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ABSTRACT: In recent years, the analysis of encrypted network traffic has gained momentum due to the widespread
use of Transport Layer Security and Quick UDP Internet Connections protocols, which complicate and prolong the
analysis process. Classification models face challenges in understanding and classifying unknown traffic because of
issues related to interpret ability and the representation of traffic data. To tackle these complexities, multi-modal
representation learning can be employed to extract meaningful features and represent them in a lower-dimensional
latent space. Recently, auto-encoder-based multi-modal representation techniques have shown superior performance
in representing network traffic. By combining the advantages of multi-modal representation with efficient classifiers,
we can develop robust network traffic classifiers. In this paper, we propose a novel multi-modal encoder-decoder model
to create unified representations of network traffic, paired with a robust 1D-CNN (one-dimensional convolution neural
network) classifier for effective traffic classification. The proposed model utilizes the ISCX Virtual Private Network-
non Virtual Private Network 2016 datasets to extract general multi-modal representations and to train both shallow
and deep learning models, such as Random Forest and the 1D-CNN model, for traffic classification. We compare these
learning approaches based on the multi-modal representations generated from the autoencoder and the early feature
fusion technique. For the classification task, both the Random Forest and 1D-CNN models, when trained on multimodal
representations, achieve over 90% accuracy on a highly imbalanced dataset.
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1 Introduction
Encrypted Network Traffic Analysis (ENTA) is a critical tool used by system administrators to monitor,

analyze, and interpret traffic patterns that emerge from network captures. By leveraging this analysis,
organizations can improve their resource allocation strategies and optimize performance across various types
of networks, particularly those that are heterogeneous in nature, meaning they consist of different types of
devices and technologies. The ENTA process can be enhanced through automation, allowing for real-time
data assessment and decision making. Advanced methodologies, including both shallow learning and deep
learning models [1,2], can be employed to uncover insights from the data. Shallow learning models can
quickly identify simple patterns, while deep learning models are capable of analyzing complex features and
relationships within the traffic data.

Despite the technological advancements in this field, one major challenge remains: the limited avail-
ability of data and the absence of labeled feature sets for training these machine-learning models [3]. Labeled
data is essential for supervised learning approaches, which require examples of both input data and the
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corresponding correct outputs. Due to the sensitive and often encrypted nature of network traffic, gathering
such labeled datasets is difficult [4].

To overcome these obstacles, organizations often need to rely on professionals with deep domain
expertise. These skilled individuals possess the knowledge required to discern meaningful patterns within
encrypted traffic, even in the context of limited data. Their insights are invaluable for refining model training,
ultimately leading to more effective analysis and improved security measures for managing network traffic.
Network captures generally involve two main components: header information and payload data [5–7].
The payload specifically comprises layer-7 data, which is generated by various application programs and
is facilitated by protocols such as Transport Layer Security (TLS) and Quick UDP Internet Connections
(QUIC). To effectively analyze this layer-7 data, it is essential to utilize specialized Deep Packet Inspection
(DPI) engines. These engines are designed to decrypt both the payload and the headers, allowing for the
extraction of meaningful patterns that can provide insights into network behavior.

In recent developments, data augmentation techniques have gained traction in the field of network
traffic analysis. These techniques enhance the volume and variety of data available for analysis, ultimately
leading to improved model performance [8–10]. Additionally, new strategies have emerged to tackle issues
such as class imbalance and feature bias, which can affect the accuracy of analysis in network traffic.
DPI-based methods are particularly valuable because they can identify significant patterns from various
headers and payloads within the captured data. However, the presence of encryption protocols presents a
unique challenge: they hinder the ability to extract features from encrypted data effectively. This challenge
underscores the necessity for specialized DPI techniques that can handle encrypted traffic and extract useful
information, thereby enabling a more comprehensive analysis of network captures.

Machine learning [11,12] and deep learning models [13–15] are increasingly utilized for analyzing
encrypted traffic, taking into account both the spatial and temporal characteristics of data patterns. Despite
their potential, these advanced techniques often produce model-agnostic feature representations, which
hinder the reproducibility and consistency of results obtained from various analyses. Deep learning mod-
els [6], in particular, have shown considerable success in automatically extracting features and performing
classification tasks on complex datasets. However, the challenge of achieving model-agnostic data repre-
sentations complicates the development of robust classifiers that can function effectively across different
network representations.

To address these challenges related to feature representation and extraction, innovative deep learning
structures such as auto-encoders [16–18] and transformer models [19] have emerged as effective solutions.
These models are particularly adept at simplifying the complexity involved in downstream classification
tasks. However, designing and implementing these models can be intricate and require significant processing
power, especially when dealing with large-scale datasets like network traffic captures. Auto-encoders offer a
compelling approach for creating scalable architectures aimed at reducing data dimensionality and extracting
features. Compared to transformer models, auto-encoders have demonstrated a remarkable ability to identify
and capture relevant features from raw data, effectively representing them within a latent space [20,21].

Moreover, the architectural framework of auto-encoders [22,23] and their corresponding decoders can
be utilized to amalgamate various modalities of information into a cohesive latent space. To effectively
integrate multiple modalities, several strategies for feature-level fusion can be employed, including early
fusion, late fusion, and decision-based fusion techniques [24,25]. Considering these aspects, we propose
a novel approach aimed at enhancing feature representation, with the goal of creating a unified and
comprehensive view of the available data [26,27].
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In this paper, we present key contributions to the development of our proposed architecture for
analyzing captured network traffic:

1. To highlight the existing research on different model architectures, we summarize related works
in Table 1, which presents an overview of models used in prior studies, including Auto-encoders, Convolu-
tional neural networks, and Transformer based models.

