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ABSTRACT

In the contemporary era, the death rate is increasing due to lung cancer. However, technology is continuously
enhancing the quality of well-being. To improve the survival rate, radiologists rely on Computed Tomography (CT)
scans for early detection and diagnosis of lung nodules. This paper presented a detailed, systematic review of several
identification and categorization techniques for lung nodules. The analysis of the report explored the challenges,
advancements, and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung
nodules employing the deep learning (DL) algorithm. The findings also highlighted the usefulness of DL networks,
especially convolutional neural networks (CNNs) in elevating sensitivity, accuracy, and specificity as well as
overcoming false positives in the initial stages of lung cancer detection. This paper further presented the integral
nodule classification stage, which stressed the importance of differentiating between benign and malignant nodules
for initial cancer diagnosis. Moreover, the findings presented a comprehensive analysis of multiple techniques and
studies for nodule classification, highlighting the evolution of methodologies from conventional machine learning
(ML) classifiers to transfer learning and integrated CNNs. Interestingly, while accepting the strides formed by CAD
systems, the review addressed persistent challenges.
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1 Introduction

Cancer can be defined as an illness that occurs in different forms. Usually, it involves clusters of
abnormal cells. These cells lead to ungoverned multiplication and division, leading to the formation
of tumors [1]. In 2020, the World Health Organization (WHO) released a report that cancer was one
of the major sources of mortality, amounting to 10 million cases, which equals one out of every six
deaths [2]. According to the American Cancer Society (ACS), in 2023, 238,340 new cases of lung cancer
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and 127,070 fatalities were estimated in the United States (US). Fig. 1 below shows the estimated lung
cancer data in the US for the last six years (2018–2023) [3]. Most patients in developing nations are
diagnosed with lung cancer when it has already progressed to a later stage, without effective or proper
cures. Research indicates that among Chinese patients with advanced lung cancer, the 5 years survival
rate is only 16%. In contrast, the survival rate could increase to 70% if the cancer is identified in its
early stages [4].

Figure 1: ACS last six years lung cancer data in the US: (a) Estimated numbers of new lung cases;
(b) Estimated numbers of expired patients US [3]

Some of the leading causes of pulmonary cancer are consuming arsenic-containing drinking
water, smoking harmful particles, drinking alcohol, outdoor air pollution, eating red meat, etc., all
contributing to pulmonary cancer fatalities and illnesses. On the other hand, lung cancer treatment is
too expensive. The health system is searching for new cancer cures or treatments for lung patients. To
remove financial and psychological hurdles, lung cancer interventions such as initial-stage prevention,
screening tests, monitoring, and early-stage nodule detection remain a high focus [5]. Lung nodule
intelligence examination is an excellent cancer avoidance strategy that includes both a detection and
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a classification stage. Lung cancer is categorized into two primary types: non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for around 85% of all lung cancer
occurrences, while SCLC is responsible for the remaining 15% and is known for its high malignancy [6].
Recent statistics show that in 2022, there were 44,213 new pulmonary cancer cases, and 38,292 deaths
were reported in Brazil [7]. Lung diseases are also categorized and ranked with respect to genders,
such as the 5th most frequently found type of lung cancer in females and the 3rd in number for males,
according to the statistics provided by the Brazilian National Cancer Institute.

Generally, pulmonary nodules are small, rounded, or geometric shapes with approximately 3–
30 mm diameters. These nodules exist in various sizes, densities, locations, and surroundings. Micro-
nodules are nodules with diameters <3 mm. Non-cancerous nodules, such as the bronchi barrier and
blood vessels, generate false-positive results in the detection process due to their similar appearance
to cancerous nodules. Pulmonary nodules are classified into four types based on their location. The
first is a well-circumscribed nodule in the middle of the lung with no connections to the vasculature.
The second type is a juxta-vascular nodule, which connects to the vessels and is even in the middle
of the lung. The third type is the pleural tail, located on the pleural surface and connected by a
thin structure. The fourth lesion is a juxta-pleural nodule firmly attached to the pleural surface [8].
It is a simple classification technique for labeling a nodule to analyze its different parameters, such
as position and connections, which can help identify lung cancer. Fig. 2 shows an example image of
different nodules. It is more challenging to diagnose pulmonary nodule lesions since they usually have
no symptoms. However, studies show that nodules with a diameter greater than 8 mm, which are sub-
solid, speculated, and lobulated, are more likely to be malignant [9,10].

Figure 2: An example of a different variety of lung nodule candidates using a CT scan. (a) Isolated
nodules with a diameter >3 mm; (b) Micro-nodules having a diameter <3 mm; (c) Non-nodule with
a diameter >3 mm; (d) indicates ground-glass nodules (GGN); (e) Isolated solid nodules; (f) Solid
irregular and Juxtavascular nodules; (g) Juxta-pleural nodule (h) Sub-solid and isolated nodules

CT is considered the primary imaging modality for detecting and diagnosing lung nodules (LNs),
providing superior resolution and cost-efficiency. Such imaging techniques recognize nodules and
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become helpful in their characterization and monitoring development. Besides advantages, studies
[11–13] have also presented some limitations of CT. On the other hand, such deficiencies could
be efficiently mitigated by executing a computer-aided detection (CADe) system, which effectively
complements conventional CT scans by retrieving pertinent information about lung nodules. It
incorporates extensive growth patterns, features and characteristics, and other data, which probably
remained invisible instantly with the help of traditional imaging alone. The integration of CADe
into the diagnostic phenomenon is especially beneficial because it helps radiologists establish more
diagnoses in a timely and accurate manner. By employing modern ML algorithms, CADe elevates the
diagnostic workflow by offering radiologists extra information and pointing out areas of concern.
The collaborative approach enhances nodule efficiency detection and categorization, as well as
plays a role in more informed decision-making on account of patient care. Moreover, the CADe
incorporation into lung nodule diagnosis mirrors the persistent synergy between medical imaging
and technological advancements. As clinical professionals persistently struggle to improve accurate
diagnosis and expedite the diagnosis process, CADe is a significant tool in the pulmonary imaging
realm; thus, it is an effective avenue for elevated patient consequences and more efficient disease
management.

Nowadays, technologies are updated regularly, and CAD systems significantly facilitate medical
doctors in the detection of lung cancer tumors. A CAD system has two main types: a computer-aided
detection (CADe) system and a computer-aided diagnosis (CADx) system. By specifically stressing the
adoption of deep learning algorithms, CAD systems have evolved as an effective tool for automated
detection and lung nodule classification in CT scan images [14]. The purpose of the CADe system is to
identify regions of interest in pulmonary CT scans in order to find abnormal lesions. Some studies have
highlighted the tendency of CADe systems to retrieve usefulness and pertinent data on lung nodules–
this plays potential roles in the diagnosis process. As Khan et al. [13], CADe assists in identifying key
lesions along with demonstrating proficiency in the discrimination between non-nodules and nodules,
which incorporates consolidations and blood vessels. Such discrimination is essential to overcome false
positives and strengthen the nodule detection specificity [15,16]. Besides, the CADx systems integrated
into the diagnostic setting add an additional layer of sophistication [17]. As Han et al. [18], CADx
systems contribute integrally to the characterization of lesions by facilitating insights into their forms,
phases, and progression. Such systems go beyond mere detection, intending to classify lesions as either
benign or malignant nodules, thus helping radiologists form a more accurate and extensive diagnosis.

