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ABSTRACT

In many Eastern and Western countries, falling birth rates have led to the gradual aging of society. Older adults
are often left alone at home or live in a long-term care center, which results in them being susceptible to unsafe
events (such as falls) that can have disastrous consequences. However, automatically detecting falls from video data
is challenging, and automatic fall detection methods usually require large volumes of training data, which can be
difficult to acquire. To address this problem, video kinematic data can be used as training data, thereby avoiding
the requirement of creating a large fall data set. This study integrated an improved particle swarm optimization
method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a cost-
effective and accurate fall detection system. First, it obtained an optical flow (OF) trajectory diagram from image
sequences by using the OF method, and it solved problems related to focal length and object offset by employing
the discrete Fourier transform (DFT) algorithm. Second, this study developed the D-IRFCMAC model, which
combines spatial and temporal (recurrent) information. Third, it designed an IPSO (Improved Particle Swarm
Optimization) algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC
(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller) model in the global search
space. The proposed approach outperforms existing state-of-the-art methods in terms of action recognition
accuracy on the UR-Fall, UP-Fall, and PRECIS HAR data sets. The UCF11 dataset had an average accuracy of
93.13%, whereas the UCF101 dataset had an average accuracy of 92.19%. The UR-Fall dataset had an accuracy of
100%, the UP-Fall dataset had an accuracy of 99.25%, and the PRECIS HAR dataset had an accuracy of 99.07%.

KEYWORDS
Double interactively recurrent fuzzy cerebellar model articulation controller (D-IRFCMAC); improved particle
swarm optimization (IPSO); fall detection

1 Introduction

Declining birth rates have led to the gradual aging of society in many Eastern and Western
countries. According to a World Health Organization report, the proportion of the population that
is aged ≥65 and ≥70 years is increasing by 28%–35% and 32%–42% each year, respectively [1]. A
survey from the US National Institutes of Health indicates that in the United States, approximately
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1.6 million older adults experience a fall-related accident each year [2]. According to Carone et al. [3],
the European Union’s elderly dependency ratio (the number of people aged ≥65 years divided by
the number of people aged 15–64 years) is expected to double by 2050 to greater than 54%. China is
also confronting a rapidly aging population. In 2020, older adults comprised approximately 17% of
the Chinese population, and this percentage is predicted to increase to 35% by 2050 [2]. In Taiwan,
which has been considered an aging society since 2018, individuals aged ≥65 years comprise 14% of
the population. Families previously lived in multigenerational households, and at least one adult was
available to care for older adult relatives. However, most adults now work outside the home; thus, the
older adults in their families are often left alone at home. An accident experienced by an older adult
when they are alone at home can have disastrous consequences. Falls are the main cause of injury-
related death in older adults [4], and 87% of all fractures in older adults are caused by falls. Although
many falls do not cause injury, 47% of older adults who are uninjured after a fall are nonetheless
unable to move normally without assistance, which indirectly affects their health. In addition, in one
study, 50% of older adults who fell and then remained on the floor for a certain period after their fall
were found to die within 6 months, even if they had not been directly injured in the fall [5]. Therefore,
a system that can automatically and immediately detect fall events and inform a caregiver or family
member can substantially benefit older adults. Additionally, increasing economic stress has reduced
the time available for young people to care for their older adult relatives. This crucial social problem
can be addressed by using information collected through different systems, such as cameras.

Many methods have been proposed for posture recognition and fall detection. These methods can
mainly be divided into two categories: non-computer-vision (NCV) and computer-vision (CV) meth-
ods. NCV methods involve automatically recognizing human actions by conducting mathematical
modeling and using sensors. These methods can be divided into three subcategories: dynamic system
methods [6–9], stochastic methods [10–12], sensor methods [13–16], and wearable-sensors [17–19].
Dynamic system methods involve encoding action data as differential equations, whereas stochastic
methods involve encoding action data as state transitions and data representing the distribution
of states. Finally, sensor methods involve using a set of model parameters, which are regarded as
discrete points in a multidimensional parameter space. Thus, the obtained action data are compressed
into a mathematical model through symbolic representations called action symbols. Action symbols
facilitate not only the synthesis of human-like actions but also the recognition of human behavior
from observations. However, such mathematical models are not intuitive representations. A model
that classifies observations does not understand action categories such as “walking,” “running”, or
“squatting”. In sensor methods, sound, vibration, and other data are captured using various sensors—
fall detection can be achieved through the use of accelerometers, acoustic sensors, and floor vibration
sensors. In [13], an activity detection method based on dynamic and static measurements made by a
single-axis acceleration sensor was developed. Changes were observed by placing acceleration sensors
on the chest and feet, and the measured signal is analyzed using a threshold-based algorithm for
fall detection. In [14], a three-axis acceleration sensor was attached to different areas of the body,
and the severity of the fall is determined by comparing the measured dynamic and static acceleration
components to appropriate thresholds. Threshold-based algorithms can be used to detect certain falls,
as shown by the experimental results of [14]. In [15], an acoustic fall detection system was designed
that can automatically notify a guardian of a fall. The performance of this fall detection system was
evaluated using simulated sounds corresponding to fall and nonfall events. A fall detection system
based on ground vibration and sound induction was proposed in [16]. Suitable temporal and spectral
characteristics were selected from signals generated by ground vibrations and sound induction, and
fall and non-fall events were classified using a Bayesian classifier. The system above detects falls with
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a rate of 97.5% and detects errors with a rate of 1.4%. Although NCV methods can accurately detect
falls, these methods have some limitations, such as the need for the individual under monitoring
to wear an acceleration sensor. Moreover, environmental noise can affect the systems used in these
methods. To overcome these problems, some scholars have proposed fall detection methods based
on CV technology. However, the implementation of CV-based fall detection systems raises privacy
concerns regarding the use of surveillance equipment. To alleviate these concerns, most such systems
send an alarm to a caregiver or family member only when a fall is detected, and video of normal
activities is neither stored nor transmitted.

