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ABSTRACT

Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-
Computer Interaction (HCI). However, physical methods of emotion recognition such as facial expressions, voice,
and text data, do not always indicate true emotions, as users can falsify them. Among the physiological methods
of emotion detection, Electrocardiogram (ECG) is a reliable and efficient way of detecting emotions. ECG-enabled
smart bands have proven effective in collecting emotional data in uncontrolled environments. Researchers use
deep machine learning techniques for emotion recognition using ECG signals, but there is a need to develop
efficient models by tuning the hyperparameters. Furthermore, most researchers focus on detecting emotions in
individual settings, but there is a need to extend this research to group settings as well since most of the emotions are
experienced in groups. In this study, we have developed a novel lightweight one dimensional (1D) Convolutional
Neural Network (CNN) model by reducing the number of convolution, max pooling, and classification layers.
This optimization has led to more efficient emotion classification using ECG. We tested the proposed model’s
performance using ECG data from the AMIGOS (A Dataset for Affect, Personality and Mood Research on
Individuals and Groups) dataset for both individual and group settings. The results showed that the model achieved
an accuracy of 82.21% and 85.62% for valence and arousal classification, respectively, in individual settings. In group
settings, the accuracy was even higher, at 99.56% and 99.68% for valence and arousal classification, respectively. By
reducing the number of layers, the lightweight CNN model can process data more quickly and with less complexity
in the hardware, making it suitable for the implementation on the mobile phone devices to detect emotions with
improved accuracy and speed.
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1 Introduction

Advancements in emotion recognition technology have enabled HCI systems to facilitate human-
to-human interactions instead of just human-to-machine interactions [1]. Emotion results in psy-
chological and physiological changes, influencing decision-making, and cognitive processes. Emotion
recognition has the potential to be very beneficial in healthcare, e-learning, retail market analysis,
gaming, driver assistance, recruitment, and the entertainment industry [1]. Patients’ emotions, such as
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stress, anger, and depression, can be detected in smart healthcare centers, enabling timely actions or
medication recommendations. Emotion detection also benefits elderly care and surveillance systems
in healthcare [2]. During the COVID-19 lockdown scenario, it was vital to remotely monitor patients’
emotions, such as stress, to prevent suicidal attempts and maintain social balance [3]. In a smart
healthcare system, pain detection in babies and patients who cannot express themselves verbally is a
priority to take timely actions and provide appropriate treatment [4]. Emotion detection can also help
manage conditions such as autism, psycho-neural disorders, Parkinson’s disease, and sleep disorders
like schizophrenia [1]. Moreover, the development of virtual emotion detection-based surveillance
systems could be aimed at facilitating smart healthcare systems [5,6]. Affective Brain-Computer
Interaction (BCI) involves communicating with BCI through emotions and aims to develop real-time
emotional responses in BCI. The development of Affective BCI studies has been very beneficial to
HCI systems, particularly for disabled and neuro-disordered patients. Earlier studies in Affective BCI
focused on using a single modality, Electroencephalogram (EEG). However, multimodal emotion
recognition systems that combine EEG with other modalities are more reliable [7]. Researchers
used various methods to elicit emotions in test subjects, such as virtual reality, images, music, and
videos [1]. Among these methods, videos are the most commonly used for emotion elicitation.
Emotions are assessed by the subjects using techniques such as questionnaires and self-assessment
manikins [8–10]. Physical signals such as facial expressions, voice signals [11], and biosignals such
as EEG, electromyogram (EMG), respiration rate, photoplethysmography (PPG), galvanic skin
response (GSR), ECG, and skin temperature are used to recognize emotions [1]. The subjects cannot
consciously control physiological signals because they are activated unintentionally [12]. Smartwatches
or smart fabrics can be used to collect physiological data from subjects in a mobile and unobtrusive
environment [12]. Lin et al. [13] comprehensively reviewed emotion detection using EEG, ECG, GSR,
and respiration rate and describe the various emotion models, emotion elicitation methods, datasets,
features, and classification techniques. The ECG dataset is well-studied by many researchers for
emotion recognition, and many publicly available datasets are available [1]. Public ECG datasets such
as DEAP [14], MAHNOB [15], AMIGOS [16], and ASCERTAIN [17] are preferred by researchers
over private ones for emotion detection [1]. The emotions are classified using the two-dimensional
(2D) Valence Arousal model, as shown in Fig. 1 [1].

Figure 1: Valence Arousal model (reprinted from reference [1])

Classification of emotions has been highest using the 2D Valence Arousal model, followed by
four-class discrete emotion classification [1]. Statistical features, such as time and frequency features
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[18], as well as wavelet features [19], are manually extracted for the best features to be selected
and passed on to machine learning classifiers. Emotion detection employs machine learning models
such as Random Forest (RF), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and
Decision Trees (DT) [16–22]. Deep learning models such as Long Short-Term Memory, Recurrent
Neural Networks, and CNN are also used for automatic feature extraction in emotion classification
[23–25]. Manual feature extraction requires domain expertise and consumes a significant amount of
time, whereas deep learning methods have complexity in architecture and computation, requiring
longer training times [25]. In the Machine Learning taxonomy, SVM, and KNN are most efficient
in ECG classification, while CNN is more common in the Deep Learning taxonomy [1]. ML and
deep learning models have achieved reasonable accuracy, and validation is done for multiple datasets.
However, there are some limitations in emotion recognition using ECG, such as uncertainty in
performance and future research can focus on the usage of hyperparameter tuning and fusion
techniques [1]. HCI systems are designed to enable humans to interact with machines more naturally
and intuitively. Affective Computing techniques using deep learning have found applications in elderly
care, pain detection, stress detection, surveillance systems, and healthcare systems. Deep Learning
techniques such as 1D CNN systems are suitable for emotion detection using ECG data. However, the
complexity and speed of the system can be improved by tuning the hyperparameters in the CNN model.
Our study aims to enhance the performance of the CNN model for classifying emotions using ECG
signals. We plan to achieve this by tuning the hyperparameters, such as the number of convolutional
layers, filter sizes, max pooling, and dense layers, to improve the model’s accuracy. As a result, we
contribute to the advancements in deep learning technology by developing a lightweight CNN model.