2. We conducted experiments using the ISCX VPN and non-VPN 2016 dataset to evaluate our
proposed method. We extracted flow information using the NFStream application to generate features from
the captures.

3. We have developed a novel autoencoder architecture that creates a compact representation of flow-
level metadata from network captures. Our model employs early fusion to integrate different types of
information, such as entities and quantities, transformed into a unified representation, as shown in Table 2.
Additionally, we developed a novel 1D-CNN-based model to train and classify these generic representations
into various traffic classes.

4. Our comprehensive analysis of model performance indicates that the 1D-CNN can achieve a
classification accuracy exceeding 90% when trained on these generic representations, as shown in Table 3.

The remainder of this paper is organized as follows: In Section 2, we discuss related work on generic
representations. Section 3 provides a detailed explanation of our proposed method. In Section 4, we
present experiments utilizing the ISCX VPN and non-VPN datasets to represent traffic classifications as
generic representations.

2 Related Work
In this section, we review the literature related to representing network captures using various deep-

learning techniques. The studies on network traffic classification are model-agnostic, meaning that the input
data is transformed into model-agnostic representations and trained for multiple tasks. Our research focuses
on exploring the application of deep learning models in creating generic representations of network traffic.
While this is not an exhaustive overview, Table 1 summarizes our findings regarding deep learning models
such as CNN’s, auto-encoders, and NLP based techniques that have been used to represent network traffic.
Our survey demonstrates the extensive use of these models and highlights their limitations. Finally, we
emphasize the need to combine feature fusion and multi-modal representation learning to develop improved
input representation models.

Höchst et al. [1] address the challenges in processing network captures and propose a clustering labeling
method for classifying traffic, achieving 80% accuracy on a public datasets. They also emphasize the need for
an auto-encoder-based architecture for network traffic analysis. Bengio et al. [2] review various deep learning
models, including DBN, CNN, and RNN, used for data representation. Their study highlights challenges
such as multi-modality data handling, temporal misalignment in fusion operations, and over fitting in model
training. Wang et al. [4] convert encrypted traffic into images for application type classification using CNN.
His end-to-end model, based on the ISCX VPN-nonVPN datasets, successfully captures both local and
global features.

Lotfollahi et al. [5] combine a stacked auto-encoder and CNN to extract features from the same
datasets. His pre-processing efforts led to 98% accuracy in application identification and 94% in traffic
characterization, underscoring the need to handle features from encrypted payloads and headers effectively.
Ring et al. [7] highlight the significance of IP address embedding using the word2vec model to enhance
classification models. They applied the IP2Vec model for embedding IP addresses and used clustering to
classify them as normal or malicious, achieving an accuracy of 86% with the CTU-13 datasets. Their work
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also addresses challenges in feature extraction from flow metadata and the alignment between packet header
context and vector representations.

Zhao et al. [13] introduced Yet Another Traffic Classifier (YaTC), a novel traffic classification model
that employs a masked auto encoder (MAE)-based transformer with multi-level flow representations. YaTC
integrates packet-level and flow-level attention mechanisms for efficient feature extraction, utilizing MAE
for pre-training on unlabeled data and fine-tuning on labeled data. The model, evaluated on five real-
world encrypted traffic datasets (e.g., ISCXTor2016, USTC, CICIoT2022, and Cross Platform), achieves high
accuracy rates of 98.07% on one datasets, 98.04% on ISCXTor 2016 datasets, 99.72% on USTC, and 96.58%
on CICIoT2022, demonstrating superior performance compared to state-of-the-art methods.

Li et al. [15] introduce the L2-BiTCN-CNN model, which combines bidirectional temporal convolution
networks (TCN) and convolution neural networks (CNN) for multi-class network traffic classification. By
fusing spatial-temporal features, the model effectively identifies various internet applications. It has been
evaluated on the USTC-TFC2016 datasets (containing malware and benign traffic) and the ISCX VPN-
nonVPN2016 datasets (containing encrypted and non-encrypted traffic), demonstrating high accuracy.
Future work will focus on improving classification accuracy for specific traffic types and exploring knowledge
distillation and edge computing for deployment efficiency. The model’s ability to handle complex patterns
and differentiate between similar traffic patterns is particularly noteworthy.

Lin et al. [20] introduced ET-BERT, a novel approach for classifying encrypted network traffic that uses
a feature engineering pipeline and BERT based transformer models. This method addresses challenges in
handling multi-modal network traffic data and selects optimal features from packet statistics. Trained on
the CSTNET datasets, the model achieves 99% accuracy on the ISCX VPN and USTC-FTC datasets, and
97% accuracy on the CSNET-TLS-1.3 datasets. ET-BERT enhances classification performance by creating
contextualized representations of datagram, thereby improving accuracy despite encryption.

Authors Barua et al. [23] and Ramachandram et al. [28] reviewed trends in representation learning
and fusion techniques, emphasizing the difficulty of selecting appropriate methods for various applications
and integrating modality-specific information. Gonzalez et al. [29] introduced the Net2Vec model, which
generates embedding for input data using machine learning and word2vec. This process allows for compact
feature representation, suitable for tasks like traffic classification and user profiling. Vu et al. [30] tackled class
imbalance in traffic datasets, proposing an auxiliary hybrid model combining machine learning methods.
They reported baseline models such as SVM+ACGAN with an impressive 99% classification accuracy,
highlighting the need for effective feature extraction and data augmentation.