In the past decade, substantial improvements have been achieved in CV systems using real-time
object motion and video or image processing technologies, thus enabling the development of various
fall detection methods. In [20–22], simple adaptive threshold or shape-based methods were used to
distinguish falling from nonfalling actions. However, these methods had high false positive rates (e.g.,
the action of sitting down quickly was misclassified as a fall). The authors of [23] proposed a threshold-
based method that involves using a calibrated camera to reconstruct the three-dimensional (3D) shape
of a person. In the aforementioned study, fall events were detected by analyzing the volume distribution
of the reconstructed 3D shape along the vertical axis. Experimental results demonstrated that the
aforementioned method has excellent performance. Rapid developments have been made in pattern
recognition technology, and many researchers have adopted this technology for fall detection [24–
25]. In [24], a neurofuzzy network was used to classify postures and detect fall events. Similarly, in
[25], the k-nearest neighbors’ classifier was used for posture classification, and statistical hypothesis
testing was performed to determine the threshold time difference suitable for distinguishing falls from
and lying-down events. This method was found to have a correct detection rate of 84.44%. In [26,27],
fall and nonfall events were classified by extracting feature information (such as contour, bright, and
flow features) to achieve a robust system that can be used in bright environments containing multiple
objects. In [28], the fall detection performance of three models was compared. Among them, the neural
network model was effective in detecting falls with a 92% fall detection rate and a 5% false positive
rate, respectively. Short video clips have been used by researchers to categorize fall and non-fall events
[29,30]. In [29], continuous contours are analyzed using bounding boxes and motion information and
to extract features. These features were then used to train an HMM (hidden Markov model) for the
classification of fall and nonfall events. In [30], the 3D position information of an object was extracted
using multiple cameras, and an improved hierarchical hidden Markov model was developed for fall
detection. In [31], a method was proposed for automatically extracting motion trajectories and thereby
detecting abnormal human activities. In [32], a semantic video summarization system based on fuzzy
logic for detecting falls was proposed. This system was tested using 14 and 32 data sets on fall and
nonfall behaviors, respectively. The test results demonstrated that all fall behaviors were correctly
detected by the system, whereas only two nonfall behaviors were incorrectly classified as fall behaviors.
Additionally, some techniques [33–37] are designed to identify ADLs (activities of daily living) and
create fall monitoring systems that detect falls and provide feedback to doctors or relatives of patients.
In the same way, ADL monitoring can be utilized in rehabilitation-assisted living applications [38–40].

Substantial progress has been achieved in deep learning technology [41], which has resulted in
natural language processing [42] and improved CV [43] methods. Convolutional neural networks
(CNNs) have been particularly successful in image classification tasks [43,44], employed in a variety
of tasks as specialized feature extractors [45–49] and related technologies [50–54]. In [55,56], scholars
converted articulated coordinates into two-dimensional (2D) image information and then used a CNN
model to classify actions on the basis of the 2D image information. In [57,58], the 3D joint trajectory
shape of bones was converted into three types of images representing the front, top, and side views
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of the joint trajectory shape. Actions were then classified using a CNN model and the three types
of images. In [59], a CNN model was demonstrated to be a powerful tool for feature extraction
and classification. An overview of the latest progress in CNNs (e.g., in terms of aspects such as
regularization, optimization, activation function, loss function, and weight initialization) was provided
in [60]. In [61], action classification accuracy was improved using multiple types of information in deep
CNNs for action recognition. Sharma et al. [62] developed a spatial attention model based on long
short-term memory (LSTM) that combined temporal and spatial attention mechanisms into a single
scheme. In their work, they employ the proposed model to caption images and recognize actions. The
last convolutional layer of GoogleNet [63] generates a feature map tensor for each frame, which is
later sent to an LSTM to forecast action labels and regions of interest. Lu et al. [64] developed a visual
attention–guided 3D CNN, which incorporated a soft attention mechanism.

