
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2024.052875

ARTICLE

Modern Mobile Malware Detection Framework Using Machine Learning
and Random Forest Algorithm

Mohammad Ababneh*, Ayat Al-Droos and Ammar El-Hassan

School of Computing Sciences, Princess Sumaya University for Technology, Amman, 11941, Jordan

*Corresponding Author: Mohammad Ababneh. Email: m.ababneh@psut.edu.jo

Received: 18 April 2024 Accepted: 05 July 2024 Published: 13 September 2024

ABSTRACT

With the high level of proliferation of connected mobile devices, the risk of intrusion becomes higher. Artificial
Intelligence (AI) and Machine Learning (ML) algorithms started to feature in protection software and showed
effective results. These algorithms are nonetheless hindered by the lack of rich datasets and compounded by
the appearance of new categories of malware such that the race between attackers’ malware, especially with
the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose
effectiveness quickly. In this article, we present a framework for mobile malware detection based on a new dataset
containing new categories of mobile malware. We focus on categories of malware that were not tested before by
Machine Learning algorithms proven effective in malware detection. We carefully select an optimal number of
features, do necessary preprocessing, and then apply Machine Learning algorithms to discover malicious code
effectively. From our experiments, we have found that the Random Forest algorithm is the best-performing
algorithm with such mobile malware with detection rates of around 99%. We compared our results from this work
and found that they are aligned well with our previous work. We also compared our work with State-of-the-Art
works of others and found that the results are very close and competitive.

KEYWORDS
Android; malware; detect; prevent; artificial intelligence; machine learning; mobile; CICMalDroid2020; CCCS-
CIC-AndMal-2020

1 Introduction

It is estimated that the number of mobile phone owners globally is well over 4.8 billion, meaning
that 60.42% of the world’s population owns a smartphone [1]. According to Android Statistics (2024)
[2], Android is the most popular operating system in the world, with over three billion active users in
over 190 countries. Three-quarters of all smartphones in the world run the Android operating system.
With a few exceptions, Android is the dominant platform in most countries with around 85 percent
market penetration. Also, according to Kaspersky [3], in Q3 of 2023, a total of 8,346,169 mobile
malware, adware, and risk-ware attacks were successfully blocked.

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2024.052875
https://www.techscience.com/doi/10.32604/csse.2024.052875
mailto:m.ababneh@psut.edu.jo


1172 CSSE, 2024, vol.48, no.5

Android has historically been more open with fewer limitations on applications, thus contributing
to its popularity. This same reason also contributed to malware abusing this openness to spread
malware and conduct malicious or criminal activities.

There are multiple approaches to malware detection. The traditional approach includes signature-
based, dynamic analysis, behavior anomaly, identity, and access control analysis. The other approach
is by using AI and machine learning to build models and use algorithms to detect malware running
automatically and autonomously on or attempting to penetrate mobiles and computers. Compared
to Machine Learning solutions, traditional malware detection methods are ineffective and take more
time to detect unseen malware [4].

In this article, we extend our previous work in [5], in which a machine learning (ML) model is
introduced to deal with malicious code in devices running the Android Mobile Operating System and
tools. The original model was built around the CICMalDroid2020 dataset. In this work, we use the
newer and more comprehensive CCCS-CIC-AndMal-2020 dataset and test our methodology on the
same 4 categories of malware seen in our previous work. The dataset has 200,000 instances of malware
collected from various sources. To ensure its balance, another 200,000 instances were added to the
dataset which includes 14 categories of malware. Each category contains several variants or families
of a total of 154. Each family includes several instances, as shown in Table 1. Every malware has two
instances in the dataset; the first one has feature values collected before restarting the virtual machine
running the malware, which represents the case when the malware gets into the system and starts
running immediately if it can. The second one has feature values collected after the virtual machine is
restarted, which is the case when malware tries to avoid detection by postponing its activity when it
discovers that it is running in a virtual machine or sandbox [6].

Table 1: Malware categories in CCCS-CIC-AndMal-2020

Malware category Number of families Number of samples

1 Adware 48 47,210
2 Backdoor 11 1538
3 File infector 5 669
4 No category – 2296
5 PUA 8 2051
6 Ransomware 8 6202
7 Riskware 21 97,349
8 Scareware 3 1556
9 Trojan 45 13,559
10 Trojan-banker 11 887
11 Trojan-dropper 9 2302
12 Trojan-SMS 11 3125
13 Trojan-spy 11 3540
14 Zero-day – 13,340

Total 127 195,624

We conducted feature analysis to select the minimal number of features with the maximum
contribution to the detection decision and found that the elimination of some features has contributed



CSSE, 2024, vol.48, no.5 1173

to the increase in accuracy and performance. The importance of our work can be understood when
implemented by current Intrusion Detection System (IDS) systems to detect new categories of malware
more effectively.

The main contributions of this research can be summarized as follows:

a) Used a new dataset with new categories of malware families.
b) Generated a subset of new categories and conducted all necessary data engineering to guaran-

tee balance.
c) Conducted feature analysis to identify the most significant features essential for the highest

possible rate of detection.
d) Tried multiple Machine Learning algorithms in order to find the optimal algorithm suitable to

the categories of malware under focus.

2 Related Work

The authors in [7] proposed a deep-learning framework called DE-LADY to detect malware in
Android using dynamic features. The framework comprises four major modules: dynamic analysis,
feature extraction and preprocessing, deep learning classifier and datasets, and evaluation metrics.
The performance of seven algorithms (Linear Support Vector Machine, Naive Bayes, Decision Tree,
K-Nearest Neighbor, Extreme Gradient Boosting, and Random Forest) was evaluated, and it was
found that the proposed approach had a performance edge. Their approach was evaluated on 13533
APK (Android application package), with an accuracy of 98.08%.

In [8], the authors proposed a method for malware detection that makes use of the Android
manifest permission analysis along with a static analyzer and APK Tool’s de-compilation capability for
extracting APK code at the code level. Different ML algorithms were trained using the dataset from
the AndroZoo repository and were tested on 5243 samples. The proposed approach was evaluated
using the Support Vector Machine (SVM), Random Forest (RF), K-means, and Naive Bayes (NB).
The highest accuracy was obtained when using RF with an accuracy of 82.5% precision and 81.5%
recall.

