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ABSTRACT: In the broader field of mechanical technology, and particularly in the context of self-driving vehicles,
cameras and Light Detection and Ranging (LiDAR) sensors provide complementary modalities that hold significant
potential for sensor fusion. However, directly merging multi-sensor data through point projection often results in
information loss due to quantization, and managing the differing data formats from multiple sensors remains a
persistent challenge. To address these issues, we propose a new fusion method that leverages continuous convolution,
point-pooling, and a learned Multilayer Perceptron (MLP) to achieve superior detection performance. Our approach
integrates the segmentation mask with raw LiDAR points rather than relying on projected points, effectively avoiding
quantization loss. Additionally, when retrieving corresponding semantic information from images through point
cloud projection, we employ linear interpolation and upsample the image feature maps to mitigate quantization
loss. We employ nearest-neighbor search and continuous convolution to seamlessly fuse data from different formats.
Moreover, we integrate pooling and aggregation operations, which serve as conceptual extensions of convolution, and
are specifically designed to reconcile the inherent disparities among these data representations. Our detection network
operates in two stages: in the first stage, preliminary proposals and segmentation features are generated; in the second
stage, we refine the fusion results together with the segmentation mask to yield the final prediction. Notably, in our
approach, the image network is used solely to provide semantic information, serving to enhance the point cloud features.
Extensive experiments on the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset
demonstrate the effectiveness of our approach, which achieves both high precision and robust performance in 3D object
detection tasks.
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1 Introduction

Driven in part by the growing interest in self-driving vehicles, substantial research methods have
focused on 3D object detection [1-5]. Ensuring the safe navigation of autonomous vehicles requires accurate
perception of objects in three-dimensional space. While existing approaches leverage LiDAR points for
3D object detection [6-10], these data alone lack expressive semantic information. As a result, the model
may be forced to contend with incomplete or ambiguous cues, making reliable interpretation more chal-
lenging [11,12]. Additionally, the inherent sparsity of point clouds, particularly for small objects at greater
distances, further complicates the task for a single LIDAR sensor.

Meanwhile, other methods [13-17] attempt to infer 3D locations and dimensions directly from images.
Compared with point clouds, images offer a more detailed and compact representation, offering more exten-
sive semantic cues for distinguishing varied instances and complex backgrounds. However, the inherently
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nature of 2D images leads to a loss of reliable depth information, making purely image-based 3D detection
approaches more challenging.

To address these challenges, numerous studies have focused on fusing multiple sensor modalities to
strengthen the semantic information of point clouds. Classical two-stage architectures such as AVOD [18]
and MV3D [19] process data from each sensor through its own backbone network, then combine them
at the object proposal stage before refining to a final prediction. Approaches like F-PointNet [20] and
F-ConvNet [21] leverage image network to extract semantic information, thereby limiting the search range
inside a 3D view frustum, and then apply point-based detection algorithm to generate the 3D proposals.
Similarly, ContFuse [22] integrate data from multiple sensors using a learned MLP, bilinear interpolation and
k-nearest-neighbor searches on LIDAR points, effectively merging diverse modalities. PointPainting [23]
project LIDAR points onto the image plane using a transformation matrix, and then directly utilize the
information extracted from both LIDAR data and images. PointFusion [24] utilizes PointNet [6] to obtain
point-wise feature and Faster RCNN [25] to achieve ROI, and the later fusion operation is conducted under
the cropped ROL.

However, although classical two-stage architecture [18,19] offer end-to-end optimization, their reliance
on plane-based fusion rather than raw LiDAR points leads to coarse and computationally slow predictions.
Object identification based on the 3D view cone method [20,21] suffers from the limitations of image
segmentation. It is challenging to address occlusion, which results in a limited number of foreground
points. While Liang et al. [22] attempt to utilize continuous convolution [26] and deep fusion strategy
to address the issue of different sensor’s data formats, their combination is still based on BEV map that
inevitably introduces precision loss. PointPainting [23] incorporates image-based semantic segmentation to
enhance point features; however, its fusion approach relies solely on a transformation matrix without further
refinement, leading to reduced precision due to this coarse operation. PointFusion [24] fuses data directly
from raw LiDAR points to avoid quantification loss found in AVOD [18] and MV3D [19], but its image
network merely performs object detection without providing the semantic information needed to enrich
point-level features.