Although the aforementioned methods have acceptable performance, achieving highly accurate
fall detection with them remains difficult. Simulating falls in a controlled environment is how training
data for fall detection is typically generated; thus, obtaining a large number of training samples is
difficult, and the performance of a trained classifier is limited. To create a method for detecting falls
that is not dependent on simulated fall data, the present study integrated an improved particle swarm
optimization (IPSO) method into a double interactively recurrent fuzzy cerebellar model articulation
controller (D-IRFCMAC) model for fall detection. The D-IRFCMAC model is based on a modified
fuzzy cerebellar model articulation controller (CMAC) model [65]. The CMAC is a feedforward
neural network with a high learning speed. We extensively modified the fuzzy CMAC to enhance
its precision, reduce its memory requirements, and enable differential computation. Kinematic data
sets were employed instead of smaller fall data sets to train the D-IRFCMAC model efficiently. The
proposed method can accurately detect human behavior and fall events in long-term care centers
or in homes. This study makes three main contributions to the literature. First, it obtained an
optical flow (OF) trajectory diagram from image sequences by using the OF method, and it solved
problems related to focal length and object offset by employing the discrete Fourier transform
(DFT) algorithm. Second, this study developed the D-IRFCMAC model, which combines spatial and
temporal (recurrent) information. Third, it designed an IPSO algorithm that effectively strengthens
the exploratory capabilities of the proposed D-IRFCMAC model in the global search space.

This paper is organized as follows. Section 1 introduces the background of the present study and
describes related studies, Section 2 explains the proposed method, Section 3 details the experimental
procedure and results, and Section 4 provides the conclusions of this study.

2 Feature Selection Using the Proposed Methods

Four algorithms are described in this section: an OF algorithm, the DFT, the proposed D-
IRFCMAC, and an IPSO algorithm.

No line breaks between paragraphs belonging to the same section.

2.1 OF Algorithm

The goal of the OF method is to capture movement trajectories. To achieve this goal, the Lucas–
Kanade (LK) OF algorithm [66] was employed in the present study for calculating the image flow
vector (vx, vy), where vx and vy are the velocities in the x-direction and y-direction, respectively. The OF
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vector for each pixel is obtained as follows:

OFI (x, y) =

⎧⎪⎨
⎪⎩

255, if THlb ≤ vx ≤ THub

255, if THlb ≤ vy ≤ THub

0, else

(1)

where THlb and THub are the lower- and upper-bound thresholds, respectively.

Once the OF vector has been calculated, the OF method is used to analyze overlapping images
of a continuous sequence (the trajectory image). Trajectory images are categorized as OF trajectory
images (OFTIs) or foreground trajectory images (FTIs), as illustrated in Fig. 1a,b, respectively. An
OFTI presents a representation of an action, which is defined as a motion over time.

Figure 1: Examples of an (a) OFTI and (b) FTI

The image OFTI (x, y, π) is defined as follows:

OFTI (x, y, π) = Uπ

t=t0
OFI (x, y, t), t0 = 0, 3, 6, . . . , π (2)

where OFI(x, y, t) represents the pixel values at positions x and y in an OF image at time t, defines
the duration of a movement within a specific period, and U indicates the range of a set from one
period to another. Although the LK OF algorithm can recognize most actions, it has difficulty in
recognizing actions in some situations, such as when similar actions have different postures. Therefore,
to distinguish different types of actions, a circle mark is added to the centroid of the action calculated
using the OFTI. This circle mark facilitates calculation of the direction of motion to distinguish similar
actions with different postures. However, the OFTI only approximately represents the movement of
an object, and it does not enable the recognition of target types. Therefore, FTI features are also used
because these features encode considerable foreground information. An FTI [denoted FTI (x, y, π)] is
defined as follows:

FTI (x, y, π) = Uπ

t=t0
FI (x, y, t), t0 = 0, 3, 6, . . . , π (3)

where FI (x, y, t) represents the pixel values at positions x and y in a foreground image at time t.
Moreover, π defines the duration of an action within a specific period. In experimental analysis,
the foreground sampling interval of FTIs was set as six frames. The foreground sampling interval
was found to be too small; thus, distinguishing different FTIs generated for different actions was
impossible.