In [9], the authors proposed a hybrid model for malware detection combining Gated Recurrent
Unit (GRU) and Deep Belief Network (DBN). The authors used DBN and GRU to process dynamic
and static APK features, and then Back Propagation (BP) neural networks used the results of DBN
and GRU as input for classification. Although the performance and accuracy of this approach were
positive it is hindered by its demand for high computational power.

In [10], the authors used the CICInvesAndMal2019 dataset in their proposed approach, with 396
malicious and 1126 benign applications selected for testing. The dataset contained static features:
Intents and Permissions. Five machine learning algorithms were implemented: Random Forest, Deci-
sion Tree, K-Nearest Neighbor (KNN), SVM, and NB. Experimental results showed that Random
Forest achieved the highest accuracy of 96.05%.

In [11], the authors used a DREBIN dataset containing 11,120 APKs of which 5560 were
malicious with 179 different malware families and 5560 were benign. For feature selection, they used a
substring-based method using the Decision Tree, Gradient Boosting, Random Forest, and Extended
Randomized algorithms; Random Forest achieved the best results with an accuracy of 97.24%.



1174 CSSE, 2024, vol.48, no.5

The authors in [12] proposed MAPAS, a technique for the classification of malicious activities
based on the behavior of malware and benign applications using Call Graphs and Convolutional Neu-
ral Networks (CNN). CNN was used to find common feature representations from the Application
Programming Interface (API) call graphs, while a lightweight classifier based on the Jaccard Similarity
Coefficient performed the detection. They compared their technique with MaMaDroid which is an
Android malware detection approach, MAPAS obtained a higher accuracy (91.27%) than (84.99%)
for the MaMaDroid method.

The authors in [13] used the Graph Neural Networks (GNN) based classifier to generate API
graph embedding as a way to show the efficacy of graph-based classification. Multiple machine learn-
ing and deep learning algorithms were trained using graph embedding with “Intent” and “Permission”
to detect Android malware. In the CICMaldroid and Drebin datasets, the obtained classification
accuracy was 98.3% and 98.68%, respectively. The authors then proposed VGAEMalGAN, an
approach based on the Generative Adversarial Network (GAN) to target GNN Android malware
classifiers based on two types of networks; the Substitute Detector (SD) and the Generator (GN). The
GN’s goal was to produce fake data that is often malicious yet resembles genuine data and cannot be
identified by SD (which plays the adversary role). Conversely, SD aims to discriminate legitimate data
from fraudulent data produced by GN (in this case playing the defender role). This approach showed
how Android malware detection could be strengthened against adversarial inference by retraining the
model with GN samples after being classified as malware attacks.

The authors in [14] proposed a novel (Tree Augmented Naive Bayes) TAN-based hybrid model that
utilizes the conditional dependencies among relevant dynamic and static features to determine whether
an application is malicious. They trained three ridge regularized Logistic Regression classifiers. The
results showed that the model succeeded in identifying malware with an accuracy of 97%.

The authors in [15] proposed DATDROID, a malware detection technique based on dynamic
analysis using Random Forest as 3 stages: the first is to extract the features, the second is to select the
features using Gain Ratio Attribute Evaluator, and the third is a classification. In the classification
stage, the data was divided using the 70:30 fold for training and testing respectively and the approach
obtained a classification accuracy of 91.7% with 0.9 recall and 0.931 precision.

In [16], the authors presented the CCCS-CIC-AndMal-2020 dataset and employed Entropy Anal-
ysis of Dynamic Characteristics to classify and detect malware. They used entropy-based behavioral
analysis to classify the behavior of 12 renowned Android malware categories comprising 147 families
using the CCCS-CIC-AndMal-2020 dataset. Their research used 6 classes of dynamic characteristics
including memory, API, network, Logcat, battery, and process to classify and characterize Android
malware. Their approach successfully determines the behavior of malware categories.

In [17], the authors used Deep Image Learning to detect malware using the CCCS-CIC-AndMal-
2020 dataset. The authors proposed an image-based deep neural network method to classify and char-
acterize Android malware instances from the dataset. They successfully demonstrated the effectiveness
of their approach with an accuracy of 93.36% and a log loss of less than 0.20.

The authors in [18] proposed a new Subgraph Networks (SGN) based technique to detect
malware using the Android Function Call Graph (FCG). For increased model robustness, a denoising
mechanism 1-Lipschitz was used to filter out the attack noise. The model achieved the highest accuracy,
recall, and F1-scores thus ensuring that the proposed approach will counter abnormal attacks.

In [19], the authors proposed the AMDDL model, which is a novel Convolutional Neural Network
(CNN) architecture for highly accurate Android malware detection. This model uses 215 features from



CSSE, 2024, vol.48, no.5 1175

the Drebin dataset and obtained an accuracy score of over 99%, thus, designating AMDDL as one of
the foremost models offers an impactful solution for malware protection.

The authors in [20] suggested applying machine learning to detect and classify sophisticated
malware attacks targeting Android platforms. The aim was to prevent increasing attack vectors such
as malware and anti-dynamic variants through the utilization of time-series KronoDroid data with
features that are extracted from actual device execution and additionally using feature selection and
ExtraTree classifier with Random Forest model to obtain a high accuracy for malware detection and
categorization.

The authors in [21] designed GuardDroid, a system for lightweight malware detection on Android
Internet of Things (IoT) devices, in which the static features extracted from the programs were
analyzed. They used the Drebin dataset for training the model, they also used the Recursive Feature
Elimination for feature selection. Using a Random Forest classifier they then achieved a high level
of accuracy in malware classification. The work is noteworthy in terms of the efficiency of required
recourses.

