replace the
head+Wise-IoU+Van

67.6 91.8 78.4 57.6 77.5 38.7 836,866 9.2

Replace the head+Wise-
IoU+Van+GSConv

67.8 91.7 78.3 57.3 77.9 46.5 793,219 9

Replace the head+Wise-
IoU+Van+GSConv+ODC2f

(Our model)

69 92.5 79.9 59.1 78.5 53.6 816,189 7.8

From Table 3, it can be observed that after improving the detection head, the model’s AP, AP50, and
AP75 have increased by 2.6%, 1.6%, and 1.6%, respectively, compared to the baseline model. The newly added
small target detection head better captures the feature information of small targets, enhances the sensitivity
to small targets, and significantly improves the APS by 5.5%. Removing the large target detection head greatly
reduces the number of parameters, by about 31.2%. Our improved loss function Wise-IoU alleviates the
harmful gradient caused by extreme samples and focuses more on the quality of regular samples, which
significantly improves the detection accuracy of the model, with AP, AP50, and AP75 increasing by 0.9%, 1.4%,
and 1.4%, respectively, and APS also increasing by 1%, showing significant results. Although the replacement
of the backbone network caused a slight decrease in detection accuracy, with AP, AP50, and AP75 decreasing
by 1.4%, 1%, and 2.3%, respectively, APL increased by 1.7%. The replacement of VanillaNet abandoned
complex operations and shortcuts, resulting in a significant reduction in the number of parameters and
FLOPs. The number of parameters decreased by approximately 59.6%, and FLOPs decreased by 22.7%,
showing a significant lightweight effect. By replacing with GSConv, the model weight is further reduced,
with the number of parameters and FLOPs reduced by about 5.2% and 2.2%, respectively. This helps to
better learn features and enhance the correlation between local features while achieving lightweighting,
resulting in a significant 7.8% improvement in APL. This perfectly compensates for the impact of removing
large target detection heads on the accuracy of large target detection, achieving a win-win situation of
lightweighting and performance improvement. The ODC2f module significantly improves the accuracy and
efficiency of feature processing without increasing model complexity by introducing ODConv dynamic
multi-dimensional convolution, enhancing the model’s feature adaptability and generalization ability. After
adding the ODC2f module, the accuracy of the model has been significantly improved, with AP, AP50, AP75,
APS, APM, and APL increasing by 1.2%, 0.8%, 1.6%, 1.8%, 0.6%, and 7.1%, respectively. After combining
all the above modules, our model has achieved significant improvements compared to the baseline model
YOLOv8, with each metric improving by 2.5%, 2.7%, 4.2%, 6%, 0.7%, and 8.1%, while reducing the number
of parameters and FLOPs by 72.9% and 4.9%, respectively. This verifies the effectiveness of each module and
achieves a balance between model lightweighting and accuracy.
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4.5 Ablation Experiments
We conducted extensive comparative experiments on the HRSID and SSDD datasets to validate

the effectiveness of our proposed method. After comparing with eight state-of-the-art object detection
algorithms, we found that our model not only improves accuracy but also achieves significant lightweight
performance, thereby confirming the effectiveness and advancement of our model. To further test the
generalization ability of the model and its detection performance in complex scenarios, we conducted
comparative experiments on nearshore and offshore ships using the SSDD dataset and achieved ideal results,
thus verifying the robustness and reliability of our model.

4.5.1 Comparative Experiments Conducted on the HRSID Dataset
To verify the effectiveness of our designed model, we conducted experiments on the HRSID dataset

using 8 common object detection algorithms, including DINO (2022), EfficientNet (2019), TOOD (2021),
LD (2022), DyHead (2021), FCOS (2019), DDOD (2021), VFNet (2020), and YOLOv8 (2023). We performed
a comparative evaluation of the detection metrics for each model, and the results are shown in Table 4 (The
bolded data represents the best-performing data in the comparison model).