Aceto et al. [31] discussed challenges in applying GRU and CNN models to multi-modal datasets and
detailed pre-processing methods for various input types using LSTM and CNN. They achieved over 90%
accuracy in Android-based traffic classification and underscored the importance of informative inputs and
the potential biases in machine learning models that require frequent retraining. They also called for fine-
grained classifiers with advanced hybrid architectures for better information pre-processing. Shahbaz Rezaei
et al. [32] proposed a CNN-based model for extracting features from network traffic’s time-series data,
utilizing both header and payload information for a multi-label classification problem. Their work examined
combining CNN’s with sequence models like LSTM and RNN, highlighting challenges in applying deep
learning to encrypted traffic.

Cohen et al. [33] extracted flows from traffic using a windowing technique and transformed sequences
into embedding with the word2vec model. These embedding trained a clustering model to differentiate
between dark-net traffic and normal traffic, emphasizing the importance of feature engineering for metadata,
including IP addresses and ports. Barut et al. [34] discussed challenges in feature extraction from large
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datasets, advocating for generic feature representations and pre-trained models to improve network flow
classification. Holland et al. [35] introduced nPrint, a tool that generates standardized packet representations
to improve automated machine learning (AutoML) in traffic analysis. nPrintML automates feature extraction
and model tuning, proving effective in device fingerprinting and OS detection while addressing challenges
in pre-processing multi-modal pcap files.

Shahraki et al. [36] discussed deep learning models for network traffic analysis and monitoring
operations. Their proposed method combines a set of Convolution Neural Network (CNN) models into
an ensemble of classifiers. The outputs of these models are then merged to generate the final prediction.
Performance evaluation results indicate that their methodology achieves an average accuracy rate of 98% for
classifying traffic (e.g., FTP-DATA, MAIL, etc.) using the Cambridge Internet traffic datasets.

Kallitsis et al.’s work [37] extends network traffic analysis to the DarkNet by employing autoencoders
and decoders to represent packet statistics, focusing on bot and attack detection. Using one-hot encoding
for port addresses and a semi-supervised approach for clustering embedding, the model achieves 90%
accuracy in detecting temporal changes in DarkNet traffic. It introduces methods for identifying anomalies
and variations in scanning behaviors to enhance network security monitoring. Feng et al. [38] proposed a
CNN-based approach for classifying VPN traffic, addressing the limitations of traditional methods when
dealing with encrypted network traffic. By combining payload-based techniques with a modified AlexNet
structure, their model achieves an accuracy of 89.97% using the VPN-nonVPN datasets. It outperforms other
network structures like LeNet, VGG, and ResNet in certain categories, demonstrating the effectiveness of
deep learning in accurately classifying encrypted traffic.

Houidi et al.’s work [39] explored multi-modal representation learning for network data, proposing
a bimodal approach that combines language models with traditional features. By integrating entity-based
and quantity based representations, this approach enhances classification tasks, as shown in use cases like
clickstream identification and terminal movement prediction. The study emphasizes the need for systematic
representation learning and suggests incorporating additional modalities, such as time-evolving graphs, and
using graph neural networks for more effective modeling, highlighting the complexity of network data and
the promise of advanced techniques in improving machine learning outcomes. Gioacchini et al. [40] present
i-DarkVec, a novel method for analyzing DarkNet traffic that utilizes NLP-based embedding, specifically
employing word2vec, to represent network traffic efficiently. Trained on a neural network model, i-DarkVec
reaches 97% accuracy on DarkNet traffic datasets. This approach improves analysis by allowing for dynamic
and continuous updates of the embedding as new traffic data arrives, thereby enhancing adaptability to
evolving traffic patterns.

Yang et al. [41] introduced the Dual Mode Hybrid Neural Network (DM-HNN) for network traffic
classification. This method combines packet length and byte representations using Gated Recurrent Units
(GRU) and stacked auto-encoder techniques. When compared to baseline models and the DISTILLER
multi modal deep learning model, DM-HNN achieves an impressive 99% accuracy on ISCX datasets. By
integrating both time-domain and frequency-domain features through advanced hybrid neural network
architectures, this approach significantly enhances the effectiveness of traffic classification.

Gioacchini et al. [42] investigate the use of Temporal Graph Neural Networks (TGNNs) for analyzing
DarkNet traffic. They propose a method for creating embeddings from both statistical and sequence fields of
packets. These embedding facilitate classification tasks using Graph Neural Network (GNN)-based models,
with kNearest Neighbors (kNN) clustering used for data labeling. The approach achieves an F1 Score
of 80%, demonstrating improved performance in understanding and classifying DarkNet traffic patterns
through enhanced temporal information integration. Li et al. [43] present a decision-level multi-modal
fusion technique for managing network traffic data. In this method, embedding from various modalities
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are combined using a stacked auto-encoder model. The pre-processing phase includes a feature engineering
pipeline to extract both spatial and temporal features. This technique reaches 93% accuracy on a real-time
mobile device datasets of application traffic, showcasing its effectiveness in classifying encrypted traffic. By
integrating multiple decision sources through late fusion, this approach enhances classification accuracy.