In [22], the authors proposed an approach that is based on feature engineering together with
machine learning for the detection of Android malware. They used dex2jar and Apktool to extract
the features from the apps (permissions, API calls, and intents). Then they used feature selection
techniques like gain ratio and chi-squared test to determine the best features for classification. The
paper evaluates the proposed framework on two benchmark datasets Drebin and TUANDROMD.
The results show that both RF and SVM have achieved an accuracy level of over 98%. Table 2
summarizes the surveyed research.

Table 2: Summary of surveyed articles

Reference Year Dataset Feature
selection

ML/DL
algorithm

Best result Main contribution

[7] 2021 Bespoke NA Deep learning
model with 4
hidden layers
(200 neurons
each)

F1-score: 98.84%,
Accuracy: 98.08,
Error rate: 1.92%

Introduction of De-LADY, a
system using deep learning that is
resilient to obfuscation methods,
outperforming existing machine
learning approaches.

[8] 2021 AndroZoo NA Random
forest

Precision: 82.5%,
Accuracy: 81.5%

Using android manifest file
permissions, highlighting the
significant improvements over
commercial anti-virus tools.

[9] 2020 Applications
downloaded
from Google
Play, APKpure,
and public
malware-
sharing
websites

NA DBN-GRU
hybrid model

Accuracy: 99.4% Proposal of a hybrid deep
learning model combining DBN
and GRU for android malware
detection, effectively detecting
obfuscated malware and
improving detection capability.

(Continued)



1176 CSSE, 2024, vol.48, no.5

Table 2 (continued)

Reference Year Dataset Feature
selection

ML/DL
algorithm

Best result Main contribution

[10] 2021 CICInvesAnd
Mal2019
dataset

Principal
component
analysis
(PCA)

Random
forest

Accuracy: 96.05% A technique focusing on static
features, identifying random
forest as the best performer.

[11] 2018 DREBIN
dataset

Substring-
based
method

Random
forest

Accuracy: 97.24%,
TPR: 96.88%,
FPR: 2.39%,
F1-score: 97.23%,
Precision: 97.58%

A malware detection method
utilizing substring-based feature
selection, demonstrating random
forest’s superior performance on
the DREBIN dataset.

[12] 2018 Some samples
from
VirusShare,
AMD, and
Google Play
Store

Grad-CAM CNN +
Jaccard
similarity
coefficient

Accuracy: 91.27% MAPA is a practical android
malware detection system
demonstrating higher accuracy in
detecting unknown malware and
various types of malware
effectively.

[13] 2022 CICMalDroid
2020 and
Drebin

selectFrom
Model method

GNN Accuracy: 98.33%
(CICMaldroid),
98.68% (Drebin)

Using graph neural networks, the
proposed VGAE-MalGAN
algorithm achieved high accuracy
in detecting malware in IoT
devices.

[14] 2020 Some samples
from Drebin,
AMD, Github,
and AndroZoo
datasets

NA Tree
augmented
Naive Bayes

Accuracy: 91.7%
Precision: 93.1%
Recall: 90%

TAN-based hybrid malware
detection mechanism combining
static and dynamic features,
achieving high accuracy in
detecting malicious applications.

[15] 2020 Applications
downloaded
from APKPure
and the android
malware
genome project

Gain ratio
attribute
evaluator

Random
forest

Accuracy: 91.7% DATDroid is a dynamic analysis
technique, that achieves good
accuracy and significantly
reduces misclassification.

[16] 2021 CCCS-CIC-
AndMal-2020

NA Decision tree Precision: 98.4%
F1-score: 98.3%
Recall: 98.3%

EntropLyzer, an entropy-based
behavioral analysis technique,
achieves high precision and recall
values.

[17] 2020 CCCS-CIC-
AndMal-2020

ExtraTree
classifier, Gini
importance
value, and best
k features

Convolutional
neural
network
(CNN)

93.36% accuracy,
log loss less than
0.20.

DIDroid, a deep learning-based
android malware classification
system achieving a high accuracy.

[18] 2024 VirusShare and
AndroZoo

NA GCN Accuracy: 97.2%
Recall: 97%
Precision: 97.3%
F1-score: 97.1%

A novel approach to enhancing
the robustness of deep learning
models by mitigating the impact
of adversarial attacks.

[19] 2024 Drebin NA CNN Accuracy: 99.92%
Recall: 99.16%
Precision: 98.61%
F1-score: 98.88%
Loss: 0.08

AMDDLmodel is one of the
models with very high accuracy
to detect Android malware which
is proven effective in detecting
malicious applications.

(Continued)



CSSE, 2024, vol.48, no.5 1177

Table 2 (continued)

Reference Year Dataset Feature
selection

ML/DL
algorithm

Best result Main contribution

[20] 2024 The subset of
the KronoDroid
dataset

ExtraTree
classifier

Random
Forest

98.03% accuracy
(detection),
87.56% accuracy
(classification)

An effective supervised machine
learning model for detection and
category classification.

[21] 2024 Drebin Recursive
feature
elimination
(RFE)

Random
forest

Accuracy: 99%
Recall: 98.7%
Precision: 100%
F1-score: 99.3%

GuardDroid: Lightweight and
efficient android IoT malware
detection system using machine
learning.

[22] 2024 Drebin and
TUAN-
DROMD

Gain-ratio and
Chi-square
test

Random
forest

Drebin:
Accuracy: 98.8%
Recall: 97.6%
Precision: 99.3%
F1-score: 94.9%
TUANDROMD:
Accuracy: 99%
Recall: 98.7%
Precision: 100%
F1-score: 93.6%

An advanced feature engineering
framework that improved the
performance of machine learning
models.

The above review shows that threats are constantly evolving. This evolution affects the effective-
ness of real-time detection. Up-to-date datasets are not easy to obtain and process to offer high-
reliability levels. It can also be observed that high accuracy detection rates were possible to achieve
through the use of a large number of features. Complex computation powers and high execution times
are required.

In our work, we introduce a new machine learning model, which takes advantage of behavioral
analysis of malware APKs using a reduced set of features that improves the model’s accuracy
and efficiency over other frameworks. Our tight methodology, which includes data collection, pre-
processing, and a comparison of different datasets and classifiers is robust and obtains positive results.