Table 4: Comparison and evaluation of detection metrics for various models on HRSID

Method AP AP50 AP75 APS APM APL Params (M) GFlops
DINO (2022) 0.588 0.864 0.696 0.546 0.651 0.617 47.54 179

EfficientNet (2019) 0.437 0.708 0.489 0.272 0.628 0.033 18.339 106
TOOD (2021) 0.645 0.886 0.731 0.513 0.78 0.454 32.018 123

LD (2022) 0.414 0.644 0.465 0.236 0.609 0.035 19.239 96.86
DyHead (2021) 0.64 0.875 0.722 0.495 0.783 0.527 38.89 68.052
FCOS (2019) 0.518 0.766 0.59 0.338 0.701 0.247 32.113 123

DDOD (2021) 0.65 0.886 0.737 0.511 0.785 0.513 32.196 111
VFNet (2020) 0.624 0.853 0.701 0.472 0.777 0.471 32.709 118

YOLOv8 (2023) 0.655 0.898 0.757 0.531 0.778 0.475 3.011 8.2
OD-YOLOv8 (ours) 0.69 0.925 0.799 0.591 0.785 0.536 0.816 7.8

We have selected eight object detection algorithms that are among the most popular and advanced in the
past five years. However, each of these algorithms has its shortcomings. DINO, with its Transformer archi-
tecture, excels at capturing global information and shows significant advantages in small object detection,
with the APS metric notably ahead of most models. However, its performance in complex weather conditions
is average, and it relies on pre-training data and data augmentation strategies. Although the Transformer
architecture provides some robustness against background interference, its large number of parameters
(Params) and high computational demand (GFlops) make the model complex and bulky, which may be a
limitation in real-time detection and resource-constrained environments. As a convolutional neural network
for image classification, EfficientNet achieves significant simplification by balancing model complexity and
performance through adjusting depth, width, and resolution. However, this simplification comes at the
cost of reduced accuracy, with only 27.2% and 3.3% on APS and APL, respectively. Its performance is not
ideal in high background interference and complex weather conditions, and its effectiveness for small
object detection is limited. As a one-stage object detector, TOOD enhances detection performance through
task alignment strategies, which is particularly effective for small object detection. The task alignment
strategy also helps reduce the impact of background noise, showing excellent performance under background
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interference. However, the model’s parameter count is 32.018 M, which is still relatively large and has
significant room for lightweight improvement. LD improves classification and localization accuracy through
a label decoupling mechanism. Its advantage lies in having a lower parameter count compared to most
models, resulting in faster inference and training speeds, but it performs poorly in small and large object
detection. DyHead enhances detection performance by dynamically adjusting network parameters, showing
good results in large object detection. However, the dynamic adjustment mechanism increases the model’s
computational complexity and memory usage, which can be a problem in resource-limited environments. As
an anchor-free object detection method, FCOS does not require predefined anchor boxes, simplifying model
design and implementation. However, since every pixel participates in prediction, it is prone to background
false detections. DDOD is a dynamic dense object detection method that can dynamically adjust detector
parameters based on the features of the input image, making it more adaptable to different scenarios. Through
dense feature sampling, DDOD performs well in small object detection, but its dense feature extraction
and dynamic adjustments may still require high computational resources, especially in high-resolution
images or real-time applications, making the model relatively large. With its zoom mechanism, VFNet can
locate objects more accurately and performs exceptionally well in complex backgrounds, exhibiting strong
robustness. However, the zoom mechanism and adaptive weight allocation may increase computational
overhead, particularly in high-resolution images or real-time applications, requiring high computational
resources. Compared to these popular algorithms of the past five years, our algorithm not only significantly
improves accuracy but also achieves model lightweighting, resulting in impressive outcomes.

4.5.2 Comparison Experiments Conducted on the SSDD Dataset
To further validate the effectiveness of our model, we conducted extensive comparative experiments on

the SSDD dataset. Similar to our approach to HRSID, we compared our method with eight state-of-the-art
object detection algorithms. The experimental results are shown in Table 5 (The bolded data represents the
best-performing. Data in the comparison model).

Table 5: Comparison and evaluation of detection metrics of various models on the SSDD

Method AP AP50 AP75 APS APM APL
DINO (2022) 0.588 0.864 0.696 0.546 0.651 0.617

EfficientNet (2019) 0.549 0.894 0.612 0.552 0.596 0.378
TOOD (2021) 0.62 0.939 0.718 0.62 0.645 0.367

LD (2022) 0.53 0.875 0.597 0.533 0.537 0.378
DyHead (2021) 0.61 0.952 0.715 0.594 0.656 0.572
FCOS (2019) 0.477 0.824 0.529 0.532 0.385 0.245

DDOD (2021) 0.626 0.945 0.742 0.618 0.657 0.506
VFNet (2020) 0.561 0.896 0.637 0.565 0.59 0.424