The primary purpose of CAD systems is to improve the radiologists’ ability to diagnose cancer,
as well as their accuracy while shortening the time it takes to interpret CT scans [14]. In this way, the
CAD system plays a vital role in assisting medical doctors in their decision-making; as the technology
integration in health and clinical care emerges consistently, it becomes more integral for assessing the
contemporary setting of lung nodule detection methodologies and gaining insights into the challenges
and advancement in the field [17,19]. In the wake of the effectiveness and challenges, there is a need to
develop a more synthesized view of the information, particularly in the false positives (FPs) setting as
well as the need for persistent algorithm refinements for accommodating different patient populations.
Research by [20,21] demonstrated the persistent endeavor to enhance the performance of the CADe
system; thus, the usefulness of the iterative development and processes of validations is emphasized.
The increasing prominence of CAD systems in assessing and diagnosing lung nodules initially is not
deniably transformative for the radiology field, which provides efficiencies, overcoming interpretation
time potentially for radiologists probing CT images. The paradigm shift has significantly streamlined
the processes of lung cancer screening, causing an estimated compound growth rate of 7.7% yearly
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across the world for the CAD market by 2031, with 23% of such systems known for detecting lung
cancer [22].

On the other hand, the CAD system’s emergence is noted by the shift from conventional and
handcrafted characteristics retrieval approaches to additional current deep learning approaches,
mainly CNNs [14]. While traditional CAD systems depend on engineered features (including shape
and texture analysis) manually, their effectiveness is hurdled by restrictions. Such restrictions involve
medically accelerated abstraction from suboptimal image samples, insufficient normalization, uni-
versality, uniformity, and the substantial time investment needed. Considering the loopholes, a
prominent transition has occurred toward deep learning methodologies, particularly CNNs. Studies
by Zhu et al. [23] and Halder et al. [24] pointed out CNN’s superiority regarding time efficiency
and accuracy compared to traditional CAD systems. In these studies, the CNN approaches mitigate
multiple challenges, such as extracting related characteristics and features as well as concise, objective
identification. The success increases beyond the detection of lung nodules–this exhibits effective and
outstanding performance in domains like image analysis medically. Along with adopting CNNs in
CAD systems, it is considered highly effective and adequate for approaching the shift critically.
The research performed by Mehmood et al. [25] stated the need for considerable validation and
benchmarking processes to ensure the CNN-based CAD system’s reliability and generalisability
throughout different groups of patients and imaging situations. In addition, persistent endeavors are
needed to mitigate fundamental biases in data training and optimize the algorithm’s performance.

However, several reviews have been available previously that provide information about the
detection, diagnosis, and analysis of pulmonary nodules with CT scans. The aim of those studies is
to provide the best technique that has been developed at that time and compare the experimental
results. However, with the developments and enhancement of new methods, techniques, and medical
equipment, a DL-based solution for nodule diagnosis has just recently been introduced. Therefore, a
comprehensive, up-to-date review of the time and research is needed as well, and this is the primary
outcome and impact of this exploratory work.

This research paper is divided into different sections. Each section contains an explanation of the
related topic. Section 2 covers the experimental benchmark, including publicly available datasets of
CT scans and related competitions. Section 3 explains the complete workflow of CAD systems along
with effective techniques related to every four main components. In Section 4, discussion is presented.
Section 5 outlines the current challenges as well as the future prospective directions. The conclusion
and results of the research are mentioned in the final Section 6.

2 Exceptional Benchmarks

To build an effective CAD method to diagnose and categorize lung nodules, the researchers
should focus on these experimental benchmarks, including databases and large-scale competition.
CAD systems require huge, CT images to train detection models. Hence, gathering publicly available
datasets is essential. Appropriate evaluation measures are needed to validate the performance of
different techniques accurately. Furthermore, large-scale diagnosis competitions continuously have
updated techniques and methods trained on a uniform database and performance standard criteria.

2.1 Open Datasets of Pulmonary Nodule

CT images are acquired for CAD system evaluation. Most images inside nodule detection and
classification are 2-D and 3-D slices with 512 × 512 pixels. All images are kept in the DICOM (Digital
Imaging and Communications in Medicine) file type. Higher resolution CT copies are available from a
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limited number of openly available databases, such as the Lung Image Database Consortium (LIDC)
and Automatic Nodule Detection (ANODE), and from other hospitals (private databases). The
following list includes a few well-known publicly accessible datasets.

2.1.1 NLST

The National Lung Screening Trial (NLST) was one of the clinical experiments carried out
through randomization for screening of lung swelling cancer. In this study, approximately 53,454
people have enrolled whose ages ranged from 33–74 years. The duration was August 2002 and
April 2004. Information was gathered on cancer detection and mortality, and it took place until
31 December, 2009. The dataset contains 26,254 low-dose CT images, 26,254 chest X-rays, and
digitized histopathology images from 451 participants. More than 75,000 CT screening examinations
are available from the 2 lac imaging series, which include information about participant attributes,
diagnostic procedures, screening examination results, lung cancer, and death rates [26].

2.1.2 Via/ELCAP

A dataset was created by the research teams including Vision and Image Analysis (via) and
International Early Lung Cancer Action Program (I-ELCAP) to analyze the functioning of various
CAD methods. The developed database contains an image set of 50 dose computed tomography whose
thickness will be 1.25 mm, types, locations, and sizes of nodules are also given. The sizes of pulmonary
nodules are small and accessible to the general public [27].

2.1.3 LIDC-IDRI

The LIDC-IDRI database is the most extensive, freely accessible reference resource for the
early detection of lung cancer [28]. The LIDC dataset has 1018 cases of CT scan images, along
with corresponding XML files that contain two-stage image annotations from 4 qualified medical
radiologists. Even annotation also includes information related to types, positions, and characteristics
of nodules. Lung Nodules are categorized into three parts-nodule >=3 mm, nodule <3 mm, and non-
nodule >=3 mm. All images were stored in the DICOM format.

2.1.4 ANODE09

ANODE09 dataset originates from 118 NELSON. It is a freely accessible dataset consisting of
55 thoracic CT images interpreted by two radiologists. Five of these images are being used as part
of the training process, while the other 50 are for testing. Some more details related to this database
are mentioned in Van Ginneken et al. [29] research study. For research on lung nodules, additional
databases such as Lung CT-Diagnosis, NELSON, QIN LUNG CT, Reference Image Database
to Evaluate Therapy Response (RIDER) lung CT, ACRIN-NSCLC-FDG-PET, and RIDER lung
PET-CT are also freely accessible in addition to NLST, via/I-ELCAP, NELSON, LIDC-IDRI, and
ANODE09. All these datasets are smaller in size than LIDC-IDRI. Table 1 represents summarized
information of all available data sets. Table 2 represents multiple grand competitions and challenges
of the CAD System.



CSSE, 2024, vol.48, no.6 1489

Table 1: Summarized information of all publicly available datasets

Release
date

Dataset No. of
sample

No.
participant

Data access Modality Collection
status

Annotation

Dec, 2003 via/I-ELCAP [27] 50 NA Yes CT Complete Position & type
of nodules

2003 NELSON [30] NA 7557 NA CT Complete N/A
Dec, 2009 NLST [26] 75,000+ 53,454 Yes CT Complete Member

features and
detection
evidence

2011 LIDC [28,31] 1018 NA Yes CT, CR, DX Complete Nodule
properties,
type, and
position

2009 ANODE09 [29] 55 NA Yes 5 training
& 50 testing

CT Complete Position & type
of nodules

2015 Lung CT diagnosis
[32]

61 61 Yes CT Complete Nodule
position

2016 QIN lung CT [33] 47 47 Yes CT Complete NA
2009 RIDER lung CT [34] 46 32 Yes CT Complete NA
2013 RIDER lung

PET-CT [35]
275 244 Yes CT, PET Complete NA

2013 ACRIN-NSCLC-
FDG-PET
[36]

3377 242 Yes PT, CT, MR,
CR, DX, SC,
NM

Complete Clinical data

Note: NA = Not Available, CR = Computed Radiography, SC = Secondary Capture, NM = Nuclear Medicine, PT = Positron Tomography,
DX = Digital Radiography, MR = Magnetic Resonance, ACRIN = American College of Radiology Imaging Network, FDG-PET =
Fluorodeoxyglucose Positron Emission Tomography.