3 Research Methodology

In this work, we propose a machine learning model for mobile malware detection relying on the
analysis of the malware’s APK behavior. We compare various machine learning algorithms to find
the most appropriate algorithm for such attacks. In our proposed approach, we construct a machine-
learning model and conduct comparative analyses with other machine-learning classifiers, algorithms,
datasets, and malware categories. Our proposed machine learning-based model consists of multiple
phases:

3.1 Datasets and Data Collection

In this work we used the CICMalDroid2020 and the CCCS-CIC-AndMal-2020 datasets; both
from the Canadian Institute for Cybersecurity (CIC) at the University of New Brunswick (UNB),
Canada [23]. The first dataset was collected from December 2017 to December 2018 with 11,598
instances and 471 features; it has five categories of malware, namely: Riskware, Adware, SMS malware,
Banking malware, and Benign, as in Table 3 below.



1178 CSSE, 2024, vol.48, no.5

Table 3: Common malware categories in CICMalDroid2020

Category Description

1. Riskware Applications contain vulnerabilities that can be exploited by malicious actors.
2. Adware Applications can be installed on devices after some web browsing or other

activities and start showing advertisements.
3. Trojan-SMS Applications that users install without being aware that those applications

have malicious aspects and usually come through SMS [24].
4. Trojan-banker Applications try to steal credentials from financial institution clients or gain

access to their financial information [25].

The second dataset is the latest dataset generated by CIC, UNB [6]. Table 1 shows the 14 categories
of malware in the dataset, the number of malware families within each category and the number of
instances in each category-family combination.

3.2 Data Preprocessing

The CCCS-CIC-AndMal-2020 dataset, as claimed by its developers, is balanced. For the instances
of categories of malware under study in this work, the Synthetic Minority Over-sampling Technique
(SMOTE) and Spread-Sub-Sample were used to balance the subset and instances, Fig. 1 shows the
status before and after balancing.

Figure 1: (Continued)



CSSE, 2024, vol.48, no.5 1179

Figure 1: Handling imbalanced data

3.3 Feature Selection

The Information Gain Attribute Evaluator (GAN) and the Correlation-based Feature Selection
(CFS) Subset Evaluator for feature selection were used on both datasets. GAN was used to rank the
attributes, then the CFS subset evaluator was used for attribute selection. In the analysis phase, we
removed 2 features. The removal of the “ResolveIntent” feature did not affect the results. However,
the removal of the “shutdown” feature had a positive impact on the results as we will see in the next
section. As a result, our model uses only 27 significant attributes, as shown in Table 4.

Table 4: Selected features

No. Feature name No. Feature name

1. pread64 15. getSubscriberId
2. gettimeofday 16. getInstallerPackageName
3. munmap 17. isAdminActive
4. sigprocmask 18. getInTouchMode
5. Iseek 19. getInstalledPackages
6. pwrite64 20. getReceiverInfo
7. CREATE_FOLDER 21. FS_ACCESS(CREATE READ)
8. getDisplayInfo 22. FS PIPE ACCESS(WRITE)
9. getApplicationInfo 23. getWifiServiceMessenger
10. statfs64 24. queryIntentServices
11. FS_PIPE_ACCESS 25. setComponentEnabledSetting
12. _newselect 26. sendAccessibilityEvent
13. getActivePhoneType 27. Class
14. flock



1180 CSSE, 2024, vol.48, no.5

3.4 Classification Algorithm Evaluation

In this stage, we used some of the most popular classifiers to detect and classify malware. The used
classification algorithms and a brief description of each are as follows:

a) Random Forest (RF): in RF, the result of a new entry is voted on based on the classifiers’
predictions. RF incorporates numerous tree classifiers.

b) J48 is a decision tree that generates classification or regression models in the form of a tree
structure. It gradually divides a dataset into smaller and smaller groups while, at the same
time, constructing a decision tree. The end result is a tree containing decision nodes and leaf
nodes. A leaf node represents a classification or conclusion [26].

c) Instance-Based Learning (IBK), which is also called k-Nearest Neighbors (KNN), is a
lazy algorithm. The distance is the factor that determines the similarity between two data
points [27].

d) Naive Bayes (NB) is a supervised classification algorithm. It is based on the Bayes theorem
and the naive assumption of conditional independence among variable pairs [28].

The model phases are illustrated in Fig. 2 below.

Figure 2: The machine learning approach for malware detection model

In our experimental evaluations, we used the K-fold cross-validation technique, which splits the
instances into several subsets where the parameter K indicates the number of folds. A value of 10 was
selected as the K parameter. The overall results were assessed using a number of metrics, including
accuracy, recall, and precision.

4 Experiments and Results

In this work, we conducted experiments on dynamic features collected in the dataset. In order to
monitor the behavior of malware more effectively, the dataset was divided into two categories: before
and after the virtual machine reboot. This is significant because new malwares are able to detect the
environment in which they are running and conceal their existence; for example, if they detect a VM
or sandbox host they will stop their activity and may take other actions to conceal their presence from
the VM.

4.1 Experiment on CCCS-CIC-AndMal-2020

In this experiment, we extracted malware samples of the same categories from the new CCCS-
CIC-AndMal-2020 dataset that existed in the older CICMalDroid2020 dataset that was used in our
previous work and applied our methodology to them to detect malware. The malware samples under



CSSE, 2024, vol.48, no.5 1181

focus here were related to rows: 1, 7, 10, and 12 of Table 1, which shows these categories and a brief
description of them.

4.1.1 Experiment before Machine Restart

The first part of the experiment was conducted on the “Before” instances in the dataset, which
represent the behavior or dynamic features of malware before restarting the virtual machine hosting
the malware.

Table 5 and Fig. 3 show the results of the implementation of the five algorithms on the “Before”
dataset using the previously used four categories with the 10-fold cross-validation technique. It can be
seen that Random Forest achieves the highest performance values.