Pang et al. [44] present the Multi-Modal Classification Method (MTCM) for context-aware network
traffic classification. This approach integrates graph neural networks and BERT for feature extraction and
fusion. MTCM enhances traditional deep learning classifiers by incorporating contextual information from
communication sessions and text semantics. It achieves high accuracy rates of 92.2% for application traffic,
98.7% for malicious traffic, and 98.7% for encrypted traffic. The method demonstrates robustness across
various datasets, outperforming existing techniques and improving classification performance through
adaptive context-aware feature extraction.

Gioacchini et al. [45] introduce the Multi-Modal Auto-Encoder (MAE) architecture for network traffic
analysis, offering a deep learning approach that minimizes the need for extensive feature engineering. The
MAE integrates different types of input data—such as quantities and entities—into a compact representation,
trained in a self-supervised manner. This method produces embedding that surpass traditional concatena-
tion methods and are highly effective in several supervised traffic classification tasks. Evaluated on three
datasets: MIRAGE for mobile app traffic, DARKNET for dark net traffic, and ISCX for traffic flows, the
MAE shows improved performance and requires fewer trainable parameters compared to conventional
learning methods. The research also identifies challenges, such as parameter tuning, the scalability of
One-Hot Encoding, and performance issues with small datasets, suggesting areas for further research
and optimization.

Cui et al. [46] introduced a novel multimodal hybrid parallel network intrusion detection model
(MHPN) to enhance the accuracy and robustness of network intrusion detection systems. The MHPN model
utilizes statistical network traffic information and raw traffic payload data. It employs convolutional neural
networks (CNNs), long short-term memory (LSTM) networks for feature extraction, and a CosMargin
classifier that improves classification in imbalanced datasets. Experiments conducted on the ISCX-IDS2012
and CIC-IDS-2017 datasets show that the MHPN model outperforms single-modal models, achieving an
impressive average accuracy of 99.98%. The study also examines the model’s components and compares its
efficiency to other existing methods.

Wang et al. [47] present MeDF, a novel multi modal encrypted traffic classification model that integrates
intraflow and inter-flow features to enhance classification accuracy. Intra-flow features are derived from raw
byte spectrograms and statistical characteristics of individual flows, while inter-flow features are extracted
from flow relation graphs to capture complex relationships between multiple flows. Evaluated on two
real-world datasets, MeDF achieves high accuracy rates of 98.57% and 94.73%, surpassing both tradi-
tional single-modality methods and existing multi-modal approaches. By combining these features, MeDF
addresses the limitations of current models and improves the effectiveness of encrypted traffic classification.

Horowicz et al. [48] present a novel approach to internet traffic classification using “Mini-FlowPics,”
which are smaller and more manageable than traditional FlowPics. By leveraging a limited number of labeled
samples and applying augmentations that mimic network behavior—such as changes in round-trip time
(RTT) and randomization of packet lengths—this approach enhances model performance even with minimal
data. This method improves accuracy and simplifies engineering compared to larger FlowPics, offering an
effective solution for traffic classification with limited labeled data.

Gioacchini et al. [49] emphasize the importance of word embedding techniques like DarkVec and
iDarkVec for generating embeddings from network traffic, showcasing their effectiveness through Darknet
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and honeypot use cases. They argue that host embeddings from network data are more complex than
those from natural language. Li et al. [50] address the challenges of single-modality classification with
their FusionTC framework, which uses a stacking approach to extract features from packet distributions,
sequences, and statistics, resulting in a 3.2% accuracy improvement for classifiers applied to custom mobile
application traffic.

Park et al. [51] introduce a multi-task learning method for classifying encrypted network traffic using the
DistilBERT model. This approach overcomes limitations of single-task methods by classifying traffic based on
encapsulation, category, and application, achieving high accuracy (96.89%–99.29%). The authors implement
weight adjustments for data imbalance and varying task difficulties, enhancing performance and efficiency
while noting some trade-offs between speed and accuracy. Validation is performed using the ISCX 2016
VPN/Non-VPN dataset, with comparisons made to seventeen other methods. Future work aims to expand
to additional datasets and enhance model efficiency. Mo et al. [52] introduced a hybrid model for network
traffic classification that combines One-Dimensional Convolutional Neural Networks (1D-CNN), Temporal
Convolutional Networks (TCN), and Gated Recurrent Units (GRU). This model efficiently extracts features
from dynamic and encrypted network traffic, leveraging 1D-CNN for feature extraction, TCN for capturing
temporal relationships, and GRU for sequential analysis. Evaluations show the model outperforms traditional
methods in classification accuracy, demonstrating its potential for real-time applications in Software-Defined
Networking (SDN). The work highlights the model’s ability to enhance quality of service and address complex
challenges in network traffic management.

Niu et al. [53] proposed a deep learning framework called DarkGuardNet, designed to identify dark
web traffic and classify its applications. The framework employs Spatio-temporal Feature Fusion (STFF) and
Multi-Head Self-Attention (MHSA) modules to extract features from network data, effectively addressing
issues related to imbalanced datasets. When evaluated on a new dataset from ISCXVPN and ISCXTor,
DarkGuardNet demonstrated superior performance compared to existing methods, achieving an accuracy
of 0.99 in identifying darknet traffic and 0.98 in classifying applications. Baek et al. [54] proposed a combined
machine learning and deep learning model that employs a filter and refine approach to manage large datasets.
This work was tested on the ISCX-VPN 2016 and ISCX-Tor 2016 datasets. The results, when compared to
transformer-based models like ET-BERT, demonstrated that the proposed model achieved an accuracy that
was 3.9% higher and also provided faster classification speeds.