2.2 DFT

First, the horizontal and vertical projections of the OFTI and FTI are calculated (Fig. 2).
Subsequently, the DFT [67] is used to convert the projection images obtained from the OFTI and FTI.
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The advantages of the DFT are not limited to the focal distance of the camera and the location of the
object; it can also reduce the number of feature dimensions by extracting low-frequency components.
The conversion formula of the DFT is given as follows:

DFTH [h] = 1
N

N∑
y=1

H (y) exp
(−2jπyh

N

)
, h = 0, . . . , N − 1 (4)

DFTV [v] = 1
M

M∑
x=1

V (x) exp
(−2jπxv

M

)
, v = 0, . . . , M − 1 (5)

where H(y) and V (x) are the horizontal and vertical projections, respectively. The terms N and M
denote the width and height of the trajectory image, respectively. Low-frequency features are selected
using the DFT, and the 15 lowest-frequency values are used as features in the horizontal and vertical
projections. Thus, a total of 60 features are selected from the horizontal and vertical projection images
of the OFTI and FTI.

Figure 2: Horizontal and vertical projections of the OFTI and FTI

2.3 D-IRFCMAC Model

In this study, a D-IRFCMAC model that uses an interactive recurrent mechanism and a Takagi–
Sugeno–Kang (TSK)-type linear function was developed for action recognition. The TSK-type linear
function enables systematic extraction of fuzzy rules from data. From an input–output structure,
this function systematically generates the antecedent and consequent of the relevant IF–THEN
rule. The function adjusts the antecedent and consequent frameworks and variables in accordance
with the adopted data. The structure of the proposed D-IRFCMAC model is displayed in Fig. 3. The
model comprises the following six layers in sequence: an input layer, a membership function layer,
a spatial firing layer, a temporal firing layer, a consequent layer, and an output layer. The function
of each layer is detailed in the following paragraphs. The architecture implements similar fuzzy IF–
THEN rules as described by using expression. The expression is computed as follows:

Rule j:

IF x1 is A1j and x2 is A2j . . . and xi is Aij

THEN yj =
∑

j=1
O(4)

j

(
α0j +

ND∑
i=1

αijxi

)
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where xi and yj represent the input variables and local output variables, respectively; Aij is the linguistic
term of the antecedent part created using the Gaussian membership function; Oj is the output of the
interactive feedback; and α0j + ∑ND

i=1 αijxi is the TSK-type linear function of the input variables.

Figure 3: Architecture of the D-IRFCMAC model

Input layer (layer 1): This layer is used to input feature vectors into the D-IRFCMAC model;
these input vectors consist of crisp values.

O(1)

i = u(1)

i , and u(1)

i = xi (6)

Membership function layer (layer 2): This layer is a fuzzy layer. The single linguistic label of the
input variables in layer 1 corresponds to each node in layer 2. Input values are used to calculate
membership values through layer 2 fuzzy sets. The Gaussian membership function implemented in
layer 2 is expressed as follows:

O(2)

ij = exp

(
−

[
rij − mij

]2

σ 2
ij

)
(7)

where mij and σij are the mean and variance, respectively, of the Gaussian membership function. The
input of layer 2 contains the memory terms O(2)

ij (t − 1) of the previous time point; these terms store
past information regarding the network.

rij = O(1)

i (t) + O(2)

ij (t − 1) · θij (8)

where θij is the feedback weight.

Spatial firing layer (layer 3): The nodes in this layer are called rule nodes or hypercube cells. Each
node in layer 3 determines the firing strength information for a hypercube cell in accordance with the
information acquired from the nodes of a fuzzy set in layer 2; each of these nodes represents one fuzzy
rule or hypercube cell rule. Therefore, the hypercube cell rule nodes perform a fuzzy product operation,
and the output function is as follows:

O(3)

j =
∏ND

i
u(3)

ij , and u(3)

ij = O(2)

ij (9)
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Temporal firing layer (layer 4): Each node of this layer is a cyclic hypercube element node and
comprises two parts: an internal feedback loop and external feedback loop interactively. Because
the internal feedback of a hypercube element node alone is insufficient for representing all necessary
information, the external feedback process is used obtain additional information from other nodes. In
layer 4, each node has its own (self-loop) and other nodes (external loop) information reference. The
temporal firing strength is expressed as follows:

O(4)

j =
∑

k=1

(
ω

q
kj · O(4)

k (t − 1)
) + (

1 − rq
j

) · u(4)

j , and u(4)

j = O(3)

j (10)

where ω
q
kj represents the ratio between the weight of the current and previous inputs and the weight of

the network outputs. Moreover, rq
j is an interactive weight between the self-loop and external loop.

O(5)

j = O(4)

j

(
α0j +

ND∑
i=1

αijxi

)
(11)

Consequent layer (layer 5): In this layer, each node is a linear combination function associated
with the input variables. The relevant equation is as follows:

y =
∑NL

j=1 O(4)

j

(
α0j + ∑ND

i=1 αijxi

)
∑NL

j=1 O(4)

j

(12)

Output layer (layer 6): This layer defuzzifies the fuzzy output of previous layers into a scalar output
by using the center-of-gravity approach.