To overcome these drawbacks, we present a novel fusion module. Although AVOD [18] and MV3D [19]
adopt deep fusion approaches to merge intermediate features and achieve improved fusion performance,
their reliance on BEV or front-view maps—projections of raw LiDAR points—leads to significant precision
loss. Notably, LIDAR data is sparse and continuous, whereas image data is inherently discrete. In contrast, our
fusion method employs continuous convolution and nearest-neighbor search to directly handle the disparate
formats of multi-sensor data, maintaining high-quality fusion without resorting to BEV maps. Different from
Contfuse [22], our fusion module is performed directly on raw point data to avoid quantization loss. Further-
more, we integrate pooling and aggregation operations, which serve as conceptual extensions of convolution,
and are specifically designed to reconcile the inherent disparities among these data representations. We argue
that PointPainting [23] introduces quantification loss fusion approach by relying solely on a transformation
matrix; to mitigate this issue, we apply linear interpolation and upsample image feature maps to mitigate
this issue. Additionally, PointPainting [23] does not address the inherent data format discrepancies, and
we solve this problem by applying the same approach used to resolve these discrepancies in AVOD [18]
and MV3D [19]. Finally, while PointFusion [24] lacks semantic information, our method incorporates rich
semantics, thereby achieving superior performance.

Our algorithm consists of two sub-algorithms and a dedicated fusion module. Specifically, we employ
a classical two-stage object detection network for image segmentation, which processes color images to
produce semantic information. The detection sub-algorithm is a 3D object detection framework that takes
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raw LIDAR points as input and outputs preliminary predictions. The fusion module integrates these image-
derived semantics with the LiDAR-based features, effectively bridging the segmentation and detection
networks. By incorporating semantic cues into the LiDAR point data, our approach aims to enhance the
accuracy of 3D object detection. Experiments on the KITTI dataset [27] demonstrate the effectiveness of
our method.

Our contributions can be summarized into three crucial components:

1. We employ nearest-neighbor search and continuous convolution to seamlessly fuse data from different
formats, and incorporate pooling and aggregation operations—conceptual extensions of convolution—
specifically designed to address the inherent disparities among these data representations.

2. Weintegrate segmentation masks directly with raw LiDAR points instead of relying on projected points,
thereby avoiding quantization loss. Additionally, when retrieving semantic information from images
through point cloud projection, we apply linear interpolation and upsample the image feature maps to
further mitigate quantization loss.

3. We conduct extensive experiments on the KITTI dataset [27], validating both the effectiveness and the
efficiency of our approach.

2 Related Works
2.1 Camera-Based 3D Object Detection

With the rapid development of 2D image object detection, it’s natural to consider using images to process
3D object detection. Mousavian et al. [13] and Li et al. [14] utilize 2D bounding boxes and surrounding image
pixels to estimate the dimension and orientation of 3D objects. Chen et al. [15] projecting a 3D bounding
box on the ground plane and leveraging features including semantic and instance segmentation, contextual
information, shape, and spatial position to obtain proposals. Wang et al. [16] try to convert the image to a
point cloud depth map and perform 3D object detection via LIDAR-based approaches. However, although
cameras capture fine texture information, they cannot directly acquire depth information. Camera-based
approaches [13-17] estimate depth at a per-pixel level, resulting in limited information for distant objects,
and the loss of depth precision is unavoidable.

2.2 LIDAR-Based 3D Object Detection

Compared with images, point clouds directly obtain depth information whether in front-view or bird’s
eye view and the object depth is invariant. PointNet [6,7] leads the way to directly extract features from raw
point clouds. Building on this, VoxelNet [9] emerged as a groundbreaking algorithm that downsamples point
clouds into voxels. PointRCNN [10] generates 3D proposals from the point cloud and refines proposals in the
second stage. LIDAR R-CNN [11] exploits a series of solutions based on the box to supplement the challenge
of object scale loss. CenterPoint [12] learns to estimate objects with a keypoint detector [28] which extracts
object properties from the object center. However, using a single LiDAR sensor results in coarse detection
of distant and small objects due to sparse point clouds. Therefore, a common solution is to fuse image data
with LiDAR points to achieve higher detection performance.