Table 1: Overview of models and associated research works

Sl. No. Related work(s) Model used
1 Hochst et al. [1] Auto-encoders
2 Wang et al. [4] Convolutional neural networks3 Lotfollahi et al. [5]
4 Ring et al. [7] NLP models (word2vec)
5 Zhao et al. [13] Bidirectional Encoder Representations from Transformers (BERT)6 Lin et al. [20]
7 Shahraki et al. [22] Convolutional neural networks
8 Gonzalez et al. [29] NLP models (word2vec)
9 Aceto et al. [31] Convolutional neural networks10 Rezaei et al. [32]
11 Kallitsis et al. [37] Auto-encoders
12 Feng et al. [38] Convolutional neural networks/nlp models (word2vec)

(Continued)
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Table 1 (continued)

Sl. No. Related work(s) Model used
13 Houidi et al. [39] Auto-encoders/NLP models (word2vec)
14 Gioacchini et al. [40] NLP models (word2vec)
15 Yang et al. [41] Auto-encoders
16 Gioacchini et al. [42] NLP models (word2vec)
17 Pang et al. [44] Bidirectional Encoder Representations from Transformers (BERT)
18 Gioacchini et al. [45] NLP models (word2vec)
19 Cui et al. [46] Convolutional neural networks
20 Wang et al. [47] Bidirectional Encoder Representations from Transformers (BERT)
21 Horowicz et al. [48]

Convolutional neural networks22 Li Mo et al. [52]
23 Niu et al. [53]
24 Baek et al. [54] Combination of machine learning and deep learning models

3 Proposed System
The ISCX VPN-nonVPN 2016 datasets stands out as the most valuable resource for the analysis of

encrypted network traffic. This comprehensive datasets includes pcap (packet capture) network recordings,
which can be effectively processed using NFStream software. Notably, it allows for the analysis to be
conducted even at the L7 (application layer) level, providing deep insights into the traffic patterns. To
illustrate the effectiveness of the proposed analytical system, this study focuses exclusively on the pcap files
generated from the VPN setup. Fig. 1 presents a detailed classification of 14 distinct applications represented
within the VPN setup PCAP files. It also provides a comprehensive visualization of the flow composition for
each PCAP file, highlighting the intricacies of data traffic and the relationships between various applications.

Figure 1: Application class distribution with class, packet, and flow counts per file

The architecture of the proposed method consists of three major subsystems: the Data Augmentation
and pre-processing Module, the Multi-modal Feature Representation Module, and Application Classification
using the 1D-CNN model, as illustrated in Fig. 2. First, flow information is captured from the NFStream
application, and suitable data augmentations are then applied to the flow metadata to ensure the datasets is
class-balanced. The next subsystem generates a generic feature representation by compressing the datasets
with a multi-modal auto-encoder. Finally, application classification is performed by training a 1D-CNN
model on the datasets.
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Figure 2: 1D-CNN with Multi-modal representation learning architecture

In this methodology, we outline a series of steps designed to ensure comprehensive data collection and
analysis. These steps include defining the algorithmic perspective of flow processing, where flow features
are categorized into entities and quantities. We will also establish criteria for evaluating the effectiveness of
each algorithm to ensure that the results are reliable and reproducible. Algorithm 1 illustrates the extraction
of quantities from network traffic and the pre-processing of these network quantities for further analysis.
This process will involve filtering out noise and irrelevant data, allowing us to focus on the key metrics
that influence performance. Meanwhile, Algorithm 1 builds upon the initial findings by applying statistical
methods to identify patterns and correlations within the network flow to pinpoint the entities. This dual
approach not only enhances our understanding of the underlying network dynamics but also facilitates the
development of predictive models capable of scaling to large datasets for various downstream tasks.

The initial research is limited to analyzing non-VPN pcap files sourced from the ISCX datasets and
does not include a mention of an integration module. To advance this work further, we propose the
potential inclusion of fusion-based integration modules, which could facilitate the combination of various
data sources. Additionally, deep or shallow learning models can be developed and trained on these compact
representations to enhance their effectiveness. In our proposed architecture, we introduce a novel adaptation
module that significantly improves the multi-modal auto-encoder’s capabilities. This module is designed
to classify network traffic in both VPN and non-VPN environments, addressing a gap in the original
study. Furthermore, the adaptation module possesses the flexibility to dynamically adjust to various flow
extractors, such as NFStream. It also classifies different attributes identified as Quantities and Entities,
detailed comprehensively in Table 2. This refined approach aims to provide a more robust and adaptable
framework for analyzing network traffic patterns.
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Table 2: Commonly used embedding techniques for Entities and Quantities columns from pcap