2.4 Proposed IPSO Algorithm

This section describes the particle swarm optimization (PSO) algorithm and the proposed IPSO
algorithm.

2.4.1 PSO Algorithm

The PSO algorithm was introduced by Kennedy and Eberhart [68] and was first used in the
field of social and cognitive behavior. This algorithm is based on how birds and fish forage for
food. The algorithm is simple to understand and implement and thus has been widely employed as
a problem-solving method in engineering and computer science. The position and velocity vectors of
the ith particle in an N-dimensional search space can be represented as xi = (xi1, xi2, xi3, ..., xid) and
vi = (vi1, vi2, vi3, ..., vid), respectively. The velocity of each particle is used to find the solution space. An
evaluation function is designed on the basis of the relevant problem, and the output of this function
is a fitness value indicating the position of the particle. The new velocity and position of each particle
in the particle swarm can be obtained by utilizing its local best position (pi) and global best positions(
pg

)
. The equations for calculating the fitness values for a new velocity and position are as follows:

νk+1
vid = ω × νk

vid + c1 × rand (·) × (
Pid − xk

id

) + c2 × rand (·) × (
Pgd − xk

id

)
(13)

xk+1
id = xk

id + vk+1
id (14)

Among those, ω is designed as coefficient of the inertia term, c1 is designed as the coefficient of
the cognitive term, and c2 is designed as the coefficient of the social term. The term in Eq. (13) is
a generated random number that is uniformly distributed over the range [0, 1]. Eq. (13) comprises
three parts: a part representing the particle’s previous velocity, a cognitive component, and a social
component. The first part (related to the previous velocity) represents the momentum required by
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particles to move across the search space. The second part (cognitive component) guides each particle
to move toward its local best position. Finally, the third part (social component) guides all particles
to move toward the global optimal position. However, the conventional PSO algorithm is affected by
the dimensionality of the data. If the size of the search space is greater, the efficiency of this algorithm
is lower. Therefore, to improve the performance of PSO and enhance its ability to explore the global
search space, this study developed an IPSO algorithm.

2.4.2 Proposed IPSO Algorithm

The overall flowchart of the proposed IPSO algorithm is displayed in Fig. 4, and the steps of this
algorithm are described in the following sections. The IPSO algorithm can be employed to analyze and
optimize the internal parameters

(
mij, σij, θij, ωij

)
in the D-IRFCMAC model, consequently unveiling

superior solutions and enhancing identification performance.

Figure 4: Flowchart of the proposed IPSO algorithm

Step 1 Individual initialization

Random values are first generated in the range [−1, 1] for the individual initialization of each
particle. These values represent the average, standard deviation, and weight of each variable in the D-
IRFCMAC model. Subsequently, coding is performed. The coding step is related to the membership
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functions and fuzzy rules for particles suitable for IPSO. Fig. 5 shows how parameters are coded for
a particle. The parameters i and j represent the input variables and rules in the D-IRFCMAC model.

Figure 5: Coding of the fuzzy rule parameters of a particle in the IPSO algorithm

Step 2 Fitness evaluation

The fitness function for evaluating each particle in the swarm is defined as follows:

fi = 1/Y (15)

Y =
√√√√ 1

N

N∑
p=1

(
yp − yp

)
, for p = 1, 2, . . . , N (16)

where N represents the number of input data points and yp and yp represent the model output and
desired output, respectively.

Step 3 Updating the local best value

In case the fitness value of the evaluated particle surpasses the local optimal value, this fitness
value takes the place of the local optimal value.

Step 4 Updating the global best value

In case the fitness value of the evaluated particle surpasses the global optimal value, this fitness
value takes the place of the global optimal value.

Step 5 Modification operation for the evolutionary direction

Evolutionary optimization is performed by selecting the three most effective solutions from each
generation. The goal of each new solution is to surpass the previous best solution. The three best
particles are ordered in accordance with their fitness, and the particles with the highest, second-highest,
and third-highest fitness values are called the first, second, and third particles, respectively (denoted
Pf , Ps, and Pt, respectively). These particles are expressed as follows:

First particle: Pf = (
Pf 1, Pf 2, Pf 3, . . . , Pfd

)
, with fitness Ff

Second particle: Ps = (Ps1, Ps2, Ps3, . . . , Psd), with fitness Fs

Third particle: Pt = (Pt1, Pt2, Pt3, . . . , Ptd), with fitness Ft

The initial step is to update the third particle using a migration operation to create a new third
particle. Subsequently, the second and first particles are used as references for the new third particle
to move in the target direction; that is, the new third particle is updated again in accordance with the
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direction indicated by the second and first particles. The global search capacity is improved through
this process. The modification operation for the evolutionary direction (MOED) is detailed as follows:

Step 5.1 The parameters of the two evolution directions and the initial index of the MOED are set
as 1; that is, the initial number of iterations is set as 1. The number of MOED loops is set as NL. The
three particles (Pf , Ps, and Pt) with the highest fitness values in the swarm are selected for evolutionary
optimization.