Table 2: List of different grand competitions and challenges for the detection and diagnosis of CAD
system
Challenges Year Sample size Data access Annotation Integral parts Performance

metrics
Best result

ANODE
[29,37]

2009 Only 5 training
scans and 50 test
scans

Available Nodule
location and
type

Nodule Detection
(NDD)

FROC, CPM 0.632

LUNA [38] 2016 888 CT scans
with 1186
nodules, exclude
scans with a slice
thickness
>2.5 mm

Available Nodule size
and location

NDD FROC, CPM,
CV

0.951

False-Positive
Reduction
(FPRD)

FROC, COM,
CV

0.968

DSB [39] 2017 1594 CT scans for
S1, 506 CT scans
for the final test

N/A Cancer ground
truth of S1 data

Nodule
Classification
(NDC)

LogLoss 0.3998

(Continued)
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Table 2 (continued)
Challenges Year Sample size Data access Annotation Integral parts Performance

metrics
Best result

ISBI-LNMP
[40]

2018 200 CT scans for
100 subjects

N/A Nodule
position

NDC AUC 0.913

LNDb [41] 2019 294 CT scans Available Nodule size,
location, and
type

Fleischner
classification

CV, Fleischner
weighted
Cohen’s Kappa

0.5795

NDD CV, ACPM 0.533

Note: NDS = Nodule Segmentation, ACPM = Average Competition Performance Metric, ISBI = International Symposium on Biomedical
Imaging. In the performance metrics column, the bold color represents the best result we achieved against methods.

2.2 Articles Search Strategies

This research collected information from different relevant secondary sources, which became
possible through employing different search strategies. For exploring lung nodule detection and
categorization from images of CT scans, it is useful to initiate by recognizing key concepts crucial
to the research. Such concepts seldom involve “CAD systems”, “CT scan images”, “Lung Nodule
Detection”, and “CT Scan images”. Once such concepts are recognized, the next step includes
related key terms and phrases such as “Computed tomography for lung lesions”, “Pulmonary nodule
identification”, and “Automated lung cancer diagnosis”. To guarantee the search was utmost, it is
useful to use synonyms and relevant terms for every key concept. Such expanded vocabulary tends
to enhance search inclusivity. For example, “CT scan∗AND CAD system∗” widens the automated
diagnosis scope, and “Lung nodule∗” captures differences in nodule terminology. Logical key terms
combination is integral while adopting Boolean operators, including OR, AND, and NOT, aids
in structuring the search efficiently. Integrating “The CAD system” and “Lung nodule detection”
guarantees an emphasis on studies at the two critical elements’ intersection.

Relevant and specialized databases such as IEEE Xplore, PubMed, and Google Scholar are
employed for targeted searches in the computer science and medical imaging domains. Moreover,
the examination of the citation lists of selected papers also presented seminal works and instructed
researchers in basic studies in the field. In consideration of the dynamic nature of the study, filters
for publication date and language are set to guarantee the inclusion of recent and related studies.
Collectively, these search strategies allow researchers to cast a wide net so that both relevance and
specificity in the research retrieval ensure that it pertains to lung nodule detection and categorization
from the CT scan images.

3 Structure of CAD System

Numerous research has been conducted throughout the years to increase CAD system efficiency.
A CAD system is based on four basic elements: (1) preprocessing, (2) lung segmentation, (3)
nodule detection, and (4) classification. All these basic elements have been accurately summarized
by considering the literature study that has been done so far. A workflow diagram of a nodule CAD
system is presented in Fig. 3:
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Figure 3: CAD system complete process flow diagram

3.1 Pre-Processing

The preprocessing step in the investigation of lung CT scans is highly critical. Its purpose is to
refine the resolution and quality of the raw images and remove any unwanted information (noise, arti-
facts, etc.) from the images to achieve better results. Additionally, preprocessing increases the effective-
ness of nodule detection and simplifies valuable information. Different methods and techniques are in
practice for medical imaging preprocessing, such as thresholding, contrast enhancement, component
analysis, morphological process, and image filtering [42–45]. Besides these approaches, thresholding
and component analysis appear proficient ways to isolate lung dimensions from disrupting elements.
The region expanding can be used to determine lung volume from the bronchi. After calculating
the lung volume, erosion and enlargement techniques can be used to obtain a well-defined lung.
To eliminate noise and improve image quality, a large number of different filters are used, including
the Gaussian smooth filter, enhancement filter, smooth filtering, and the arithmetic mean filter. All
these approaches can be applied and joined in different ways to gain several segmentation effects
and outcomes. A research study [42] evaluated lung regions using various preprocessing techniques,
including connected component labeling, hole filling, and the best gray-level thresholding. To reduce
delay and eliminate noise in the processing of images, the authors applied a Gaussian filter [43].
Another paper [44] discussed three preprocessing methods for medical images: top-hat transformation,
median, and adaptive bilateral filter. Among these, the adaptive bilateral filter yielded the most
impressive results. A thorough description of the preprocessing is illustrated in Fig. 4.

3.2 Lung Segmentation

The second stage in detecting lung nodules from CT scans is segmentation to isolate lung
parenchyma from other organs. Lung nodules (LNs) are located in the lung parenchyma, so their
detection allows for decreasing the number of false-positive nodules outside the lung. However, the
complex lung structure makes this step extremely difficult. Soliman et al. [46] used region growth and
component analysis to determine the context of all 3D pulmonary scans. The researchers then adopted
a hybrid 3D Markov-Gibbs Random Field (MGRF) framework to identify the suspicious parts of the
lung’s volumes and segment them as benign or cancerous nodules.
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Figure 4: The step-by-step preprocessing explanation. (a) Convert the computed tomography scan into
HU form. (b) Applied thresholding method to binarize the image. (c) Select the relevant lung volume
region. (d) Split lungs into two groups: left lung and right lung. (e) Compute each lung’s convex hull.
(f) Combine and expand 2 masks. (g) Multiply the image by the mask, then add tissue luminance to
the masked area before converting the image to UINT8. (h) Resize the image into a particular size by
cropping it [45]

Extending above, Aresta et al. [47] presented iW-Net, a DL model with nodule dissection and
user intrusion features. However, when nodules of large size used here, the proposed system worked
efficiently, and the segmentation quality increased even more when user input included. Supporting
this, Nemoto et al. [48] used 2D and 3D U-Net frameworks for semantic dissection of lung CT scans
and compared the efficiency result with smart segmentation tools. Different algorithms for medical
image segmentation based on DL are suggested. Another study [49] discussed a well-functioning CNN
to segment different lung diseases in CT images. Additionally, a multi-instance loss and adversarial
loss technique incorporated with the neural network to tackle the problem of segmentation in other
medical cases. The approach tested on LIDC, CLEF, and HUG datasets. In this paper [50], the
authors presented a recurrent U-Net (RU-NET) model and a recurrent residual U-Net (R2U-Net)
model for medical image segmentation. This framework outperforms other network parameters in
terms of performance. In this work [51], the authors presented a lung nodule segmentation network
that incorporated multiple CNN blocks to adjust the U-Net algorithm. The study found that the
effectiveness of a nodule segmentation approach can be measured based on its accuracy, efficiency,
dependability, constancy, and level of automation.

3.3 Nodule Detection

It aims to locate and detect all LNs correctly in the CT scan and reduce the FP result to
achieve maximum sensitivity. It’s usually divided into candidate nodule detection (CNDD) and false-
positive reduction (FPRD). In the last three decades, numerous methodologies have been presented
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for detecting multiple LNs due to the complexities of nodule texture, size, shape, location, etc.
These methods can be divided into conventional and deep neural network (DNN) approaches. The
traditional methods include image processing and ML classifier techniques to recognize nodules
and improve the false-positive ratio by increasing the correlation between the feature profiles and
suspicious regions. Alternatively, DNN-based approaches include CNN-based methods that extract
implicit features from medical images and automatically tune system performance. In the next sub-
section, some effective CNDD and FPRD algorithms are presented. In Tables 3 and 4, all the useful
algorithms proposed from 2018 to 2024 are listed and summarized below.