Table 5: Results of the implementation of the five algorithms on the “Before” dataset—test mode:
10-fold cross-validation

Algorithm Accuracy Recall Precision F-measure

Random forest 98.84% 98.80% 98.80% 98.80%
IBK 96.68% 96.70% 96.70% 96.70%
J48 95.65% 95.70% 95.70% 95.70%
Logistic regression 72.34% 72.30% 72.60% 72.30%
NB 52.75% 52.80% 58.60% 50.10%

Figure 3: Results of the implementation of the five algorithms on the “Before” dataset—test mode:
10-fold cross-validation

Table 6 and Fig. 4 show the results of the implementation of the five algorithms on the “Before”
dataset using the previously used four categories using the 80 training, 20 testing cross-validation
technique. It can also be seen that Random Forest achieves the highest results across all metric values.



1182 CSSE, 2024, vol.48, no.5

Table 6: Results of the implementation of the five algorithms on the “Before” dataset—test mode: 80
training, 20 testing

Algorithm Accuracy Recall Precision F-measure

Random forest 98.74% 98.70% 98.70% 98.70%
IBK 97.32% 97.30% 97.30% 97.30%
J48 96.34% 96.30% 96.30% 96.30%
Logistic regression 71.83% 71.80% 72.00% 71.80%
NB 52.84% 52.80% 58.7% 50.10%

Figure 4: Results of the implementation of the five algorithms on the “Before” dataset—test mode: 80
training, 20 testing

4.1.2 Experiment on Dataset after Machine Restart

The second part of the first experiment was conducted on the “After” records in the dataset, which
represent the behavior or dynamic features of malware after restarting the virtual machine hosting the
malware. Table 7 and Fig. 5 show the results of the implementation of the five algorithms on the “after
dataset” using the previously used four categories with the 10-fold cross-validation technique. It can
be seen that Random Forest achieves the highest performance figures.

Table 7: Results of the implementation of the five algorithms on the “After” dataset—test mode: 10-
fold cross-validation

Algorithm Accuracy Recall Precision F-measure

Random forest 98.93% 98.90% 98.90% 98.90%
IBK 97.81% 97.80% 97.80% 97.80%
J48 96.54% 96.50% 96.50% 96.50%
Logistic regression 72.23% 72.20% 72.40% 72.1%
NB 57.72% 57.70% 59.90% 55.80%



CSSE, 2024, vol.48, no.5 1183

Figure 5: Results of the implementation of the five algorithms on the “After” sataset—test mode: 10-
fold cross-validation

Table 8 and Fig. 6 show the results of the implementation of the five algorithms on the “after”
dataset using the previously used four categories with the 80 training, 20 testing cross-validation
technique. It can also be seen that the Random Forest algorithm is the one achieving the highest results
across all metric values.

Table 8: Results of the implementation of the five algorithms on the “After” dataset—test mode: 80
training, 20 testing

Algorithm Accuracy Recall Precision F-measure

Random forest 98.49% 98.50% 98.5% 98.5%
IBK 96.93% 96.90% 96.90% 96.90%
J48 95.74% 95.70% 95.70% 95.70%
Logistic regression 71.65% 71.70% 71.90% 71.50%
NB 58.36% 58.40% 60.80% 56.40%

Figure 6: Results of the implementation of the five algorithms on the “After” dataset—test mode: 80
training, 20 testing



1184 CSSE, 2024, vol.48, no.5

4.2 Feature Analysis

In addition to feature selection, we conducted further analysis to see if we could improve the
accuracy and further reduce the time needed to classify by including or excluding features.

4.2.1 Dataset before Reboot

When we used the new dynamic-before-reboot subset from the CIC dataset, initially, the number
of features was 144. It was reduced to 29 after using the CFS Subset Evaluator. After more feature
analysis was performed, the accuracy increased when the following features were removed:

a) API_Database_android.content.ContextWrapper_databaseList
b) API_Database_android.database.sqlite.SQLiteDatabase_update
c) API_DeviceInfo_android.telephony.TelephonyManager_getSimSerialNumber
d) API_IPC_android.content.ContextWrapper_startActivity
e) API_DeviceData_android.os.SystemProperties_get.

We tried to remove additional features, but this resulted in a drop in accuracy. Hence, we could
still achieve good results using 24 features instead of the 29 selected by the selection algorithm. Table 9
and Fig. 7 show the results after removing the 5 features with test mode: 10-fold cross-validation.

Table 9: Results with reduced features test mode: 10-fold cross-validation

Algorithm Accuracy Recall Precision F-measure

Random forest 98.75% 98.80% 98.80% 98.80%
IBK 97.06% 97.10% 97.10% 97.10%
J48 96.37% 96.40% 96.40% 96.40%
Logistic regression 68.74% 68.70% 69.30% 68.80%
NB 52.17% 52.20% 57.50% 48.90%

Figure 7: Results with reduced features test mode: 10-fold cross-validation

Table 10 and Fig. 8 show the results after removing the 5 features with test mode: 80 training, 20
testing.



CSSE, 2024, vol.48, no.5 1185

Table 10: Results with reduced features test mode: 80 training, 20 testing

Algorithm Accuracy Recall Precision F-measure

Random forest 98.86% 98.90% 98.90% 98.90%
IBK 96.52% 96.50% 96.50% 96.50%
J48 96.06% 96.10% 96.10% 96.10%
Logistic regression 69.06% 69.10% 69.80% 69.20%
NB 52.04% 52.00% 57.40% 49.00%

Figure 8: Results with reduced features test mode: 80 training, 20 testing

4.2.2 Dataset after Reboot

When we used the new dynamic-after-reboot subset from the CIC dataset, initially, the number of
features was 144. It was reduced to 28 after using CFS. After more feature analysis was applied, the
accuracy increased when the following features were removed:

a) API_DeviceInfo_android.os.Debug_isDebuggerConnected
b) API_SMS_android.telephony.SmsManager_sendTextMessage
c) API_IPC_android.content.ContextWrapper_startActivity
d) API_DeviceData_android.os.SystemProperties_get

We tried to remove more features, but the accuracy decreased. So, we could still achieve good
results using 24 features instead of the 28 selected by the selection algorithm. Table 11 and Fig. 9 show
the results after removing the 4 features using the 10-fold cross-validation test mode.