2.3 LIDAR-Camera 3D Object Detection

Laser scanners offer precise depth measurements, while cameras capture detailed semantics, making
their combination appealing for multi-modal fusion. MV3D [19] adopts a multi-view fusion approach
by incorporating a bird’s eye view, a front view, and a corresponding RGB-image as input. Their two-
stage network is composed of a 3D proposal sub-algorithm and a region-based fusion sub-algorithm.
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ContFuse [22] conducts k-nearest points search and continuous convolution on the BEV map to improve
their fusion precision. PointPainting [23] projects LIDAR points onto the output of image semantic feature
using a calibration matrix to append LIDAR point segmentation information. The painted points can then
be employed in LIDAR-based object detection [8-10]. PointFusion [24] utilizes PointNet [6] to obtain point-
wise feature and Faster RCNN [25] to achieve ROI and the later fusion operation is conducted under the
cropped ROL.

We argue that direct fusion approaches [19,23] are flawed, as they inevitably introduce quantization loss.
While Liang et al. [22] attempt to utilize continuous convolution [26] and deep fusion strategy to address
the issue of different sensor’s data formats, their combination is still based on BEV map that inevitably
introduces precision loss. Although Vora et al. [23] attempt to enhance the points feature by incorporating
image semantic segmentation, their fusion method relies solely on a transformation matrix without further
refinement, resulting in precision loss due to its coarse operation. Meanwhile, PointFusion [24] fuses data
directly from raw LiDAR points to avoid quantification loss found in AVOD [18] and MV3D [19], but its
image network merely performs object detection without providing the semantic information needed to
enrich point-level features. Inspired by Xie et al. [29] and Liang et al. [22], we learn to achieve direct fusion
by merging image and point features using continuous convolution, point-pooling and a learned MLP.

3 Method

In this section, we introduce our method, which comprises a novel fusion module and two sub-
algorithms. As shown in Fig. 1, the main components of our algorithm consist of a point cloud object
detection algorithm and an image object detection algorithm, with the fusion module serving as a bridge that
integrates data from both. The overall framework operates in two stages. For stage one, the detection sub-
algorithm takes raw LIDAR points as input and generates preliminary predictions, including coordinates
derived directly from the raw points, point-wise features obtained from the extractor, masks and 3D ROIs.
Simultaneously, the segmentation sub-algorithm processes images to extract semantic features. These first-
stage outputs are then passed into the fusion module, which fuse the data from LIDAR and images. In the
second stage, the fused data is received to produce the final predictions. During this stage, only the point
cloud data is processed for object detection, as our primary goal is to enhance LiDAR-based 3D detection
using image-derived semantics. Note that we transform point coordinates into a canonical form, while
keeping the other features unchanged. Local and global features are then combined and fed into the second
stage. To address the perspectival differences between LiDAR and camera data, we apply convolution-based
operations. We further incorporate pooling and a learned MLP to bolster the performance of continuous
convolution, enhancements empirically shown to improve fusion quality. We integrate segmentation masks
directly with raw LiDAR points instead of relying on projected points, thereby avoiding quantization loss.
Additionally, when retrieving semantic information from images through point cloud projection, we apply
linear interpolation and upsample the image feature maps to further mitigate quantization loss. We use image
segmentation instead of a classifier, since relying solely on 2D bounding boxes for 3D detection provides
only a coarse ROI and makes it difficult for the subsequent network to handle distant, small-scale objects.
By leveraging semantic segmentation, we supply richer information that facilitates more accurate and robust
3D object detection.
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Figure 1: The main architecture of our proposed framework