Step 5.2 A migration operation is used to generate a new diverse population and to prevent
particles from gradually clustering; thus, the migration operation considerably increases the size of
the search space for small-swarm exploration. Migrating particles are generated through nonuniform
random selection based on the three best particles. The objective is to prevent the MOED from
becoming trapped in a local extremum. The second and third particles Ps and Pt, respectively) are
updated using Eq. (17).

xid =
⎧⎨
⎩xid + r

(
xL

id − xid

)
, if th <

xid − xL
id

xU
id − xL

id

xid + r
(
xU

id − xid

)
, otherwise

(17)

where r and th are random numbers in the interval [0, 1].

Step 5.3 The current evolutionary direction and current evolutionary step size of the parallelogram
are used to generate particle Po, as expressed in Eq. (18). By using the two difference vectors D1 ×(
Ptj − Psj

)
and D2 × (

Ptj − Pfj

)
, one can determine the parallelogram’s next evolutionary direction and

step.

Poj = Ptj + D1 × (
Ptj − Psj

) + D2 × (
Ptj − Pfj

)
(18)

Step 5.4 The fitness Fo is evaluated using the newly generated output particle (Po).

Step 5.5 The third, second, and first particles (Pt, Ps, and Pf , respectively) are updated in sequence
as follows:

(1) If Fo > Ff , then Pt = Ps , Ps = Pf , and Pf = Po.

(2) If Fo < Ff and Fo > Fs , then Pt = Ps , and Ps = Po.

(3) If Fo > Ft and Fo < Fs , then Pt = Po.

(4) If Fo = Ft = Fs , then po = po + DF (DF ∈ [0, 1]).

(5) If Fo < Ft , then D1 = D1 × (−C) and D2 = D2 × (−C).

Under the first three aforementioned conditions, the first, second, and third particles are updated
on the basis of the fitness value of Po. The fourth condition is considered if Po, Ps, and Pt have the same
fitness values. In this case, a random disturbance factor is added to the fitness value of Po to prevent
the MOED from becoming trapped at a local optimum. Finally, if the fitness value of Po is lower than
those of Po, Ps, and Pt to obtain better fitness, the particle velocity is decreased with a constant penalty
parameter (fifth condition).

Step 5.6 The global best value is updated. Replace the current global best particle with Po if the
fitness value of Po is greater than the current global best value.

Step 6 Updating the particle velocity

By using the Eq. (13), the velocity of every particle dimension is updated.
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Step 7 Updating the particle position

By using the Eq. (14), the position of every particle dimension is updated.

2.5 Proposed D-IRFCMAC-IPSO Method

A D-IRFCMAC model that combines spatial and temporal (recurrent) information is proposed.
An IPSO algorithm that effectively strengthens the exploratory capabilities in the global search
solution space is proposed. The IPSO is used to optimize the internal parameters of the D-IRFCMAC
model and decrease the subjective influence of chosen parameters. The IPSO algorithm is employed
to optimize the internal parameters of the D-IRFCMAC module, as depicted the overall process is
shown in Fig. 6. The process area of the D-IRFCMAC model is depicted in the red block, while that
of IPSO is depicted in the green block.

Figure 6: Flowchart of the D-IRFCMAC model and IPSO algorithm for fall detection
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3 Experiments and Discussion

Two experiments were conducted to examine the fall detection performance of the proposed
method, which involves integrating the proposed IPSO algorithm into the designed D-IRFCMAC
model, and to also compare this performance with that of several existing state-of-art methods.

3.1 Experimental Data Sets

Three fall event data sets and two activity classification data sets were used to test the proposed
model. The first fall event data set was collected using multiple cameras (eight cameras for each scene
in each scenario) [69]; thus, this data set is called the multiple-camera fall data set. The aforementioned
data set comprised 736 videos of different actions: 120 videos of falls, 192 videos of walking, 88
videos of pseudofalls, 80 videos of sitting, 32 videos of lying down, 16 videos of standing, 72 videos of
crouching, 8 videos showing objects being dropped, 88 videos showing objects being carried (picked
up or put down), 8 videos of taking off or hanging a coat on a coat rack, and 32 videos of sweeping.
Each of the aforementioned videos had resolution of 720 × 480 pixels and a frame rate of 30 fps. A
total of 80% and 20% of the aforementioned data set were used for training and testing, respectively.
The second fall event data set, namely the fall detection data set (FDD) [70], comprised 192 videos
of falls (forward falls, falls caused by an inappropriate sitting-down action, and falls caused by loss
of balance) and 58 videos on several normal activities (walking in different directions, sitting down,
standing up, crouching, housekeeping, and moving a chair). Each of these videos had resolution of
320 × 240 pixels and a frame rate of 25 fps. Each video was recorded from seven directions and
positions in one of four locations: a home, a coffee room, an office, or a lecture room. Regarding the
multiple-camera fall data set, 80% and 20% of the FDD were used for training and testing, respectively.
The examined methods were also evaluated on the UR fall data set (URFD) [71], with 80% and 20%
of the data set being used for training and testing, respectively. The URFD contains 70 videos: 30
videos on falls (e.g., forward falls and falls caused by loss of balance) and 40 videos on activities of
daily living (e.g., walking, sitting down, crouching, and lying down) in various locations.