Table 11: Results after reboot with reduced features test mode: 10-fold cross-validation

Algorithm Accuracy Recall Precision F-measure

Random forest 98.96% 99.00% 99.00% 99.00%
IBK 97.63% 97.60% 97.60% 97.60%
J48 96.40% 96.40% 96.40% 96.40%
Logistic regression 69.10% 69.10% 69.80% 68.90%
NB 55.74% 55.70% 57.60% 53.10%



1186 CSSE, 2024, vol.48, no.5

Figure 9: Results after reboot with reduced features test mode: 10-fold cross-validation

Table 12 and Fig. 10 show the results after removing the 4 features using the test mode: 80 training,
20 testing.

Table 12: Results after reboot with reduced features test mode: 80 training, 20 testing

Algorithm Accuracy Recall Precision F-measure

Random forest 98.36% 98.40% 98.40% 98.40%
IBK 96.88% 96.90% 96.90% 96.90%
J48 95.32% 95.30% 95.30% 95.30%
Logistic regression 68.71% 68.70% 69.50% 68.40%
NB 56.56% 56.60% 58.80% 53.90%

Figure 10: Results after reboot with reduced features test mode: 80 training, 20 testing

Table 13 provides a comparison of our proposed approach with other state-of-the-art methods.



CSSE, 2024, vol.48, no.5 1187

Table 13: Comparison with other state-of-the-art methods

Reference Year Dataset Number of
features

Feature
selection

ML/DL algorithm Best result

[7] 2021 Their own
dataset

NA NA Deep learning
model with 4
hidden layers (200
neurons each)

F1-score: 98.84%,
Accuracy: 98.08%,
Error rate: 1.92%

[8] 2021 AndroZoo NA NA Random forest Precision: 82.5%,
Accuracy: 81.5%

[9] 2020 Applications
downloaded
from Google
Play, APKpure,
and malware-
sharing
websites

351 features NA DBN-GRU
hybrid model

Accuracy: 99.4%

[10] 2021 CICInvesAnd
Mal2019
dataset

14 features Principal
component
analysis
(PCA)

Random forest Accuracy: 96.05%

[11] 2018 DREBIN
dataset

8 features Substring-
based
method

Random forest Accuracy: 97.24%,
TPR: 96.88%,
FPR: 2.39%,
F1: 97.23%,
Precision: 97.58%

[12] 2018 Some samples
from
VirusShare,
AMD, and
Google Play
Store

NA Grad-CAM CNN + Jaccard
similarity
coefficient

Accuracy: 91.27%

[13] 2022 CICMalDroid
2020
Drebin

NA selectFrom
Model method

GNN Accuracy: 98.33%
Accuracy: 98.68%

[14] 2020 Some samples
from Drebin,
AMD, Github,
and AndroZoo
datasets

108 features NA Tree augmented
Naive Bayes

Accuracy: 97%

[15] 2020 Application
download from
APKPure and
the android
malware
genome project

5 features Gain ratio
attribute
evaluator

Random forest Accuracy: 91.7%
Precision: 93.1%
Recall: 90%

[16] 2021 CCCS-CIC-
AndMal-2020

141 features NA Decision tree Precision: 0.984
F1-score: 0.983
Recall 0.983

[17] 2020 CCCS-CIC-
AndMal-2020

2237 features ExtraTree
classifier, Gini
importance
value and best
k features

Convolutional
neural network
(CNN)

Accuracy: 93.36%
Log loss of less than 0.20

(Continued)



1188 CSSE, 2024, vol.48, no.5

Table 13 (continued)

Reference Year Dataset Number of
features

Feature
selection

ML/DL algorithm Best result

[18] 2024 VirusShare and
AndroZoo

NA NA GCN Accuracy: 97.2%
Recall: 97%
Precision: 97.3%
F1-score: 97.1%

[19] 2024 Drebin 215 features NA CNN Accuracy: 99.92%
Recall: 99.16%
Precision: 98.61%
F1-score: 98.88%
Loss: 0.08

[20] 2024 The subset of
the KronoDroid
dataset

50 features ExtraTree
classifier

Random forest 98.03% accuracy
(detection), 87.56%
accuracy (classification)

[21] 2024 Drebin 40 features Recursive
feature
elimination

Random forest Accuracy: 99%
Recall: 98.7%
Precision: 100%
F1-score: 99.3%

[22] 2024 Drebin and
TUAN-
DROMD

54 & 61 Gain-ratio and
Chi-Square
test

Random forest Accuracy: 98.8%
Recall: 97.6%
Precision: 99.3%
F1-score: 94.9%

Our
proposed
framework

2024 CICMalDroid
2020 (After and
before reboot)
CCCS-CIC-
AndMal-2020
(Before reboot)
CCCS-CIC-
AndMal-2020
(After reboot)

26 features
24 features
24 features

Information
gain attribute
evaluator and
the CFS
subset
evaluator

Random forest Accuracy: 98.61%
Precision: 98.6%
Recall: 98.61%
Accuracy: 98.84%
Precision: 98.8%
Recall: 98.8%
F1-score: 98.8%
Accuracy: 98.93%
Precision: 98.9%
Recall: 98.9%
F1-score: 98.9%

By analyzing the comparison table, it is clear that our proposed model has outperformed state-of-
the-art models, although there are two models that have higher accuracy figures. Nonetheless, given
the number of features used, we find that they are very large in comparison to the number of features
that exist in our model (215 and 351 features), and this, in turn, may contribute to the complexity
of the model which requires additional computational processing and will also require more time in
extracting features from APKs and more time to classify.