3.3.1 Candidate Nodule Detection

It is a technique to detect suspicious areas of abnormal tissues and predict their position and
probability. In this step, CAD identifies as many candidate nodules (CNs) as possible to enhance
the chance of a patient’s long life. For decades, various traditional methods based on hand-crafted
features, i.e., thresholding, region growing, morphological operation, template matching, and shaped-
based, have been commonly deployed for CNDD. Narayanan et al. [52] have detected and segmented
CNs concurrently using intensity thresholding in conjunction with morphological processing. In [53],
Otsu’s threshold method for nodule detection opted. Solid nodules detected using Otsu’s thresholding,
included in a fixed-width sliding window. Finally, the logical OR operation used to merge all windows.
Multi-layered Laplacian-of Gaussian (LoG) filters and Otsu’s used to detect sub-solid and non-
solid nodules. A 3-D region-growing algorithm suggested in [54] to segment nodules accurately. The
candidate nodule initially detected by using a selective enhancement filter and thresholding method.
The region-based method gives a degraded performance as compared with a threshold-based CNDD.

In [11], a 3-D mass-spring model for nodule detection suggested. They applied both region-
growing and morphological techniques for precise segmentation of lung volume. Same as a CAD
system for nodule detection and classification is developed by Namin et al. [55]. Initially, the
segmentation of LNs done using a thresholding approach—the next step involved enhancing the
nodules and removing noise with a Gaussian filter. Then, the intensity and volumetric shape index (SI)
utilized to find potential nodules. Finally, a Fuzzy K-Nearest Neighbor (KNN) approach employed
to categorize the nodules into benign and malignant types.

Deep learning is gaining popularity due to its high success rate, and more and more detection tech-
niques based on DNNs are being presented. Many DDN-based algorithms, especially convolutional
neural networks (CNNs), are utilized to extract both low-and high-level internal features from nodules
and significantly increase sensitivity and accuracy detection rates. As a result, candidate nodules can
be identified with ease. The models most commonly used for nodule detection include CNN, U-Net,
feature pyramid network (FPN), region proposal network (RPN), residual network (ResNet), visual
geometry group (VGG-net), densely connected convolutional network (Dense-net), Inception Res-net,
Alexa-net, Google-net, and Retina-Net. Essential components such as convolutions and pooling are
almost identical in all these network architecture.

Nguyen et al. [56] designed a CAD system with adaptive anchor boxes based on the Faster R-CNN
framework for CNDD. A mean-shift clustering approach used to automatically learn anchor boxes
using the ground truth nodule size of the training data. Learning anchors improve the performance
of fast R-CNNs in node detection. Another study [57] presented a new method for speedy nodule
candidate detection. We applied a nodule size fitting model that complies with a Faster R-CNN
algorithm to detect various nodule types, locations, and sizes. After detection, candidates can be
located based on their bounding box. In addition, several convergent networks have been developed
that combine the performance of multiple networks using multi-stream architectures [58–60].
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Zheng et al. [58] developed a computerized system using CNN-based maximum intensity pro-
jection (MIP). The proposed architecture included four merged 2DCNNs based on U-Net and one
3DCNNs based on VGG-NET. Component analysis and binary morphology used to segment lung
volume thresholds. The authors then used 2D-CNN to detect potential nodules in four streams using
MIP images with various plate thicknesses as input. The proposed system tested on LUNA16 and
LIDC-IDRI datasets and achieved high sensitivity. A DL base approach developed in [60], to enhance
the performance of pulmonary nodule detection. The authors applied a CNN of five convolutional
layers with an 11-layer CNN (5 convolutional layers) to extract nodule features. The system tested and
trained on LIDC/IDRI datasets.

3.3.2 False Positive Reduction

Even after the CNDD stage, a high number of FPs per scan reduces the accuracy of node detection.
Too many FPs lead to overdiagnosis and treatment, as well as a waste of medical resources and time.
Thus, reduce in the number of FPs is required to enhance the accuracy of nodule detection. FPRD
primarily focuses on identifying true nodules from the extracted candidates and removing false nodules
during the detection phase corresponding to the binary classification task. Many studies have focused
on FPRD. Numerous studies have devoted their attention to FPRD [24,61,62].

In the FPRD stage, a number of parameters based on intensity, texture, and shape must be
extracted from potential nodule CT images and used as input for classifiers to distinguish between
nodules and non-nodules. Several ML classifiers are frequently employed to recognize true and false
nodules, such as support vector machine (SVM), KNN classifiers, linear discriminant classifiers, and
various boosting classifiers. One of the most difficult aspects of this phase is to find the proper balance
between sample size and nodule type. Due to the complexity of the location, different sizes and types
can confuse the classifier. For instance, a study [62] introduced a type-II fuzzy approach to enhance
the quality of raw CT scan images. The researcher next applied a revised spatial kernelized fuzzy c-
means clustering algorithm for inner structure segmentation. Finally, morphological operations such
as opening, closing, and filling utilized for nodule detection. In order to determine if the nodule
candidate is malignant or benign and has lower FPs, three classifiers—MLP, KNN, and SVM are
used. In [24], the authors presented an automatic CAD system for finding lung nodules. First, they
implemented the gaussian mixture model (GMM) for nodule segmentation and then worked on a
morphology filter to remove the vessels. For CNDD, they used various intensity and shape-based
traits. To cut down on false positives, they employed an SVM classifier with 10-fold cross-validations
and obtained a sensitivity rate of 89.77 with the LIDC/IDRC dataset. Table 3 shows the summary of
candidate nodule detection, FP reduction, and information.

Table 3: Overview of candidate nodule detection, FPs reduction architecture, and their key information
Year Study Method Modality Dataset Performance

2018 Zhang et al. [63] CNDD: Global optimal active
contour model, 3D
morphological operations,
Thresholding, 3D connected
components labeling, 3D
skeletonization feature VRR.
FPRD: SVM

CT LIDC-IDRI Sensitivity: 0.893
Accuracy: 0.936 at
2.1FPs per scan

(Continued)
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Table 3 (continued)
Year Study Method Modality Dataset Performance

2018 Tang et al. [64] CNND: U-Net like 3D Faster
R-CNN
FPRD: Classified with
3-Dimensional DCNN

CT TianChi
competition

CPM: 0.815

2018 Farahani et al. [62] CNND: Modified spatial
kernelized fuzzy C-means
(MSKFCM), Morphological
procedure.
FPRD: An ensemble three
classifier based on MLP, KNN,
SVM

CT LIDC-IDRC Sensitivity: 0.932

2019 Narayanan et al. [52] CNDD: Optimize feature
selection for clustering and
cluster-based classifier

CR, CT JRST, LIDC-IDRI Sensitivity: 0.752, 0.749
at 3FPs per scan

2019 Tang et al. [65] CNND: 3D Region Proposal
Network (RPN) adapted from
Faster-RCNN
FPRD: 3D CNN

CT TIANCHI CPM: 0.712

2019 El-Regaily et al. [66] CNDD: Thresholding, 2D and
3D region growing, Euclidean
distance transform.
FPRD: rule-based classifier,
followed by a multi-view CNN

CT LIDC-IDRC Sensitivity: 0.85 3
AUC: 0.94
Accuracy: 0.899

2019 Liu et al. [67] CNND: 3D Feature Pyramid
Network (3DFPN) with
pre-trained model (ResNet-18)
model
FPRD: High Sensitivity and
Specificity (HS2) network