The second type tends to activity classification datasets, The UCF11 dataset [62] is an activity
classification dataset that was also used to evaluate the performance of the proposed method and
other methods. UCF11 is an action dataset composed of 1600 videos, including 11 action videos. The
action videos included those of diving, cycling, basketball shooting and so on. Each action video
only displayed one type of action. A similar dataset, UCF101 [72], was also used for evaluation. The
UCF101 dataset contains 13,000 video clips from 101 activity categories. Both databases were divided
into training, validation, and test sets at a 3:1:1 ratio.

All videos from the aforementioned five data sets were adjusted to resolution of 128 × 128 pixels
before being processed. A total of 60 features obtained using the OF method and DFT for each
video frame were used as the input in the training, validation, and testing of the D-IRFCMAC model
integrated with the proposed IPSO algorithm.

3.2 Ablation Study

Ablation studies were performed to determine the effectiveness of the added IPSO for improving
FDD and FURD performance. The results are presented in Table 1. With the IPSO algorithm, the
proposed D-IRFCMAC model has better accuracy.
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Table 1: Model performance with different mechanisms

Method Accuracy (%)

D-IRFCMAC (without IPSO) 99.42
D-IRFCMAC (with IPSO) 99.80

3.3 Experimental Results for Fall Detection

For the three fall event data sets, the parameters of the proposed IPSO algorithm were set as
follows: the initial coefficient w was set as 0.5, the cognitive and society coefficients were set as 1,
the swarm size was set as 100, the number of iterations was set as 5000, and the number of fuzzy
rules (hypercube cells) of the D-IRFCMAC model was set as 6 (six cells). The parameters ω, C1,
and C2 were determined through trial and error. Table 2 presents the fall detection performance of
the proposed method and existing state-of-the-art methods on the multiple-camera fall data set. The
proposed method as found to outperform the other tested methods. To verify the effectiveness of
the proposed method, this method was also tested on the FDD and URFD. It exhibited average
classification accuracy of 99.41% and 99.32% on the aforementioned data sets, respectively. Thus,
the results indicate the proposed method can accurately detect falls.

Table 2: Fall detection performance of the proposed method and different state-of-the-art methods on
the multiple-camera fall data set

Method Accuracy (%)

Silhouette area variation [30] 94.01
Full procrustes distance [22] 96.20
Mean matching cost [22] 95.40
Bounding box ratio [22] 56.60
2D vertical velocity [22] 89.70
Normalized 2D vertical velocity [22] 87.30
3D CNN [64] 99.73
Proposed method 99.80

3.4 Experimental Results for Activity Recognition

The activity recognition performance of the proposed method was investigated on the UCF11
and UCF101 data sets. The parameters of the IPSO algorithm in the activity recognition experiment
were the same as those in the fall detection experiment. Tables 3 and 4 present the average testing
classification accuracy of the proposed method on the UCF11 and UCF101 data sets in five cross-
validation trials (93.13% and 92.19%, respectively). Various existing state-of-the-art methods were
also employed on the aforementioned data sets, and their performance was compared with that of the
proposed method. The proposed method was discovered to outperform the state-of-the-art-methods
in activity recognition on both the UCF11 and UCF101 data sets (Table 5). The proposed method
had 1.12% and 1.73% higher accuracy than the method with the second-best performance, namely
visual attention–guided 3D CNN, on the UCF11 and UCF101 data sets, respectively. The superior
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performance of the proposed method is reflected in the confusion matrix for the UCF11 data set,
which is presented in Fig. 7. Most activities in this data set were correctly classified by the proposed
method.