5 Conclusions and Future Work

In this work, we developed a Machine Learning methodology to enhance previous malware
classification by using a new dataset with new categories of Android malware families and larger
samples. Machine learning classifiers were used to detect malware. Our methodology successfully
classified Android APKs as malware or benign applications by using features from the CCCS-CIC-
AndMal-2020 and the older CICMalDroid2020 dataset. In the model we developed, each Android
application is classified using 4 machine learning classifiers; Random Forest, NB, J48, and IBK



CSSE, 2024, vol.48, no.5 1189

(KNN). Accuracy, Recall, Precision and F-measure metrics were calculated through the confusion
matrix (TP, TN, FP and FN) of each classification algorithm used.

In order to mitigate the risk of model-to-data bias and to improve the generalizability of
the machine learning models, we experimented with the CCCS-CIC-AndMal-2020 and the older
CICMalDroid2020 dataset wherein the latter, newer dataset contains a higher number of instances
as well as additional malware categories to be classified.

Experimental results show that the Random Forest classifier achieved the highest results among
the other algorithms in malware detection. This achievement can be explained by its use of multiple
decision trees of various subsets of the given dataset then averages out the observations to enhance
accuracy. The Random Forest algorithm aggregates predictions from each tree and generates a final
output based on majority voting.

The performance advantage seen in the Random Forest algorithm in the malware detection task
can be attributed to different factors, especially those related to dataset characteristics combined with
the inherent strengths of the algorithm. Specifically, it contains numeric features that represent various
software characteristics from the samples. The Random Forest’s performance advantage is that it can
automatically select and combine the most discriminating characteristics from the ensemble of decision
trees, which enables it to handle high-dimensional numerical data easily. Furthermore, the Random
Forest ensemble, which relies on the combination of the forecasts of multiple uncorrelated trees,
provides higher robustness to noise and outliers, which are common for the malware data, because
of the ever-evolving nature of malicious software.

Random Forest algorithm keep their positions in malware detection through the predilection to
tricky relations between many features. This is of the utmost importance in the case of discriminating
benign from malicious software since the difference is mostly revealed through the complex patterns of
features and their interactions. Unlike Logistic Regression (LR) and NB which assume features to be
independent and linearly related, the Random Forest model can deal with such complex relationships,
hence giving a better performance.

In future work, a whitelist and a blacklist can be implemented to minimize the time and effort to
classify instances. Also, this model can be tried on other datasets related to Android or other mobile
systems.

Acknowledgement: The authors acknowledge the continuous support of their institution.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm their contribution to the paper as follows: study conception
and design: Mohammad Ababneh, Ayat Al-Droos; data collection: Mohammad Ababneh, Ayat
Al-Droos; analysis and interpretation of results: Mohammad Ababneh, Ayat Al-Droos, Ammar
El-Hassan; draft manuscript preparation: Mohammad Ababneh, Ammar El-Hassan. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, Mohammad Ababneh, upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



1190 CSSE, 2024, vol.48, no.5

References
[1] A. Turner “How many smart phones are in the world?,” 2024. Accessed: Feb. 20, 2024. [Online]. Available:

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
[2] D. Curry “Android statistics (2024),” 2024. Accessed: Feb. 20, 2024. [Online]. Available: https://www.

businessofapps.com/data/android-statistics/
[3] A. Kivva “IT threat evolution in Q3 2023 mobile statistics,” 2024. Accessed: Feb. 20, 2024. [Online].

Available: https://securelist.com/it-threat-evolution-q3-2023-mobile-statistics/111224/
[4] E. J. Alqahtani, R. Zagrouba, and A. Almuhaideb, “A survey on android malware detection techniques

using machine learning algorithms,” in Sixth Int. Conf. Softw. Def. Syst. (SDS), Rome, Italy, Jun. 10–13,
2019, pp. 110–117.

[5] A. Droos, A. Al-Mahadeen, T. Al-Harasis, R. Al-Attar, and M. Ababneh, “Android malware detection
using machine learning,” in 13th Int. Conf. Inf. Commun. Syst. (ICICS), Irbid, Jordan, Jun. 21–23, 2022,
pp. 36–41. doi: 10.1109/ICICS55353.2022.9811130.

[6] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A. A. Ghorbani, “Dynamic android mal-
ware category classification using semi-supervised deep learning,” The 18th IEEE International Conference
on Dependable, Autonomic, and Secure Computing (DASC), Calgary, AB, Canada, Aug. 17–24, pp. 515–
522, 2020

[7] V. Sihag, M. Vardhan, P. Singh, G. Choudhary, and S. Son, “De-LADY: Deep learning-based android
malware detection using dynamic features,” J. Internet Serv. Inf. Secur., vol. 11, no. 2, pp. 34–45, May 2021.

[8] N. Herron, W. B. Glisson, J. T. McDonald, and R. K. Benton, “Machine learning-based android malware
detection using manifest permissions,” in Proc. 54th Hawaii Int. Conf. Syst. Sci., Honolulu, HI, USA, Jan.
5–8, 2021. doi: 10.24251/HICSS.2021.839.

[9] T. Lu, Y. Du, L. Ouyang, Q. Chen, and X. Wang, “Android malware detection based on a hybrid deep
learning model,” Secur. Commun. Netw., vol. 2020, no. 6, pp. 1–11, Jan. 2020. doi: 10.1155/2020/8863617.

[10] A. Sangal and H. K. Verma, “A static feature selection-based android malware detection using machine
learning techniques,” in Int. Conf. Smart Electr. Commun. (ICOSEC), Trichy, India, Sep. 10–12, 2020, pp.
48–51. doi: 10.1109/ICOSEC49089.2020.9215355.

[11] M. Rana, S. S. M. M. Rahman, and A. H. Sung, “Evaluation of tree based machine learning classifiers for
android malware detection,” in Int. Conf. Comput. Collect. Intell., Bristol, UK, Sep. 5–7, 2018, pp. 377–385.

[12] J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi, “MAPAS: A practical deep learning-based
android malware detection system,” Int. J. Inf. Secur., vol. 21, no. 4, pp. 725–738, Aug. 2022. doi:
10.1007/s10207-022-00579-6.