We argue that early fusion is sensitive to data format differences and the model is inflexible, making
subsequent operations challenging. On the other hand, late fusion discards intermediate features and
demands substantial computational resources. Therefore, we employ the middle fusion strategy that blends
feature-level and decision-level fusion. At intermediate layers, we integrate features from multiple modalities.
Drawing on the deep fusion approach introduced in MV3D [19], we make key improvements. Specifically, in
our fusion module, we apply pooling operations and continuous convolutions directly, and then incorporate
a learned MLP trained on the output of consecutive convolutions. Finally, we concatenated the processed
data from the aforementioned three parts to complete the fusion operation. This approach enables the
algorithm to effectively leverage distinct modalities with unique feature representations and varying levels
of complexity [3].

3.1 Fusion Module

In this section, we present our new fusion method. The fusion module in our system performs fusion
operations directly on the raw LIDAR points, eliminating the reliance on bird’s-eye-view projections and
thereby avoiding quantization loss. When retrieving corresponding semantic features from the images for
the point clouds, we employ interpolation and upsampling of the feature maps to reduce quantization loss. To
address the inherent differences in data formats, we employ continuous convolution and k-nearest neighbor
search, and we enhance this process by incorporating pooling operations and a learned MLP. The overall
architecture of the fusion module is shown in Fig. 2.
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Figure 2: The illustration of our proposed fusion module
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We argue that different perspectives and data formats across modalities are primary sources of precision
loss. While images capture fine textures, they are limited to 2D projections of the real world. In contrast,
LiDAR points provide rich 3D structures of the scenes. Liang et al. [22] introduce k-nearest points search and
bilinear interpolation to improve point cloud object detection. However, their reliance on the BEV format
quantizes the 3D point clouds, causing precision loss and leading to inaccuracies in neighbor searches and
feature combination on the BEV map. Although Liang et al. later introduced MMF [30] to establish a closer
connection between images and BEV using multi-task learning, they still refrained from applying continuous
convolution directly on the 3D points. Vora et al. [23] project LIDAR points onto the image plane using a
transformation matrix, then directly utilize the information extracted from both LIDAR data and images.
However, due to the different perspectives offered by BEV maps and images, directly merging their data is too
coarse to yield accurate and informative features. PointFusion [24] utilizes PointNet [6] to obtain point-wise
features and Faster RCNN [25] to achieve ROIs, performing subsequent fusion within these cropped regions.
Although their fusion is based on raw LIDAR points and proposed a dense fusion method, it operates within
a limited spatial scope. As a result, their approach struggles with small or distant objects because the image
network only performs object detection rather than providing the semantic information needed to enrich
point-level features.

To address the quantization loss stemming from BEV usage in Liang et al. [22,30], we perform feature
fusion directly on the raw points to avoid such degradation. Furthermore, when projecting point clouds onto
image feature maps, we enlarge the feature maps to reduce quantization loss during this process. In addition,
we incorporate pooling and a multilayer perceptron to further enhance the performance of continuous
convolution. Specifically, these components are employed to address the issue of feature sparsity. While
PointFusion [24] suffers from poor detection accuracy due to the absence of image semantic information,
our method enriches point clouds with these semantic cues. In contrast to PointPainting [23], which fuses
multi-sensor features through direct projection and thus results in a coarse integration, we utilize continuous
convolution and nearest-neighbor search to effectively address the differences in data formats across various
sensors. This approach enables a more precise and nuanced fusion of data, enhancing the overall accuracy
and robustness of the detection process.

In particular, the fusion module is separated by five phases:

1. We conduct KNN search for each source LIDAR point.

2. We project the neighboring points of the target point onto the image plane using the matrix supplied
by KITTI [27].

3. We retrieve the corresponding semantic feature from image, and compute the geometric offset between

neighboring points and target point. We subsequently concatenate them, and the concatenation can be
defined as:

f, = CONCAT ( fi, xx — x;) o)

where x; is the coordinate of target point p;, and the target point has several neighbor points, so xj
is their coordinates. Since we conduct KNN search for each source point, the range of i is from 1 to
N, where N is the number of points. k is the number of neighbor points, which range from 1 to K,
where K is the number of neighbor points. Therefore, x; — x; represents the geometric offset, f is
the corresponding image semantic feature of point py, CONCAT (.) is the operation of concatenation.
Then, we concatenate them and f,; is the final output.