CT LUNA16,
SPIE-AAPM,
LungTIME, HMS

CPM: 0.957, 0.899,
0.899, 0.871

2019 Cheng et al. [68] CNND: modified U-Net block
based on ResNet
FPRD: 3D multiple Classifier
Network including VGG,
Inception, and DenseNet

CT TIANCHI Sensitivity: 0.73

2019 Wang et al. [57] CNND: Convolutional Neural
Network-based nodule-size-
adaptive model. FPRD:
CNNs-based classifier

CT LUNA16 CPM: 0.903
Sensitivity: 0.968 at
60FPs per scan

2019 Günaydin et al. [69] Multiple machine learning
methods KNN, SVM, Decision
Trees (DT), and ANN

CT JSRT Accuracy: 0.757, 0.554,
0.824, 0.932

2020 Halder et al. [24] CNND: Gaussian Mixture
Model (GMM),
Morphological filter.
FPRD: SVM

HRCT LIDC-IDRC Sensitivity: 0.897
Accuracy: 0.883

2020 Shi et al. [70] Pre-trained deep CNN
model—VGG-16 based on
transfer learning and SVM for
classifier

CT LIDC-IDRC Sensitivity: 0.872

(Continued)
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Table 3 (continued)
Year Study Method Modality Dataset Performance

2020 Ozdemir et al. [71] CNND: 3D segmentation
neural network based on the
V-Net architecture.
FPRD: Scoring network

CT LUNA16 Sensitivity: 0.921

2020 Cao et al. [72] CNND: U-Net based
segmentation network
FPRD: 3D-CNN based
SeResNet, DenseNet, and
InceptionNet

CT LUNA16 CPM: 0.925

2020 Veronica [16] CNND: ROI, Fuzzy C-Means
(FCM) with centroid
optimization, ANN with
weight optimization

CT ELCAP,
LIDC-IDRC

Sensitivity: 0.961
Accuracy: 0.998

2020 Masood et al. [73] CNND: Multi-Region
Proposal Network (mRPN)
using modified VGG-16.
FPRD: 3DDCNN based on
modified ResNet-101 network

CT LUNA16,
LIDC/IDRC,
ANODE 09

CPM: 0.946
Sensitivity: 0.974
Sensitivity: 0.988

2020 Zheng et al. [74] CNND: Convolutional neural
network (CNN) based on 2D
U-Net++
FPRD: 3D Multi-scale dense
CNN

CT LIDC-IDRC CPM: 0.955

2020 Wang et al. [75] CNND: FocalMix method
using SSL for 3D modified
FPN

CT LUNA 16 labeled
data,
NLSTunlabeled
data

CPM: 0.907

2020 Naqi et al. [61] CNND: FODPSO-based
optimal threshold, geometric
fit, hybrid geometric texture
feature (HGTF)
FPRD: Autoencoder and
Softmax function DL

CT LIDC-IDRC Sensitivity: 0.956

2020 Zheng et al. [58] CNND: MIP-based 2-D CNN
framework based on U-Net
FPRD: 3-D convolutional
neural networks based on
VGG-net

CT LIDC-IDRC Sensitivity: 92.67 at
1FPs per scan

2021 Nguyen et al. [56] CNND: Faster R-CNN model
with adaptive anchor box
FPRD: Residual CNN based
on the ResNet model

CT LUNA16 Sensitivity: 0.956 CPM:
0.882

2021 Su et al. [76] CNND: Improved and
optimized Faster R-CNN
network

CT LIDC-IDRC Accuracy: 0.912

2022 Zhao et al. [77] FPRD: Multi-scale CNN
framework

CT LIDC-IDRC Sensitivity: 0.952

2023 Ji et al. [78] CNND: Improved
YOLOv5-CASP

CT LUNA 16 &
X-Nodule

Precision: 0.720, 0.794
F1 score: 0.740, 0.766

(Continued)
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Table 3 (continued)
Year Study Method Modality Dataset Performance

2023 Ahmed et al. [79] CNND: Faster-RCNN,
YOLOv3, SSD

CT LIDC-IDRC Accuracy: 0.93, 0.94,
0.93
Precision: 0.89, 0.91,
0.92
Recall: 0.70, 0.89, 0.88

2024 Goel et al. [80] CNND: YOLOv6 CT LUNA-16 Accuracy: 0.82

Note: Candidate Nodule Detection (CNND), Maximum Intensity Projection (MIP), Semi-Supervised Learning (SSL), Deep Convolutional
Neural Network (DCNN), Decision Trees (DT).

In the past, DL networks found to be more effective than traditional methods for classifying
and identifying images. Currently, it is the preferred technology due to its fast training, adaptable
structures, diverse usage, and accuracy. As a result, researchers have put forth a range of DL algorithms
for improved detection and classification performance [71–73,80]. Elaborating thus, Ozdemir et al. [71]
presented a novel diagnostic system that accurately assesses probabilities on low-dose computed
tomography images of lung cancer. This system utilizes a 3D-CNN to identify and classify malignant
LNs. The system tested on two available datasets, the Kaggle data science bowl challenge and Luna16.
To reduce the FP rate and improve accuracy, the authors highlighted the importance of the coupling
between the diagnosis and detection components. For the first time, the CT images analyzed using DL
systems, and model uncertainty used to determine calibrated probabilities for the classification process.
This combination of calibrated probabilities and model uncertainty leads to risk-based decision-
making for the diagnosis phase and helps to increase accuracy.

Masood et al. [73] proposed a cloud-based automated CADe system based on a 3D-CNN model
in this research. Median Intensity Projection (MeIP) generates MeIP images, after which traditional
procedures utilized to extract multi-scale, multi-angle, and multi-view patches from the MeIP images.
In the nodule detection part, a multi-region proposal network (mRPN) model designed with a
modified VGG-16 backbone to identify potential nodules from the extracted patches. Finally, a 3D-
CNN with a modified ResNet-10 used to decrease FPs. The proposed system underwent a thorough
evaluation using LUNA16, ANODE09, and LIDC-IDRI data, achieving sensitivities of 0.98, 0.976,
and 0.988 respectively with 1.97, 2.3, and 1.97 FPs/scan.

Advanced image processing algorithms for CAD systems have mainly developed the innovative
use of deep learning in detecting canal nodules, improving lung cancer diagnosis confidently and
accurately. One of the modern developments is you only look once (YOLO) [80], which has recently
been attributed to being revolutionary, as it allows for the real-time analysis of lung CT scans by
predicting the most appropriate boxes for localization while offering class probabilities. As for the
presented research, although YOLO increases the speed and reliability of detection, the ability of the
method to detect small and faint nodules, which are essential when diagnosing cancer at an early stage,
still necessitates independent clinical testing.

Cao et al. [72] addressed the problem of detecting LNs due to its complexity and environmental
heterogeneity by proposing a two-level convolutional neural network (TSCNN). A modified/extended
U-Net segmentation network has been used to emphasize the initial presence of nodules at the first
stage. They proposed an advanced training sampling technique to achieve higher recall and minimize
the introduction of excessive FP nodes. This phase also provides a two-phase forecasting approach,
which is a method of predicting future instances based on past and present data. In the final stage,
we developed three 3D CNN-based algorithms to eliminate false-positive LNs based on SeResNet,
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DenseNet, and InceptionNet classification networks. According to [78], detecting small nodules from
lung medical images is very challenging. The suggested work develops a unique CASP YOLOv5
model that expands the experimental field of the ASPP Module and combines and improves CBAM
YOLOv5s and the detection head process for lung nodule prediction. Here, experiments performed
on two datasets named LUNA16 and X-Nodule. The results of the experiment indicate that for
LUNA16, the F1 score is 0.720, the mean average precision is 0.740, and for X-Nodule, it is 0.794
and 0.766, respectively. In [79], an analysis of lung cancer done. Here, DL-based methods have been
applied to classify and detect lung nodules. The proposed system provides a comprehensive analysis of
various fundamental architectures related to the classification of pulmonary nodules (Mobillenetv3,
Resnet101, VGG-16) and for lung nodule position detection, including Faster-RCNN, YOLOv3, and
SSD. For detecting the position of nodules, the results show that a good average accuracy rate lies
between 0.92 and 0.95, with an average detection accuracy range of 0.93 to 0.94 for detecting the
position of nodules.