[13] R. Yumlembam, B. Issac, S. M. Jacob, and L. Yang, “IoT-based android malware detection using graph
neural network with adversarial defense,” IEEE Internet Things J., vol. 10, no. 10, pp. 8432–8444, May
2023. doi: 10.1109/JIOT.2022.3188583.

[14] R. Surendran, T. Thomas, and S. Emmanuel, “A TAN based hybrid model for android malware detection,”
J. Inf. Secur. Appl., vol. 54, no. 3, pp. 102483, 2020. doi: 10.1016/j.jisa.2020.102483.

[15] R. Thangavelooa, W. W. Jinga, C. K. Lenga, and J. Abdullaha, “DATDroid: Dynamic analysis technique
in android malware detection,” Int. J. Adv. Sci., Eng. Inf. Technol., vol. 10, no. 2, pp. 536, 2020. doi:
10.18517/ijaseit.10.2.10238.

[16] D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari, F. Gagnon and F. Massicotte, “EntropLyzer: Android malware
classification and characterization using entropy analysis of dynamic characteristics,” in 2021 Reconciling
Data Anal., Autom., Privacy, Secur.: Big Data Chall. (RDAAPS), Hamilton, Canada, May 18–19, 2021,
vol. 159, pp. 1–12. doi: 10.1109/RDAAPS48126.2021.9452002.

[17] A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. Gagnon and F. Massicotte, “DIDroid: Android malware
classification and characterization using deep image learning,” in 10th Int. Conf. Commun. Netw. Secur.
(ICCNS2020), Tokyo, Japan, Nov. 27–29, 2020, pp. 70–82.

[18] X. Lu, J. Zhao, S. Zhu, and P. Lio, “SNDGCN: Robust android malware detection based on subgraph
network and denoising GCN network,” Expert. Syst. Appl., vol. 250, no. 6, pp. 123922, Sep. 15, 2024. doi:
10.1016/j.eswa.2024.123922.

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.businessofapps.com/data/android-statistics/
https://www.businessofapps.com/data/android-statistics/
https://securelist.com/it-threat-evolution-q3-2023-mobile-statistics/111224/
https://doi.org/10.1109/ICICS55353.2022.9811130
https://doi.org/10.24251/HICSS.2021.839
https://doi.org/10.1155/2020/8863617
https://doi.org/10.1109/ICOSEC49089.2020.9215355
https://doi.org/10.1007/s10207-022-00579-6
https://doi.org/10.1109/JIOT.2022.3188583
https://doi.org/10.1016/j.jisa.2020.102483
https://doi.org/10.18517/ijaseit.10.2.10238
https://doi.org/10.1109/RDAAPS48126.2021.9452002
https://doi.org/10.1016/j.eswa.2024.123922


CSSE, 2024, vol.48, no.5 1191

[19] M. Aamir et al., “AMDDLmodel: Android smartphones malware detection using deep learning model,”
PLoS One, vol. 19, no. 1, pp. e0296722, Jan 2024. doi: 10.1371/journal.pone.0296722.

[20] M. Waheed and S. Qadir, “Effective and efficient android malware detection and category classification
using the enhanced KronoDroid dataset,” Secur. Commun. Netw., vol. 2024, pp. 1–13, Apr. 2024. doi:
10.1155/2024/7382302.

[21] A. Wajahat et al., “Securing android IoT devices with GuardDroid transparent and lightweight malware
detection,” Ain Shams Eng. J., vol. 15, no. 5, pp. 102642, May 2024. doi: 10.1016/j.asej.2024.102642.

[22] A. Wajahat et al., “Outsmarting android malware with cutting-edge feature engineering and machine learn-
ing techniques,” Comput. Mater. Contin., vol. 79, no. 1, pp. 651–673, 2024. doi: 10.32604/cmc.2024.047530.

[23] S. Mahdavifar, D. Alhadidi and A. A. Ghorbani, “Effective and efficient hybrid android malware classi-
fication using pseudo-label stacked auto-encoder,” Journal of Network and Systems Management, vol. 30,
no. 1, pp. 1–34, Nov. 2021. doi: 10.1007/s10922-021-09634-4.

[24] K. Hamandi, A. Chehab, I. H. Elhajj, and A. Kayssi, “Android SMS malware: Vulnerability and
mitigation,” in 27th Int. Conf. Adv. Inf. Netw. Appl. Workshops, Barcelona, Spain, Mar. 25–28, 2013, pp.
1004–1009.

[25] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone, “Formal methods for android banking malware
analysis and detection,” in Sixth Int. Conf. Internet of Things: Syst., Manage. Secur. (IOTSMS), Granada,
Spain, Oct. 22–25, 2019, pp. 331–336. doi: 10.1109/IOTSMS48152.2019.8939172.

[26] S. Sayad “Decision tree,” Accessed: Feb. 20, 2024. [Online]. Available: https://www.saedsayad.com/
decision_tree.htm

[27] F. Salo, A. B. Nassif, and A. Essex, “Dimensionality reduction with IG-PCA and ensemble clas-
sifier for network intrusion detection,” Comput. Netw., vol. 148, no. 11, pp. 164–175, 2019. doi:
10.1016/j.comnet.2018.11.010.

[28] P. Valdiviezo-Diaz, F. Ortega, E. Cobos, and R. Lara-Cabrera, “A collaborative filtering approach based on
naïve bayes classifier,” IEEE Access, vol. 7, pp. 108581–108592, 2019. doi: 10.1109/ACCESS.2019.2933048.

https://doi.org/10.1371/journal.pone.0296722
https://doi.org/10.1155/2024/7382302
https://doi.org/10.1016/j.asej.2024.102642
https://doi.org/10.32604/cmc.2024.047530
https://doi.org/10.1007/s10922-021-09634-4
https://doi.org/10.1109/IOTSMS48152.2019.8939172
https://www.saedsayad.com/decision_tree.htm
https://www.saedsayad.com/decision_tree.htm
https://doi.org/10.1016/j.comnet.2018.11.010
https://doi.org/10.1109/ACCESS.2019.2933048

	Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm
	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Experiments and Results
	5 Conclusions and Future Work
	References