Comput Syst Sci Eng. 2025;49 293

4. We utilize continuous convolution to fuse the concatenated features from step 2. The convolution can
be defined as:

)’ic = Z)’ic,kﬁ’ic,k = MLP, (fli) (2)

where f,: is the output from step 3, MLP,. (.) represent the process of continuous convolution, and yic) P
is the processed feature of neighbor point p;. Then, we concatenate all the neighbor points and y’, is
the final output.

5. To achieve fine fusion performance, we add a pooling operation and a learned MLP to enhance
convolution operation. The pooling operation is conducted before convolution and the learned MLP is
conducted based on convolution.

The pooling operation can be defined as:

. 7/ U 7 T
Yioal =POOL(E), F = [AT,f7,.. ., ] (3)

where f; is the output from stage 3, we combine them into F” and perform pooling operations uniformly.
POOL (.) is the operation of pooling. y; ool 18 the pooled feature of all nearest neighbors of point p;.
The aggregation can be defined as:

y(iz =MLP,ger ()’éc) (4)

where y._ is the features outputted from step 4, MLP, 4, (.) represents the operation of aggregation and
y! is the final output.

The fusion module produces the final output by combining the three pieces mentioned above through
concatenation:

vy = CONCAT (¥{,> ¥b> Ypool ) 5)

3.2 Image Segmentation Sub-Algorithm

Note that features derived from a classifier [25] are sufficient for 2D object detection, as this task
merely requires a 2D bounding box and associated confidence scores. However, 3D object detection
demands finer-grained correspondence between the LiDAR and image data, necessitating more meticulous
information. Although PointFusion [24] aimed to achieve better detection performance by adding images
and implementing a dense fusion strategy, its results remain unsatisfactory. We believe that the lack of
semantic information in image detection is a key factor underlying these limitations.

We assert that image segmentation is highly effective for enhancing fusion performance. It provides
pixel-level segmentation, accurately distinguishing foreground objects from the background, which facili-
tates the integration of color images and LIDAR points. Additionally, segmentation suppresses background
information, thereby reducing computational load and improving fusion efficiency. Pixel-level features
enable precise correspondence between images and points, ensuring accurate data alignment. The semantic
information extracted from images is utilized to enhance the features of LIDAR points, thereby improving the
performance of detection. In our framework, we employ Mask RCNN [31] to extract semantic information
from images, serving as the segmentation sub-algorithm. It is important to note that alternative segmentation
algorithms can be substituted as needed, allowing for flexibility in adapting to different requirements or
advancements in segmentation technology.
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3.3 3D Detection Sub-Algorithm

We contend that point-based fusion exhibits greater fusion performance compared to BEV-based
fusion. Implementing point-wise fusion necessitates a 3D detection algorithm that processes raw 3D points.
Therefore, we utilize PointNet++ [7], the improved version of PointNet [6] for our detection algorithm
stage one. In this stage, we extract point-wise features, which are then utilized to perform 3D bounding
box estimation and point-based segmentation, thereby generating preliminary 3D proposals. The second
stage is consistent with PointRCNN [10]. Initially, bounding boxes are expanded to obtain informative
contextual information. Subsequently, the information of local spatial points is achieved by rotation and
translation and concentrated with global features. The concentrated features are subsequently feed to the
encoder to conduct 3D box refinement. Importantly, the second stage refines fusion features that contains
semantic information from images, meaning that it does not rely solely on point cloud data as in the original
research. This integration of image semantics enhances the point cloud features, thereby improving the
overall detection performance.