3.3.3 Nodule Classification

The final CAD step system is nodule classification, involving FP reduction, which can increase
classification efficiency. The majority of LNs are benign; however, it could be a sign of lung cancer
in its early stages. Early diagnosis of a cancerous lesion can increase the patient’s survival rate.
Many CAD systems have been developed to assist doctors in differentiating malignant lesions from
benign ones, but few of them have been designed for nodule-type classification [21]. For instance, the
patient’s age, sex, smoke, toxic particles, and alcohol are leading causes of nodule lesions. Although
malignant nodules are large in size having diameters greater than 8 mm with complex surface structures
and characteristics. Estimating the malignancy probability is mainly dependent on analyzing the
measurements of the nodule’s size and the way it looks. Table 4 represents nodule classification
techniques.

Table 4: Techniques for nodule classification
Year Study Method Modality Dataset Performance

2018 Zhu et al. [23] DeepLung based on 3D Faster
RCNN With Deep 3D Dual
Path Network

CT LIDC-IDRC Acc.: 0.90

2019 Liao et al. [45] 3D CNN and a Leaky
Noisy-or Model using data
augmentation for the classifier

CT LUNA 16, DSB Log Loss: 0.39
AUC: 0.87

2019 Uthoff et al. [81] ML tool pipeline using
k-medoid clustering,
information theory, and ANN
classifier

CT LIDC-IDRC AUC: 0.965

2019 Al-Shabi et al. [82] CNN model based on
Gated-Dilated (GD) Networks,
using multiple dilated
convolution operations

CT LIDC-IDRC AUC: 0.95

2019 Al-Shabi et al. [83] Local–Global neural network
method for both local and
global feature classifier

CT LIDC-IDRC AUC: 0.956

2019 Sahu et al. [84] Multi-section CNN
architecture

CT LIDC-IDRC AUC: 0.98
Acc.: 0.932

(Continued)
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Table 4 (continued)
Year Study Method Modality Dataset Performance

2019 Ren et al. [85] Manifold regularized
classification DNN
(MRC-DNN) for image
classifier

CT LIDC-IDRC AUC: 0.90
Sensitivity: 0.81

2019 Nasrullah et al. [86] Customized mixed link
network (CMixNet) and
Gradient Boosting Machine
(GBM)

CT LIDC-IDRC Sensitivity: 0.94

2019 Chen et al. [87] DCNN model called Med3D
Pre-train on various ResNets,
transfer Med3D pre-trained
models to improve
performance

CT LIDC-IDRC Acc.: 0.919

2019 Hussein et al. [88] Pre-trained 3D-CNN, K-mean
clustering, and proportion-
SVM, using both supervised
and unsupervised strategies

CT LIDC-IRDC Acc.: 0.786

2020 Shakir et al. [89] 3-D Radiomic feature
performed on two ML
classifiers including SVM, NM

CT LIDC-IDRC Sensitivity: 1.0

2020 Xia et al. [12] Fusion of CNN and radionics
to classify among non-IA and
IA GGNs

CT LIDC-IDRC ACC.: 0.90

2020 Baldwin et al. [90] Built a lung cancer prediction
CNN (LCP-CNN) for classifier

CT NLST AUC: 0.896

2020 Huang et al. [91] An optimal pre-trained
DTCNN and Extreme
Learning Machine (ELM) was
adopted for classifier

CT LIDC-IRDC,
Private Dataset
(FAH-GMU)

AUC: 0.949
Sensitivity: 0.937

2021 Ardimento et al. [92] Ensemble architecture based
on three pre-trained DNNs
including VGG, Xception, and
ResNet

CT LIDC-IDRC Acc.: 0.96

2021 Zheng et al. [93] 3D DenseNet framework with
filters and pooling kernels

CT LUNA 16,
LIDC-IDRC

Acc.: 0.924

2021 Ma et al. [22] Transfer learning combined
with DNN–AlexNet in
classifying lung
adenocarcinoma of GGNs

CT Tianjin General
Hospital

AUC: 0.94

2022 Harsono et al. [15] Transfer learning of I3DR-Net,
3D–CNN model, which unite
I3D backbone, with RetinaNet
and modified FPN framework

CT LIDC-IDRC,
Private

AUC: 0.818
AUC: 0.704

2022 Mehmood et al. [25] Pre-trained deep learning
model AlexNet with (CSIM)
for classification

Histopathology
Images

LC2500 Acc.: 0.899

2022 Shi et al. [94] Applied Pre-trained
Semi-supervised Deep Transfer
Learning (SDTL) strategy for
unlabeled images and for
classifier

CT WCHSU,
RHSJTUS,
CHSMMU

AUC: 0.91

(Continued)
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Table 4 (continued)
Year Study Method Modality Dataset Performance

2023 Dhasny
Lydia et al. [95]

Presented MRKM clustering
method for segmentation and
efficient CNN for lung nodules
classifier

CT LIDC-IDRC AUC: 0.96

Note: West China Hospital of Sichuan University (WCHSU), Ruijin Hospital of Shanghai Jiao Tong University School of Medicine
(RHSJTUSM), Changzheng Hospital of Second Military Medical University (CHSMMU), Class Selective Image Processing (CSIM).

Different classification methods are used: (1) ML classifiers, such as SVM, Decision Trees,
Principal Component Analysis (PCA), KNN classifiers, Bayesian classifiers, and optimal linear
classifiers [69,89]; (2) Deep Neural Network include CNNs [72,82,84]; (3) CNN integrated with ML
classifiers [23]; (4) CNNs trained with transfer learning algorithms [70,96].

In this study [69], various ML algorithms, including PCA, KNN, SVM, Naïve Bayes, Decision
Trees, and Artificial Neural Networks (ANN), are opted to identify lung cancer nodules. All the
techniques are compared, and ANN and Decision Tree show the best results, with 82, 93% accuracy
with preprocessing and 43, 24% without preprocessing. A study [84] presented a lightweight multi-
section CNN method to analyze cross-sections of nodules and classify them into either cancerous/non-
cancerous. The validity of this approach tested on the LIDC data and obtained an average accuracy of
93.18%. In [82], authors presented a new approach based on the CNN algorithm called Gated-Dilated
(GD) networks. The GD network used two dilated convolutions as an alternative to max-polling
to accurately identify nodules of varying sizes as either benign or malignant. Moreover, a Context-
Aware sub-network used to direct the features among the two dilated convolutions. The technique
tested on the LIDC-IDRI data and achieved remarkable results of 92.57% accuracy with a sensitivity
of 92.67%. In [95], the authors developed a novel DL-based model that automatically detected and
analyzed CT images of lung nodules. In this work, the main focus is on nodule classification and
segmentation. MRKM clustering applied to perform segmentation, and an enhanced CNN model
utilized for classification. For feature accuracy enhancement, the ATSO algorithm has been used to
select CNN classifier parameters in an optimized way and achieved a maximum accuracy of 96.5%
with a dice similarity coefficient of 94.5%.