Quantities columns Embedding type
id, src_port, dst_port, protocol, ip_version, vlan_id,

tunnel_id, bidirectional_first_seen_ms,
bidirectional_last_seen_ms, bidirectional_duration_ms,

bidirectional_packets, bidirectional_bytes,
src2dst_first_seen_ms, src2dst_last_seen_ms,

src2dst_duration_ms, src2dst_packets, src2dst_bytes,
dst2src_first_seen_ms, dst2src_last_seen_ms,

dst2src_duration_ms, dst2src_packets, dst2src_bytes,
bidirectional_min_ps, bidirectional_max_ps,

src2dst_min_ps, src2dst_max_ps, dst2src_min_ps,
dst2src_max_ps, bidirectional_min_piat_ms,

bidirectional_max_piat_ms, src2dst_min_piat_ms,
src2dst_max_piat_ms, dst2src_min_piat_ms,

dst2src_max_piat_ms

Linear embedding, Binning +
One-hot

user_agent Drop/Impute
expiration_id (No embedding specified)

(no embedding specified for content_type) Content_type

Entities columns Embedding type
src_oui, dst_ip, dst_mac, dst_oui, application_name,
application_category_name, requested_server_name,

client_fingerprint, server_fingerprint

Word embedding (word2vec,
GloVe, FastText)

Table 3: Performance of proposed classifier on different datasets

Data sample RF Classifier 1D-CNN (1D-CNN with MMAE)
vpn_aim_chat1a 0.99 0.25 0.75
vpn_aim_chat1b 0.98 0.25 0.89
vpn_bittorrent 0.98 0.69 0.88
vpn_email2a 0.96 0.48 0.48
vpn_email2b 1.00 0.46 0.75

vpn_facebook_audio2 0.99 0.44 0.75
vpn_facebook_chat1a 1.00 0.86 0.92

vpn_ftps_A 0.93 0.62 0.64
vpn_hangouts_audio2 1.00 0.40 0.96
vpn_hangouts_chat1b 1.00 0.95 0.96

vpn_icq_chat1a 0.88 0.54 0.55
vpn_netflix_A 0.97 0.53 0.95

vpn_skype_audio1 0.98 0.80 0.77
vpn_skype_files1b 0.98 0.56 0.71

(Continued)
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Table 3 (continued)

Data sample RF Classifier 1D-CNN (1D-CNN with MMAE)
vpn_voipbuster1b 0.99 0.79 0.81
vpn_youtube_A 0.95 0.42 0.41

Algorithm 1: Network flow extraction and pre-processing of quantities and entities using NFStream
Input: Network traffic data
Output: Pre-processed Quantity and Entity embedding
1. Extract network flows using NFStream
2. Analyze Flow Metadata for Missing Values
3. Check flow metadata for any missing values
4. Handle missing values as per the chosen strategy (e.g., imputation or removal)
5. Normalize and Standardize the Quantities in the Flow
6. Normalize quantitative columns to a specific range (e.g., [0, 1])
7. Standardize quantitative columns to have zero mean and unit variance
8. Apply Scaling to Quantities and Remove Outliers if any
9. Detect and handle outliers using statistical methods (e.g., Z-score or IQR)
10. Apply scaling to adjust quantity values as needed
11. Use Quantity adaptation for generating embedding for Quantities
12. Adapt quantities and generate embedding for quantitative data
13. Store the Embedding to Dateset with class labels
14. Store the generated embedding into a datasets for further analysis or usage

3.1 Dataset Pre-Processing
The most useful datasets for encrypted traffic analysis is the ISCX VPN-nonVPN 2016 datasets, which

provides pcap network captures that can be processed using NFStream and can process the pcap files even at
the L7 layer. To show the effectiveness of the proposed system, only pcap files from the VPN setup are used.

The proposed work only considers the use of non-VPN pcap files from the ISCX dataset and does not
explicitly mention the integration module. Fusion-based integration modules can be added as an extension
to the work, and also training deep or shallow learning models can be achieved on compact representations.
In the proposed architecture, we extend and propose to add an adaptation module for multi-modal auto-
encoder architecture which can classify the Traffic under VPN and non-VPN setup. The proposed system
has an adaptation module that can dynamically adapt to flow extractors such as NFStream and classify the
attributes as Quantities and Entities listed in Table 2.

3.2 Quantities and Entities Pre-Processing from Datasets
Quantities serve as essential attributes that are derived from capture files, as detailed in Table 2. These

files encompass a wealth of information concerning flow metadata, crucial for understanding underlying
patterns. Prior to utilizing these attributes, it is vital to preprocess and encode them using suitable encoding
techniques. This step is critical in ensuring that the datasets remains well-balanced and devoid of biases,
thereby creating an optimal learning environment for the model. Such rigorous preparation enhances the
model’s ability to learn effectively and generalize successfully to unseen data.
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In the feature selection process, particular attention must be directed toward identifying those features
that significantly bolster the model’s predictive power. This thoughtful selection process may involve
various techniques, including feature selection, dimensionality reduction, and normalization. Each of these
techniques plays a pivotal role in refining the datasets, thus improving the overall performance of the model.
Once the attributes have been extracted, it is essential to analyze them for any missing values and normalize
them according to their numerical and categorical types. Additionally, to maintain the integrity of the
datasets, outliers are addressed and removed using the Inter quartile Range (IQR) technique applied across
the feature list.

Upon completing these preparatory steps, the encoded quantities are ready to be employed in the fusion
technique outlined in Section 3.3. Within the context of the proposed system, entities are methodically
identified and extracted from captures during the pre-processing phase, subsequently integrating them into
the fusion architecture. Table 2 provides a comprehensive list of the extracted attributes, while Algorithm 1
details the step-by-step process of entity embedding.