YOLOv8 (2023) 0.629 0.98 0.727 0.577 0.726 0.65
OD-YOLOv8 (ours) 0.646 0.984 0.749 0.597 0.733 0.654

Our designed model achieved AP, AP50, and AP75 scores of 64.6%, 98.4%, and 74.9%, respectively, on
the SSDD dataset, representing improvements of 1.7%, 0.4%, and 2.2% over the baseline model. Additionally,
there were varying degrees of improvement in APS, APM, and APL metrics, with a significant 2-point increase
in APM. Compared to eight other object detection algorithms, our model performed best across most metrics,
except for small vessel detection, where it was outperformed by TOOD. Notably, for large vessel detection,
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our model’s APL reached 65.4%, significantly surpassing other methods. However, its lower performance in
small vessel detection might be due to the cost of lightweighting the backbone network, and the relatively
small size of the SSDD dataset, which may lack sufficient representativeness. In the future, we plan to
introduce more efficient attention mechanisms and loss functions to enhance the model’s ability to detect
small targets. Overall, the experimental results demonstrate that our model performs exceptionally well on
the SSDD dataset, fully highlighting its effectiveness and robustness.

4.5.3 Comparison Experiments in Nearshore and Offshore Scenarios (under the SSDD Dataset)
To further validate the generalization and detection capabilities of our model in complex scenarios,

we conducted comparative experiments between our model and eight different object detection algorithms
in both nearshore and offshore environments. Nearshore detection is easily influenced by the presence of
buildings and water reflections, leading to strong background noise that makes it difficult to distinguish ship
targets from the background. Additionally, nearshore areas often have shallow waters, where radar signal
scattering can be affected by underwater terrain and water quality variations, thereby impacting detection
performance. Consequently, the experiments demonstrate that both our model and traditional object
detection algorithms perform significantly worse in nearshore detection compared to offshore detection. The
experimental results indicate that our method is superior to others. The results for nearshore and offshore
scenarios are shown in Tables 6 and 7, respectively (The bolded data represents the best-performing data in
the comparison model).

Table 6: Comparative evaluation of detection metrics for various models in nearshore scenarios of SSDD

Method AP AP50 AP75 APS APM APL
DINO (2022) 0.398 0.683 0.395 0.357 0.474 0.441

EfficientNet (2019) 0.357 0.695 0.345 0.343 0.472 0.254
TOOD (2021) 0.409 0.789 0.358 0.389 0.484 0.33

LD (2022) 0.322 0.633 0.276 0.316 0.357 0.304
DyHead (2021) 0.462 0.852 0.431 0.424 0.53 0.513
FCOS (2019) 0.237 0.498 0.201 0.29 0.199 0.104

DDOD (2021) 0.442 0.82 0.434 0.403 0.538 0.376
VFNet (2020) 0.339 0.707 0.279 0.34 0.394 0.193

YOLOv8 (2023) 0.531 0.918 0.548 0.464 0.636 0.534
OD-YOLOv8 (ours) 0.566 0.945 0.648 0.506 0.661 0.654

Table 7: Comparative evaluation of detection metrics for various models in offshore scenarios of SSDD

Method AP AP50 AP75 APS APM APL
DINO (2022) 0.583 0.935 0.657 0.501 0.692 0.73

EfficientNet (2019) 0.598 0.969 0.687 0.572 0.665 0.577
TOOD (2021) 0.609 0.977 0.678 0.58 0.704 0.441

LD (2022) 0.559 0.969 0.612 0.544 0.617 0.458
DyHead (2021) 0.604 0.988 0.674 0.572 0.703 0.643
FCOS (2019) 0.523 0.948 0.525 0.548 0.479 0.379

DDOD (2021) 0.606 0.986 0.681 0.571 0.69 0.631

(Continued)
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Table 7 (continued)

Method AP AP50 AP75 APS APM APL
VFNet (2020) 0.568 0.972 0.597 0.539 0.674 0.635

YOLOv8 (2023) 0.652 0.986 0.741 0.584 0.755 0.737
OD-YOLOv8 (ours) 0.648 0.988 0.778 0.593 0.726 0.781

4.5.4 Visual Analysis
To visually demonstrate the effectiveness of our object detection approach, we conducted a visual

analysis of the HRSID dataset. By comparing the visual results with nine common detection algorithms, the
findings further validate the effectiveness of our method. In the figure, red boxes represent ground truth,
green boxes indicate correctly detected objects, and yellow and blue boxes denote false positives (FP) and
false negatives (FN), respectively. The detection results are shown in Fig. 11.