3.4 Loss

Note that the core of our framework is 3D point object detection, and our loss function is centered
around the point cloud object detection. We first present the overall loss:

L=Lger + -Lseg (6)
The detection sub-algorithm loss can be defined as:

Ldet = Lreg + Lreﬁne (7)

where L., is stage one loss and L.fine is stage two loss, here we give more fine explanation, for Lg:

1
Log= g — (L0 +LR),

£ 5 (T (B bin) )+ o (S s ), ®
ue{x,z,0}

L= Y TS res”)
ve{y,h,w,l}

(»)

u

(p)

where Ei;lip) is the predicted bin assignments and bin v

and resflp ) is the ground truth. Note that we mainly consider foreground point p, so Ny, is the number of p.
Fas and Freg 18 the classification loss and regression loss, respectively. We use (x, y, z, h, w, I, 0) to represent

and refine the 3D proposal, where (x, y, z) is location, (h, w, 1) is size and 0 represents orientation.
While for L efine:
1

%” Z Fels (probi, label ,-) +—
ieB

is the ground truth, res,"” is the predicted residuals

Lrctine = > (£ + 22 ©)

H pos H i€Bpos
where B is the output of stage one, and B,,,s is the proposal of the foreground points. j:l()ir)l and ff;s) are

similar to L,gfn) and £Efs) in (8). prob, is the estimated confidence of b;, where b; denotes the bounding boxes.
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For the segmentation sub-algorithm, we extract semantic information and project the labeled points
onto the image to establish correspondences. Given that foreground points are typically fewer than
background points, we address this imbalance by employing focal loss [32]:

-Eseg (Pt) =0 (1 - pt)y 1Og (pt)
p forground (10)

where p; = 1-p background

and we set a; = 0.25,y = 2 as default.

4 Results and Discussion

In this section, we introduce the implementation details of our algorithm and compare it with other
methods for 3D detection of the KITTI dataset [27]. Meanwhile, we conduct extensive ablation studies to
investigate each component of our algorithm to validate our design.

4.1 Experimental Setup
4.1.1 Network Architecture

We utilize the architecture of Mask RCNN [31], a classical two-stage image segmentation network, as
our segmentation sub-algorithm. Mask RCNN [31] was chosen over other segmentation methods because
it performs both object detection and instance segmentation, making it ideal for our task. U-Net [33],
though efficient for medical images, lacks the ability to detect and segment objects simultaneously. While
Deeplab [34] excels at semantic segmentation, it doesn’t distinguish between different instances of the same
object. In contrast, Mask RCNN [31] combines object proposal generation and precise mask prediction,
making it more suitable for handling complex scenes with multiple objects. Although different segmentation
networks can be used, our focus is on leveraging semantic features to enhance 3D object detection
performance. Therefore, we do not emphasize the detailed framework of the segmentation algorithm, and
we employ the same experimental setup of original research across all experiments.

We utilize PointRCNN [10], a point-based 3D detection method as our 3D detection sub-algorithm.
Note that our fusion is conducted at the end of the detection network’s first stage due to our fusion
strategy. For input, we select a subset of 16,384 points from every frame as PointRCNN [10]. Through
empirical testing, we found that this number strikes a balance between capturing sufficient detail and
maintaining computational efficiency. Increasing the number of points beyond 16,384 offered only marginal
improvements, while fewer points led to a noticeable drop in performance. If a scene contains fewer than
16,384 points, we randomly duplicate some points to meet the required number. We would like to point out
that although randomly duplicating some points may have an impact on the experiment, such as overfitting
and reduced model generalization, the effect is minimal and can be considered negligible. The fusion module
receives point-wise features obtained from the extractor, the raw points’ coordinate, mask and ROIs as input.
The fusion strategy is modified from deep fusion and achieve positive effects.

4.1.2 Implementation and Training Details

For the detection sub-algorithm, we utilize raw 3D point clouds rather than employing BEV format data.
The input configuration for the 3D point clouds follows the methodology established in PointRCNN [10].
The designated area of interest for LIDAR points is defines as [0,70.4] x [-40,40] x [-1,3] in the LIDAR
coordinate system. In the stage-1 sub-algorithm, we categorize all points located inside the ground-truth
boxes as foreground points, while considering all other points as background points. For the preliminary