The embedding process is a transformation phase that converts these attributes into a multidimensional
vector space. This transformation is instrumental for the efficient integration and analysis of data within the
fusion framework. Through this process, the system significantly enhances its ability to identify complex
patterns and relationships among the entities, thereby yielding more precise and insightful outcomes.
Furthermore, these vector representations empower machine learning algorithms to harness these relation-
ships, ultimately facilitating advanced predictive modeling and sharpening decision-making capabilities.
Integrating diverse embedding from various quantities and entities leads to the creation of a sophisticated
and multifaceted set of encoded features. These encoded representations are crucial, as they need to be
systematically stored and effectively utilized to train the model. The distinctive feature representations
extracted from these embedding play a vital role in enabling classifiers to accurately categorize traffic patterns.

To achieve optimal performance in classification, different fusion techniques can be employed. These
techniques include early fusion, which merges features at the input level; late fusion, which combines results
at the decision level; and decision-based fusion, which integrates predictions from multiple classifiers. Prior
to employing any of these fusion methods, it is imperative to identify and select the relevant attributes that
significantly contribute to traffic classification. This involves not only selecting the most pertinent features
but also applying appropriate techniques to integrate them seamlessly, enhancing the overall effectiveness of
the classification system.

In this context, we introduce an innovative Multi-modal Auto Encoder-Decoder Architecture (MMAE),
designed to effectively integrate various modality features while also facilitating dimensionality reduction.
This model intricately combines embedding derived from quantities and entities, as previously detailed
in Section 3.3, utilizing the strengths of the multi-modal auto-encoder framework. The architecture of the
MMAE consists of three critical components: an encoder layer, a bottleneck layer, and a decoder layer. The
encoder layer plays a pivotal role in generating a latent representation of the input features, enabling the
training of classification models within a more manageable lower-dimensional space. Within our proposed
system, the embedding from both quantities and entities are processed through the MMAE, resulting in the
creation of joint representations of these features. This synthesis is essential, as it allows for a richer, more
cohesive understanding of the data that can enhance the performance of subsequent analytical tasks.

3.3 Proposed 1D-CNN with Multi-Modal Representation Architecture
The proposed model utilizes advanced auto-encoder and decoder architectures, which have been widely

recognized for their effectiveness in feature dimension reduction and encoding tasks. By integrating a multi-
modal approach, this model aims to create unified and comprehensive representations of various types
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of input data. The joint representation derived from this encoded data can be leveraged for a range of
critical operations, including the generation of synthetic packet headers and metadata, as well as effective
feature extraction. These capabilities allow for more efficient data processing and analysis. Moreover, the
Multi-Modal Auto-Encoder (MMAE) significantly enhances the generalization abilities of classifiers. This
improvement empowers the model to accurately classify packet captures that it has not encountered before,
thereby increasing its robustness and versatility in real-world applications.

The Multi-Modal Auto-Encoder (MMAE) model plays a crucial role in encoding quantities and entities
into feature representations within a latent space. This process allows for a more nuanced understanding
of the relationships and characteristics present in the data. To evaluate the effectiveness of these feature
representations, we employ a loss function that incorporates various attributes from different modalities,
ensuring a comprehensive assessment. One of the significant advantages of the MMAE model is its ability to
reduce the size of the training set while still maintaining the integrity of the data. This reduction is particularly
beneficial for training a one-dimensional convolution neural network (1D-CNN), as it allows for a more
efficient learning process and improves model performance. In our proposed framework, we will thoroughly
investigate the impact of the MMAE model on network traffic classification. This evaluation will be based on
key performance indicators such as accuracy and other relevant metrics, providing a clear understanding of
how MMAE contributes to the overall effectiveness of the classification task.

4 Evaluation Results and Analysis

4.1 Evaluation Setup
The proposed system was meticulously implemented using Python version 3.11 and the PyTorch library

version 2.0.1 on a standalone machine that is equipped with an Intel(R) Xeon E5 1620 processor, along with
16 GB of RAM. This powerful configuration ensured that we could efficiently handle the computational
demands of our experiments.

For our experimental approach, we specifically selected the ISCX VPN-nonVPN datasets, focusing
exclusively on the PCAP (Packet Capture) files associated with VPN traffic. This decision allowed us to
concentrate on the nuances of VPN usage while disregarding non-VPN data. We methodically extracted
random samples from each application category represented within the datasets, ensuring that our analysis
included 14 distinct applications in each PCAP file. Notably, these applications comprised popular services
like Google mail for email communication, BitTorrent for peer-to-peer file sharing, and a variety of chat
applications to represent real-time messaging.

To process the data effectively, we trained an auto-encoder designed to adapt entities and quantities
based on the Multi-Modal Auto-Encoder (MMAE) methodology. The auto-encoder learns to compress and
encode the input data into a lower-dimensional space, capturing the essential features while discarding less
relevant noise. The encoded features generated by the auto-encoder were systematically stored and then
utilized to train a one dimensional Convolution Neural Network (CNN) classifier, which serves to classify
the VPN traffic based on the learned representations.

The architecture of the 1D-CNN is specifically designed for the nature of our input data, which consists
of sequential VPN setup information. The Conv1D layer is configured with 32 filters, each utilizing a kernel
size of 3, and employs the ReLU (Rectified Linear Unit) activation function to introduce non-linearity
into the model, enhancing its ability to learn complex patterns. Following this, the MaxPooling1D layer is
integrated with a pool size of 2, effectively down-sampling the representation and retaining only the most
salient features.
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The intermediate output is then passed through a flattened layer, which reshapes the multidimen-
sional data into a one-dimensional array, preparing it for dense layer processing without introducing
additional neurons.