Table 3: Average classification accuracy (%) of the proposed method on the UCF11 data set

Proposed
method

Cross
validation 1

Cross
validation 2

Cross
validation 3

Cross
validation 4

Cross
validation 5

Avg

Training 92.11 91.73 91.81 93.05 92.52 92.24 ± 0.55
Validation 93.61 93.03 92.12 92.86 93.03 92.93 ± 0.53
Testing 92.42 93.47 93.03 93.61 93.11 93.13 ± 0.46

Table 4: Average classification accuracy (%) of the proposed method on the UCF101 data set

Proposed
method

Cross
validation 1

Cross
validation 2

Cross
validation 3

Cross
validation 4

Cross
validation 5

Avg

Training 92.24 91.79 91.57 92.57 92.02 92.04 ± 0.39
Validation 92.65 92.03 92.22 92.65 93.08 92.53 ± 0.41
Testing 92.36 91.82 92.03 92.61 92.13 92.19 ± 0.30

Table 5: Average classification accuracy (%) of the proposed method and existing state-of-the-art
methods on the UCF11 and UCF101 data sets

Dataset Visual
attention
guided 3D
CNN [64]

GoogleNet
[63] with
average
pooling

GoogleNet
with max
pooling

GoogleNet
with LSTM
soft attention

VGGNet [44]
with LSTM
soft attention

Proposed
method

UCF11 92.01 ± 0.35 82.56 ± 0.98 81.60 ± 1.75 84.96 ± 0.32 84.87 ± 0.53 93.13 ± 0.46
UCF101 90.46 ± 0.38 81.13 ± 0.55 81.00 ± 0.65 83.38 ± 0.39 84.27 ± 0.49 92.19 ± 0.30

To verify the stability and effectiveness of the proposed method, this method and existing state-
of-the-art methods [73–77] were tested on the UR-Fall, UP-Fall, and PRECIS HAR [78] data sets,
which comprise data on activities of daily living, such as walking, standing, squatting, and sitting.
For each data set, 90%, 5%, and 5% of the data were used for training, validation, and testing,
respectively. Table 6 presents the results obtained on the aforementioned data sets; the proposed
method outperformed the existing state-of-the-art methods.
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Figure 7: Confusion matrix for the proposed method when applied to the UCF11 data set

Table 6: Average classification accuracy (%) of the proposed method and existing state-of-the-art
methods on the UR-Fall, UP-Fall, and PRECIS HAR data sets

UR-Fall
Model Accuracy Sensitivity F1 Specificity

Model of Harrou et al. [76] 96.66% 1.0 0.96 0.94
Framework (best result) [75] 100% 1.0 1.0 1.0
Proposed method 100% 1.0 1.0 1.0

UP-Fall
Model of
Martinez-Villasenor et al. [73]

95.93% 0.74 0.66 0.69

Framework (best result) [75] 98.62% 0.92 0.93 0.99
ARFDNet [74] 96.7% 0.967 0.966 –
Proposed method 99.25% 0.97 0.97 0.99

PRECIS HAR
Model of Popescu et al. [77] 94.38% – – –
Framework (best result) [75] 98.59% 0.95 0.97 0.97
Proposed method 99.07% 0.97 0.98 0.98

3.5 Discussion

The aforementioned experimental results indicate that the proposed method outperforms existing
state-of-the-art methods in fall detection and activity recognition. The superior performance of
the proposed method is attributable to the D-IRFCMAC model using both spatial and temporal
(recurrent) information and the IPSO algorithm improving the exploration of the global search space
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by this model. The proposed method enables highly accurate fall detection to be achieved after training
with a small fall event data set. However, this method can only detect a fall and not predict one. The
prediction of fall events is a possible topic for future research.

4 Conclusions

This study developed a method that involves combining the proposed D-IRFCMAC model
with an IPSO algorithm to achieve highly accurate fall detection and activity recognition. The
designed D-IRFCMAC model processes spatial and temporal information in videos by using recurrent
mechanisms. In addition, the proposed IPSO algorithm improves this model’s exploration of the global
search space. The integration of the IPSO algorithm into the D-IRFCMAC model improves the
model’s overall efficiency and effectiveness. Motion information features are crucial to fall detection
and activity recognition. In the proposed method, OFTIs and FTIs are employed for feature selection
and for efficiently encoding movement features. The selected features are then input to the D-
IRFCMAC model integrated with the proposed IPSO algorithm to obtain accurate and robust fall
detection or activity recognition results. The D-IRFCMAC model uses features obtained from OFTIs
and FTIs to locate regions of interest in each video frame. The D-IRFCMAC model was discovered
to exhibit excellent fall detection performance after being trained on different action-related data
sets. Because simulated fall data sets are difficult to obtain, the aforementioned characteristic is a
key advantage of this model. Experiments indicated that the proposed method outperforms existing
state-of-the-art methods in terms of fall detection accuracy on the FDD and URFD and activity
recognition accuracy on the UCF11 and UCF101 data sets. The proposed method also outperforms
existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall, UP-Fall,
and PRECIS HAR data sets. The UCF11 dataset had an average accuracy of 93.13%, whereas the
UCF101 dataset had an average accuracy of 92.19%. The UR-Fall dataset had an accuracy of 100%,
the UP-Fall dataset had an accuracy of 99.25%, and the PRECIS HAR dataset had an accuracy of
99.07%.
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