296 Comput Syst Sci Eng. 2025;49

proposal, we set the search range S = 3, bin size § = 0.5 m and orientation bin number » =12, considering
the actual size of vehicle. For the box proposal refinement sub-algorithm, we set the search range S = 1.5, bin
size § = 0.5 m and orientation bin size w = 10°, the bounding box enlarged parameter 7 is set as 1. During our
testing, we discovered that sampling the LIDAR points, similar to how training is conducted, yields better
results compared to employing all the data points. As a result, we have consistently applied this subsampling
strategy across all our models. Since subsampling is random, it inevitably results in the loss of some point
features, and certain point features are critical. While this approach may introduce some level of randomness
in the evaluation outcomes, we have observed that the results remain stable for a particular model, in some
cases, even show improvement. We abandon the operation of GT-AUG because the correspondence between
points and pixels will be disrupted. This is because GT-AUG inevitably requires placing ground truth boxes
and the points inside them from other scenes into the same positions in another scene, even though this
operation is random and not repeated [10].

We trained the model using a batch size of 2 on 2 GPUs. The learning rate was initialized at 0.01, and
was decreased by a factor of 0.1 at the 35th and 45th epochs. The training concluded after 80 epochs with 1
warm-up epoch set at the beginning.

4.2 Results on KITTI Dataset

The KITTI dataset’s [27] 3D object detection benchmark comprises 7481 training samples. Following the
approach outlined in PointRCNN [10], we split these samples into 3712 for training and 3769 for validation.
KITTI [27] categorizes the labels into three difficulty levels: easy, moderate, and hard, based on bounding
box heights, occlusion, and truncation levels. The leaderboard ranks all entries by Average Precision (AP) in
the moderate subset. We train our model on the training set and evaluate its performance on the validation
set, reporting the results accordingly.

4.2.1 Evaluation Metric

To ensure a fair comparison, all results are evaluated using average precision with an IoU threshold of
0.7 for cars, calculated on the validation set of the KITTI dataset [27]. The IoU threshold of 0.7 is widely
regarded as a standard in the 3D object detection community, particularly for the KITTI dataset [27], as it
strikes a good balance between precision and recall. While other thresholds could offer additional insights,
0.7 remains the most commonly used standard, providing a consistent and reliable evaluation of detection
performance in line with previous studies.

4.2.2 Comparison with Other Methods

Our approach is trained end-to-end. During training, the ground truth segmentation mask is derived
from the first-stage point cloud object detection. Specifically, the point cloud is projected onto the corre-
sponding image to generate the ground truth mask. As 3D object annotations provide supervision only for
binary classes [10], and our primary focus is on cars, we exclusively select the car class for our training and
evaluation process.

For PointPainting [23], we conducted its painted PointPillar [8] in default and surprisingly found that
it not only failed to achieve better performance but actually performed worse, despite its high performance
in BEV domain. This indicates that in 3D point cloud object detection, simply projecting the point cloud
onto a plane without further processing result in a loss of accuracy. At the same time, our algorithm
clearly outperforms PointPainting [23], which we believe is due to our use of linear interpolation and apply
operations on the feature maps to reduce quantization loss. Additionally, we employ nearest-neighbor search
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and continuous convolution to seamlessly fuse data from different formats. This highlights the significant
precision loss when directly fusing image and point cloud data. PointFusion [24] attempts to fuse image
data to achieve better detection performance. However, although they propose a dense fusion and the
fusion operation is based on raw LIDAR points, the supplied image information is ROI without semantic
segmentation. It insufficient for detection network to achieve fine performance. In contrast, our algorithm
incorporates semantic information from the image, which is the key reason for our superior performance.
ContFuse [22] employs KNN and continuous convolution to conduct object detection. However, their
approach is limited to 2D plane and thus falls short in achieving fine object detection. In contrast, by
directly fusing on the raw point cloud, our method achieves better results, further demonstrating its
effectiveness. PointRCNN [10] is conducted without GT-AUG, while other settings kept at their default
values. Their detection accuracy is limited due to the lack of supplementary image data. MV3D [19] uses
multi-view to operate object identification, but suffers from severe issues with perspective and data format
of multi-modal. These are the main drawbacks of their algorithm and the reason for its low accuracy. In
contrast, our algorithm overcomes these challenges by employing nearest-neighbor search and continuous
convolution to address data format discrepancies, and by directly fusing data on the raw point cloud to
reduce quantization loss. Additionally, we use interpolation and apply operations on feature maps to further
minimize quantization loss, resulting in improved detection performance. The comparison with other
methods is shown in Table 1.