The dense layer is composed of 100 neurons, which also employs the ReLU activation function to
maintain activation levels after processing. Finally, the output layer is designed to contain a number of
neurons that corresponds precisely to the number of unique classes identified in the datasets, ensuring that
the model can accurately classify each instance of VPN traffic into its respective category. This structured
training approach allows us to create a robust classifier capable of distinguishing between different types of
VPN traffic effectively.

4.2 Evaluation Metrics
The ISCX 2016 VPN/Non-VPN datasets poses significant challenges for accurate model training and

evaluation due to its highly imbalanced nature. This imbalance is further exacerbated by biases present in the
attribute values, which can lead to over fitting in machine learning models. Specifically, the datasets comprise
packet captures that originate from a variety of applications, each generating differing quantities of network
flows. This variability can produce misleading results in experiments, as the distribution of traffic can heavily
influence the outcomes. To effectively address the bias associated with VPN packet captures, it is crucial
to implement robust evaluation strategies. While average accuracy measures can provide insights into the
overall performance of the model, this metric alone may not fully reflect the complexities of the classification
challenge. Fig. 3. depicts the accuracy of the proposed model trained on latent representations compared to
that of a random forest model.

Therefore, incorporating Macro average metrics is recommended, as these metrics average the per-
formance across different classes and help to mitigate the impact of class imbalance. By employing these
evaluation metrics, practitioners can achieve a more comprehensive understanding of model performance,
particularly in scenarios characterized by mixed network traffic. This approach will facilitate more reliable
classification outcomes and enhance the model’s ability to generalize effectively across diverse network
conditions.

4.3 Evaluation Results
In this section, we provide a comprehensive overview of the experiments conducted and the resulting

data to validate the effectiveness of the proposed method. We start by outlining the necessary hyperparam-
eters for the classification model in Section 4.3.1, where we also present the performance metrics required
for training the models. Section 4.3.2 provides a detailed performance comparison between our model and
Tree-based classifiers, such as Random Forest. It discusses the strengths and weaknesses of each approach to
contextualize how our method performs within the current landscape of methodologies.

Finally, Section 5 will delve into comprehensive discussions regarding our findings, addressing implica-
tions, potential limitations, and future directions for research to enhance the understanding of our method’s
impact and applicability.

4.3.1 Hyperparameters of Random Forest Classifier
To validate the effectiveness of the generic representations, we compare and evaluate the performance

of the Random forest classifier with the proposed 1D-CNN model with MMAE support. Random forest is
a supervised learning model, a labeled datasets can result in high accuracy. An accuracy of 99% is achieved
with the hyper-parameters mentioned in Table 4.
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Figure 3: Random forest and 1D-CNN model accuracies for PCAP flow classification

Table 4: Hyper-parameters of random forest model

Hyperparameter Values
n_estimators 50, 100, 200
max_depth None, 10, 20

min_samples_split 2, 5, 10
min_samples_leaf 1, 2, 4

bootstrap True, False

4.3.2 Performance of Random Forest Classifier and 1D-CNN Model on Multi-Modal Representations
When comparing the accuracy of the Random Forest model and the 1D-CNN with Multi-Modal

Auto-Encoder (MMAE), each exhibits unique strengths. The Random Forest model is robust and excels
with structured datasets, effectively capturing feature relationships through ensemble learning. In contrast,
the 1D-CNN with MMAE is adept at processing sequential or multimodal data, learning rich feature
representations and often achieving higher accuracy in tasks involving time-series or varied inputs. While the
Random Forest performs well on simpler tasks, the choice between models depends on the specific dataset
and application context.
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5 Conclusion
In conclusion, this research presents a compelling exploration of the multi-modal approach combined

with an auto-encoder-decoder model for generating generic representations of encrypted network traffic
across a diverse range of application classes. By employing a novel integration module that facilitates
early feature fusion, the study effectively addresses the persistent challenges of class imbalance and biases
introduced during the pre-processing stage. The experiments conducted on the ISCX datasets yielded
insightful results, revealing that the random forest model excels in accurately classifying network traffic
when trained on the generated embedding. Its strong performance underscores the model’s effectiveness in
navigating the complexities inherent in encrypted traffic scenarios. In contrast, the 1D-CNN model, while
demonstrating high accuracy for larger sets of network flows, exhibits a decline in classification performance
with fewer network captures. This indicates a potential area for further investigation into enhancing the
model’s robustness.

Despite the promising findings, several limitations warrant attention. The reliance on a specific datasets
(ISCX 2016 VPN/Non-VPN) restricts the generalization of the conclusions drawn, highlighting the need for
validation across a broader spectrum of datasets, such as ISCX Tor. Moreover, the methodology’s dependence
on an analysis of just eight packets can contribute to extended processing times, suggesting the necessity
for optimization in this area. Looking ahead, future research endeavors should aim to broaden the datasets
diversity, refine the model architectures, and enhance pre-processing techniques. These initiatives will not
only boost performance and efficiency but also contribute to the development of more effective classification
systems for encrypted network traffic. This work ultimately lays a strong foundation for advancing the field of
network security and traffic management, promising significant implications for the protection and analysis
of data in increasingly complex network environments.
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