A recurrent residual CNN that based on the U-Net approach presented by Xia et al. [12]. Then,
to categorize nodules as either IA or non-IA, we integrated DL with radiomics characteristics, and as
a result, we achieved an AUC value of 0.90 plus or minus 0.03. Authors [23] proposed an automated
diagnosis system called DeepLung. DeepLung is separated into nodule detection and classification
stages. Initially, preprocessing methods applied to segment lung volume. Then, to identify potential
nodules, a 3D Faster R-CNN with a 3D dual-path block and an encoder-decoder structure built,
similar to a U-Net. Afterward, 3D-DPN utilized to extract suspicious characteristics of the candidate
nodule. Finally, a gradient boosting machine (GBM) in conjunction with DPN applied to decide if the
LNs are cancerous. Testing the LIDC datasets with this method led to an accuracy of 87.5% and an
error rate of 12.5%.

Based on CT scans, the authors [91] presented a novel technique for diagnosing LNs that combines
deep transfer CNN with an extreme learning machine. They used an extreme learning machine
classifier after using a DL transfer CNN to extract high-level characteristics of lung nodules. It shown
to generate results that superior to those obtained using other approaches considered state-of-the-art
approaches. In their most recent article [70], a DL-based method to lower the false positive rate of
nodule recognition suggested to increase networks’ effectiveness for nodule detection. They changed
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parameters in fully linked layers and fine-tuned VGG-16 using transfer learning. Then, they used these
finely tuned networks as feature extractors to pull out characteristics of lung nodules, after which they
trained SVM to classify the nodules.

4 Discussion

A comprehensive examination of CADx systems has reflected a foremost advancement in
automated lung nodule analysis. Neural Network-based algorithms such as CNNs are utilized to
enhance the measures of accuracy, sensitivity, specificity, and FP rate per scan in nodule detection
and classification processes, making CAD systems more efficient at identification and analyzing
lung cancer in its initial stages. Although CT scanning methods and DL techniques are growing
in popularity, more intelligent CAD systems are being developed, yet there are still issues and
difficulties that need to be tackled. The research findings demonstrated that optimizing DL algorithms
for CAD of LNs includes mitigating challenges for elevating accuracy, interpretability, and initial-
phase detection while enhancing the classification of lung cancer. An integral component is the
refinement of the DL model architecture to enhance interpretability. CNNs have exhibited success;
however, attention must be offered to architecture such as XAI or attention mechanisms–it allows
the model to point out regions impacting its decisions. The attention of attention maps and salience
approaches offer support in gaining better insights into the features that are useful to nodule detection.
Additionally, mitigating data challenges is vital. Annotating immense datasets with different nodule
features guarantees the model witnesses an extensive scenarios range so that generalization is boosted.
In link with this, transfer learning from pre-trained frameworks on comprehensive datasets tends
to elevate performance, particularly in scenarios with restricted labeled information. The stress
on data augmentation methods guarantees effectiveness by presenting the model to differences in
nodule appearances. In accuracy terms, fine-tuning hyperparameters remains useful. For instance,
as per this research findings, holistic experimentations with learning rates, optimizer choices, and
batch sizes allow resulting configurations, heightening overall accuracy and model convergence.
Additionally, incorporating ensemble approaches that combine predictions from various models
elevates generalization. The CNN integration has advanced CAD systems for detecting lung nodules in
chest CT scans. The hybrid technique integrates CNN’s strengths in learning considerable patterns with
conventional radiomic features; thus, elevating interpretability. Mitigating false positives, the emphasis
on the refinement of FPRD employing modern techniques, including deep reinforcement learning and
3D CNNs, elevates accuracy. In the classification of lung cancer, hybrid models integrating DL with
conventional ML classifiers, augmented by SHAP values, are explainability techniques that synergize
strengths for efficient decision-making in medical aspects.

The above research has been supported by several past studies that considered CT scans as
an adequate standard for exploring lung parenchyma [14,86,96]. As Huang et al. [91], DL has
become prominent and substantial attention, and numerous CNN architectures have been executed
progressively in CAD schemes for diagnosing lungs. The CNN procedure is integrally classified by its
tendency to acquire multiple ascertained data. Moreover, it employs restricted direct supervision to
maximize categorization. CNN is also capable of auto-defining unfamiliar features. Some techniques
exhibit compelling outcomes with either high rates of sensitivity or low rates of FP. Maintaining
high sensitivity rate linked with a low level of FP is essential for building robust CADe systems and
proving their usefulness in discriminatory pulmonary nodules. Khan et al. [13] and Nasrullah et al. [86]
executed a DL architecture, regarded as Multi-Crop CNN, enabling the cropping of nodule regions
with salient data from convolutional feature maps and implementing numerous max pooling.
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Past studies [14,17,56] illustrated the substantial progress made in CAD systems for detecting and
classifying lung nodules in CT scans. Primarily, the emphasis lies in applying DL, especially CNNs
because of their tendency to retrieve automatically features from input information–this eliminates
the requirement for feature engineering manually [67]. The transition towards deep learning has
been accelerated by its tendency to learn patterns and spatial data–it is imperative for the CT scans’
3D nature. Comparing MTANNs (massive-training artificial neural networks) and CNN models
presented the MTANN’s efficiency in the detection and classification of nodules–this stresses their
adeptness at controlling semantic features of the lower level. Studies seldom integrated numerous
CNN architectures or employed ensembled approaches for elevating system performance [55,56].
Approaches ranged from employing different CNNs with numerous patch sizes for nodule detection
of the candidates to embedding deep features retrieved by networks such as AlexNet into cascade
classifiers [17,44].

Notably, the integration of handcrafted characteristics with deep features in some cases outper-
formed employing either CNN or SVM alone for the classification of lung nodules. The hybrid strategy
intended to use paradigms strengths [4,22]. The 3D CNNs choice over 2D CNNs pointed out as
more suited for the CT scans 3D nature–this offers effective spatial data modeling [97]. Nevertheless,
despite the benefits of 3D CNNs, most of the chosen works (approximately 91%) employed 2D CNN
architectures, illustrating a prevailing preference. Zhao et al. [30] and Wang et al. [75] presented the
integral contribution to deep learning, particularly CNNs, in surpassing the constraints of conven-
tional CAD approaches and other ML approaches. Computer-aided detection (CAD) exhibited a
substantial advancement by producing related features automatically with the help of pooling and
convolution layers, overcoming dependency on feature extraction manually [96,98]. CNNs’ iterative
self-learning approach played a role in the persistent improvement in detecting lung nodule rates.
Comparing traditional CAD and deep learning methods pointed out the benefits of CNNs such as
their tendency to learn directly from images without the demand for segmentation of nodules [82,85].
It does not merely preserve more data but also eradicates the losing imperative details risks at the
time of segmentation. Obtained deep features from massive training information explored for having
a superior representational capability in comparison to handcrafted characteristics, which are seldom
dependent on expert analysis subjectively [20].

5 Challenges and Future Perspectives

5.1 Dataset Scarcity

There is a need for a sizable amount of precise and well-categorized datasets for effective deep-
learning models to research and analyze medical images. Unfortunately, the existing publicly available
database of lung CT scan images is not labeled correctly, leading to mixed-up annotations for the
different datasets. Consequently, gathering thoracic CT images with precise labels is a challenging
task. Conversely, confidentiality can be the most difficult complication in collecting individual lung
CT scans. There are also various hospital protocols and national strategies to protect personal data.

To tackle the data shortage issue, data augmentation techniques are used, which include scaling,
cropping, flipping, and rotation of CT scan images. Additionally, Generative Adversarial Networks
(GAN) are implemented to generate additional artificial samples [18]. On the other hand, CAD
systems mainly rely on supervised learning (SL) for nodule detection and classification. However, SL
is expensive and time-consuming, requiring huge, labeled data. Semi/Unsupervised learning methods,
like transfer learning or fine-tuning, may be more appropriate in such situations to reduce FPs.
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5.2 Overfitting

In the case of SL, for example, the fact that there is usually very little labeled data is often
accompanied by overfitting, where the model learns noise rather than the phenomena that are looked
at in pattern recognition [12]. This is further magnified when the complexity of the model is higher
than the amount of information incorporated in the development of the model by performing poorly
in unseen examples. Also, convergence issues arise when the models fail to learn optimal parameters for
their corresponding models, giving rise to unstable training dynamics or sub-optimality. Other related
approaches, such as cross-validation, early stopping, and learning rate scheduling, can go a long way in
reducing overfitting but cannot fully overcome the problems from limited data. This requires moving
toward approaches for learning from the data that incorporate the natural structure of the data without
necessarily having labeled instances.