Table 1: Performance comparison of 3D AP with previous methods on KITTI val split

Method Modality 3D AP (Car)
Easy Moderate Hard
MV3D [19] Image + LIDAR 7129 62.68 56.56
PointFusion [24]  Image + LIDAR 7792 63.00 53.27
ContFuse [22] Image + LIDAR  82.54 66.22 64.04
PointPainting [23] Image + LIDAR  87.08 78.43 75.58
PointPillar [8] LIDAR 87.82 78.55 75.73
PointRCNN [10] LIDAR 88.45 77.67 76.30
Ours Image + LIDAR  92.82 87.39 82.73

4.3 Ablation Study

We conduct ablation studies on the fusion module to analyze the effects of our method. The experiments
are trained on train split and evaluated on val split of the KITTI dataset [27].

Fusion module

Here, we conduct ablation experiments on the fusion module. Note that when we directly conduct
3D object detection, the 3D object detection is generated by a single PointRCNN [10] without leveraging
image semantic information. Our framework still works rather than breaking when the fusion module fails,
thanks to our fusion strategy that conducts feature combination in the middle layer. Point-pooling and
attentive aggregation are augmentation of continuous convolution and can be conducted independently.
Therefore, we consider the condition where only one operation is active, and it is not feasible to perform
point-pooling and attentive aggregation without the convolution operation. We achieve better results when
we add the convolution module, while incorporating point-pooling and attentive aggregation has further
enhance object identification performance. The ablation experiments are shown in Table 2. The ablation
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study about hyperparametric K is shown in Table 3. To maintain simplicity, we set hyperparametric d =
+oo as ContFuse [22] mentioned, since the model might ignore distant neighbors. We observe that K = 5
is significantly inferior K = 3. The explanation for this may be that a larger value of K includes points that
are far away, which introduces noises into the target point features. The results obtained with K =1 were
unsatisfactory, which we believe is due to insufficient information being captured.

Table 2: Ablation study about the effects of fusion module on KITTT val split

Cont conv  Point-pooling Att aggr 3D AP (Car)
Easy Moderate Hard
X X X 88.45 77.67 76.30
\/ X X 89.53 80.39 77.79
J V x 91.33 85.53 80.52
\/ X \/ 90.98 86.31 79.26
\/ \/ \/ 92.82 87.39 82.73

Table 3: Ablation study about the K

K 3D AP (Car)

Easy Moderate Hard
1 91.43 86.54 80.51
3 92.82 87.39 82.73
5 91.64 86.33 81.26

5 Conclusion

In this paper, we present a novel fusion method and a multi-sensor object detection algorithm that
integrates image segmentation with 3D point cloud detection. Our fusion approach leverages the geometric
offsets of points and retrieves corresponding semantic information from images to facilitate effective feature
combination. It is worth mentioning that, when retrieving the corresponding image features, we use
linear interpolation and apply operations on the feature maps to reduce quantization loss. We then apply
convolution, pooling operations, and a learned MLP to achieve high-quality fusion results. A key advantage
of our method is that we perform feature combinations directly on raw points rather than on the BEV plane,
thereby avoiding precision loss. Additionally, the incorporation of pooling operations and a learned MLP
further enhances the performance of continuous convolution. We conduct extensive experiments on the
KITTI dataset, demonstrating that our proposed method achieves precise and robust object detection results.
We propose an algorithm for autonomous driving. To address the complex road conditions in autonomous
driving environments, we need to verify the generalizability of our algorithm. Therefore, in our future work,
we plan to validate it on additional datasets. Additionally, the current algorithm only considers vehicles; we
also need to incorporate more objects, such as cyclists and pedestrians, which are all highly valuable areas
of research.
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