DINO EfficientNet

DLDOOT

DyHead FCOS

teNFVDODD

8vOLOY-DO8vOLOY

Ground-Truth

Figure 11: Visualization results

Through experimentation, we have found that in most scenarios, our improved model exhibits overall
improvements in both missed detections and false detections when compared to eight common object
detection algorithms and the original YOLOv8 model. Notably, improvement is particularly significant when
detecting small ships. However, in some cases involving dense clusters of ships and complex background
interference, its performance may sometimes be inferior to other models. Nevertheless, in most scenarios,
the number of missed and false detections has decreased.



396 Comput Syst Sci Eng. 2025;49

5 Conclusion
To address the issues of difficulty in detecting small vessels, severe background interference, and limited

hardware resources in current SAR ship detection, most existing models generally focus solely on improving
accuracy or lightweighting, making it challenging to balance resource utilization and detection performance.
To practically improve the accuracy of ship detection and achieve real-time detection under the constraints
of edge device deployment, we have designed and proposed a new model based on YOLOv8, named OD-
YOLOv8.

Specifically, to address the serious issues of missed and false detections of small targets, we added
160 × 160 small target detection head and removed the 20 × 20 large target detection head. This approach
eliminates redundant computations while enhancing the model’s sensitivity to small targets. To reduce
resource consumption and achieve model lightweighting, we replaced the backbone network with Huawei’s
latest research result—VanillaNet. We also replaced the loss function with Wise-IoU based on a dynamic
non-monotonic mechanism, making the model more focused on the quality of ordinary samples and
reducing the impact of extreme sample data on the model, thereby significantly improving the model’s
robustness and generalization ability. Additionally, we replaced the convolution in the neck downsampling
stage with GSConv, enhancing the model’s expressive capability while reducing computational load. Finally,
we utilized ODConv—a multi-dimensional dynamic convolution—to significantly enhance context infor-
mation fusion by addressing four dimensions: spatial kernel size, input channels, output channels, and the
number of convolution kernels, thereby markedly improving the convolution’s feature extraction capability.
We evaluated the model on the HRSID dataset, and the results showed that AP and AP50 improved by
3.5% and 2.7%, respectively, while the number of parameters and GFLOPS decreased by 72.9% and 4.9%,
respectively. The model also performed excellently on the SSDD dataset, with AP and AP50 improving by
1.7% and 0.4%, respectively. We further compared this method with other mainstream object detection
algorithms, validating the effectiveness of our designed model.

Compared to YOLOv8n, we’ve achieved a balance between detection accuracy and computational
efficiency. By replacing the detection head, we’ve reduced parameters by 31.2% while boosting AP50 by
1.6%. Using Wise-IoU, we’ve increased AP50 by 1.4% without sacrificing efficiency. Although replacing the
backbone network resulted in a 1% precision loss, it significantly reduced parameters and GFlops by 59.6%
and 22.7%, respectively. Swapping GSConv in the neck led to a minimal 0.1% precision drop, with parameter
and GFlops reductions of 5.5% and 2.2%. Introducing the ODC2f module decreased GFlops by 13.3% and
improved precision by 0.8%. Our research is highly beneficial for edge device deployment.

Despite our model having achieved remarkable results in lightweight design and demonstrated good
performance in detection accuracy, there is still room for further optimization. Looking ahead, we intend
to continue focusing on resource consumption while exploring in-depth from multiple dimensions. Firstly,
we plan to introduce more efficient attention mechanisms and loss functions to enhance the model’s ability
to detect small targets and improve overall detection accuracy. Secondly, we will strive to expand the
applicability of the model, enabling it to better adapt to complex marine environments and accommodate
more diversified datasets. In this process, we will also integrate multimodal data and adaptive learning
techniques to enhance the model’s generalization ability and robustness. Lastly, we will actively explore
the potential of the model in practical industrial deployments, especially its performance in real-time and
resource-constrained environments, aiming to provide more reliable solutions for practical applications.
These improvements are not only expected to further enhance detection performance but also potentially
drive technological innovations in the field of SAR ship target detection, expanding its application prospects
in other related fields, and ultimately bringing broader application value and far-reaching impacts to
this field.
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