There are better ways of improving the model component that can reduce sensitivity to noise when
trained with limited data, including unsupervised learning. Methods such as GANs and autoencoders
involve creating new training examples or embedding vectors in order to represent essential elements of
the original data. These methods help to reduce overfitting associated with stout lar possibility due to
an insufficient number of labeled samples in a training dataset by increasing the size of the training data
set or by selecting meaningful features. Moreover, self-supervised learning and the transfer learning
model apply to readymade data association or ready models to amend the task-oriented models, and
this eliminates the possibility of getting trapped in local optima as it starts at a more stable point of
convergence. Although, indeed, these approaches are not without their issues–for one, synthetic data
may deviate from reality to avoid compromising their sources, or, when employing transfer learning,
starting with a designated domain might prove difficult–these are novel concepts for overcoming the
limitations of scarcity in data for the improvement of the supervisory training of learning models.

5.3 Lack of Interpretability

A CNN-based neural network model trained using a black box manner automatically recognizes
and categorizes LNs but does not explain how they develop. For radiologists to identify the primary
root of the disease, the interpretability of a DL model is crucial. For this more study of neural networks
is needed to extend the interpretability of the neural network models, because if there is a difference
between doctor and CAD system assessment, it will help the radiologists to find the main reason and
to overcome the doubts and concerns.

5.4 Lack of Continual Learning Ability

Radiologists require a proficient CAD system in order to deliver the most suitable clinical
decisions when faced with unexpected samples. Consequently, the CAD system must possess the
capability to learn and be trained to identify new medical images. However, the current CAD systems
are typically developed and executed using trained models, indicating that they work correctly in static
conditions rather than varying conditions. As a result, they are unable to detect a few untrained
samples resulting in inaccurate diagnosis [99]. Thus, it is essential to create and construct a CAD
system that has the capacity to continually learn and adapt to the varying conditions that happen in
real-time contexts.

Implementing a novel CNN architecture employing cloud computing techniques is an effective
way to construct systems that can learn continually. Using this approach, the nodule recognition
archives can be stored on the cloud to upgrade the datasets, thus enabling the presented deep
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learning network to be trained on a cloud for adjusting real-time environment variations without
interruption [73].

5.5 Uncertain Quantification (UQ)

The practice of UQ in DNN can enhance the validity of the semi-supervised medical image
segmentation process [20]. This could be a useful area of research study for pulmonary nodule CAD
systems in the future. A significant number of resources and stringent regulations will be mandatory
for lung nodule screening to guarantee substantial gains and lessen FPs. The design and testing of
more straightforward nodule evaluation algorithms using new diagnostic modalities like molecular
signatures, biomarkers, and liquid biopsies should also be the focus of future research [97]. Machine
learning and DL algorithms are the best options for this endeavor and could lead to remarkable
advancements in the field of radiology due to their ability to automatically detect and classify nodules
with greater accuracy.

5.6 Research Implication

The holistic review of CADx systems for lung nodule detection and categorization pointed
out multiple implications of the research. Most importantly, the dataset scarcity challenge makes it
necessary to emphasize the creation of a standardized and well-annotated dataset for CT scans of
the lung that mitigates challenges of data security and confidentiality with the help of collaboration
between medical institutions. In addition, the challenge of overfitting in SL becomes appropriate
for researchers investigating unsupervised learning approaches, such as transfer learning, to enhance
the CAD system generalization capability with restricted labeled data. For future research, the
lack of interpretability urges the enhancement of interpretability that facilitates CAD systems and
radiologists’ collaboration by probing how models make decisions and how methods are developed to
interpret and explain their outputs.

With respect to research findings’ implications, the insufficiency of continual learning capabilities
in contemporary CAD systems implies that the study efforts must be directed towards developing
systems with the tendency for continual learning, significantly through innovative CNN designs and
cloud-based approaches. Besides, the integration of uncertain quantification techniques, particularly
in semi-supervised segmentation of medical images, hints at an effective avenue for more clinically
applicable and reliable systems of CAD. In the future, researchers must investigate the design and
testing of CAD algorithms, which includes information from new diagnostic modalities like liquid
biopsies and molecular signatures, for more accurate and extensive assessments of lung nodules.
Mitigating regulatory and ethical considerations is imperative, so researchers in the future must
consider the development of standards and guidelines for regulatory and ethical considerations while
using CAD systems in lung nodule screening. Finally, investigating hybrid approaches (which integrate
conventional ML methods with DL algorithms) could elevate the CAD system’s reliability and
performance for lung nodule analysis. Thus, the implication of this clinical research can play a role
in the CAD systems advancement so that more interpretable, adaptable, and effective for emerging
medical practices.

6 Conclusion

Technology is being used extensively in the healthcare sector to diagnose chronic diseases. As early
detection can surge the endurance rate of patients, therefore, continuous advancement in CAD system
is the need of an hour. Researchers are constantly trying to devise new methods and, at the same
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time, making efforts to address the shortfalls in existing detection and diagnostic procedures of lung
nodules. In this paper, we have discussed the major causes and types of lung nodules. Further, we have
compared the reported detection and classification nodule algorithms based on the different datasets
and various performance metrics.

Based on the research findings, the CAD field for lung nodule analysis has seen prominent
advancements, especially with the integration of neural network algorithms such as CNNs. Such
algorithms have enhanced the sensitivity, accuracy, and false-positive rates, as well as detected and
categorized nodules’ specificity. The ability of CAD systems to recognise and analyse lung cancers in
their initial phases has been enhanced. Despite the advancements, challenges and opportunities for
improvement remain. DL optimization is integral to dealing with issues regarding early detection,
interpretability, and accuracy. DL model architecture refinement including employing Explainable AI
(XAI) or attention mechanisms that can elevate interpretability by pointing out areas influencing
model decisions. The integration of attention maps and saliency approaches can form a better
understanding of the attributes impacting nodule detection.

Dealing with data challenges is integral. Annotating an extensive dataset with numerous nodule
attributes ensures the model deals with a wide number of scenarios, elevating generalization. Fine-
tuning hyperparameters is vital to acquiring accuracy. Practical experimentation with learning rates
(LR), optimizer selection, and batch sizes assist in demonstrating configurations, which elevate model
convergence and accuracy. Ensemble methods can be used to enhance generalization when combining
predictions from diverse models. Clinical acceptance has made interpretable features considerable.
Integrating radionics features, as well as the DL model, allows emphasizing shape, intensity, and
texture that helps in comprehending decision-making approaches. The hybrid technique capitalizes on
the DL strengths in learning substantial patterns while retaining the conventional radionics features’
interpretability.

For further mitigating FPs and enhancing the initial detection phase, a concerted effort must
be given toward the refinement of the FPRD phase. Using modern techniques, including 3D CNNs,
while deep reinforcement learning for FPRD enhances the ability of the model to differentiate true
nodules from false positives so that the nodule detection accuracy is elevated. In the lung cancer
categorization setting, the emphasis must divert towards developing hybrid models, which combine
DL algorithms with other categorization techniques like ML classifiers. The approach causes accurate
classifications of lung cancer. Thus, advancements in CADx are effective, and continued research and
development (R&D) endeavors are required to minimize current challenges and make such systems
even more proficient tools for initial detecting and diagnosing lung cancer.
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