Our research work is motivated by several objectives:

• We are interested in contributing to the field of emotion intelligence, Affective computing, HCI,
and healthcare, by developing a lightweight CNN model.

• We aim to create a model that can be easily integrated into smart healthcare systems for practical
usage.

• We aim to explore emotions in social contexts. This is because many emotions are experienced
in groups rather than in isolation.

• We aim to improve emotion classification accuracy in individual and group settings using
lightweight CNN model.

The study’s research contributions are as follows:

• The creation of a novel lightweight CNN model with fewer layers, reduced complexity, and
improved speed for emotion classification using ECG signals.

• An increase in the accuracy of emotion classification using ECG and CNN model for both
individual and group settings of the participants. We believe that our study is the first to use 1D
CNN for group classification in social contexts with ECG data.

• A valuable contribution to the fields of Affective computing, HCI, and healthcare through the
development of this novel algorithm.

• The validation of the model’s performance for both individual and group settings.

2 Literature Review

This section briefly explains the literature on emotion classification using machine learning
techniques and 1D CNN models. Ferdinando et al. [26] conducted a study on classifying emotions
using ECG signals from the MAHNOB database. They extracted features using bivariate empirical
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mode decomposition and used dimensionality reduction techniques to convert high dimension feature
space to lower dimension feature space. They trained the K-Nearest Neighbor (KNN) Machine
Learning (ML) classifier using the extracted features and performed ten-fold cross-validation. The best
results obtained were 64.1% for valence and 66.1% for arousal by using Neighborhood Components
Analysis. Lin et al. [27] collected heart rate data collected from 25 healthy subjects, between the ages
of 22–25 years. These subjects were free from psychiatric illnesses, medications, and alcoholism. The
data was collected using a wearable smart bracelet. A total of 53 features were extracted, and the
best features were selected using the Selectkbest method. Five ML classifiers, such as KNN, RF, DT,
Gradient Boost DT (GBDT), and Adaboost, were trained. Cross-validation was performed using
the Leave-One-Subject-Out method. Among the classifiers, GBDT exhibited the highest accuracy of
84% while classifying happy and sad emotions [27]. The ECG data is collected through a non-contact
data acquisition system. The signal is then processed, converted to digital form, and transmitted to a
computer via a Bluetooth module. To induce emotions, video clips are shown to participants of diverse
work cultures. Time and frequency features, along with correlation features, are extracted from the
collected data. The Max-Min Ant System technique is used to optimize the selected features. KNN,
SVM, and DT classifiers are employed for classification. The experiments were conducted using only
time-frequency features, correlation features, and a combination of both. The KNN classifier, with
correlation features, outperformed the other experiments, achieving an accuracy of 91% for Happy,
90% for Sad, 88% for Pleasant, and 97% for Angry emotions [28]. Bulagang et al. [21] conducted
a study on emotions by collecting heart rate data from 20 healthy participants aged 20 to 28 years
old, who had no prior heart issues. They used Empatica E4 wristbands to collect the data while the
participants watched 360-degree emotional videos. The videos belonged to the four quadrants of the
Russel’s model. They classified the emotions into four classes using KNN, RF, and SVM classifiers.
In a study conducted by Sun et al. [29], ECG data was collected to correspond to various emotions
including calm, excited, happy, and tense. The data was collected using iRealcare, which can transmit
data through the smartphone. Calm emotion was recorded when subjects were in a normal state,
excited emotion was recorded while exercising, happy emotion was recorded while watching comedy
movies, and tense emotion was recorded while watching thriller movies. The ECG signal noise was
filtered using the finite impulse filter with frequencies ranging from 3 to 100 Hz. The frequency domain
discrete cosine transform method was used to extract features from the ECG data. The emotions were
classified using SVM, RF, and KNN. With the Particle Swarm Optimization technique, SVM yielded
the highest accuracy of 90.51%, while KNN and RF gave 82.48% and 81.70% accuracy, respectively.
Sayed Ismail et al. [30] conducted a comparative study on numerical 1D ECG data and ECG data in
the form of two-dimensional images. They converted the 1D ECG data from the DREAMER dataset
into images and performed emotion classification. Feature extraction was carried out separately for
numerical and image data. They used LDA for dimensionality reduction and SVM for classification.
For the 1D data, they obtained a valence accuracy of 65.06% and an arousal accuracy of 57.83%.
For the images, they achieved a valence accuracy of 62.35% and an arousal accuracy of 59.64%.
These results prove that both forms of ECG signals are suitable for classification. Alam et al. [31]
obtained ECG signals from 45 individuals. The signals were recorded while the participants were
watching videos. They extracted ten statistical features from the ECG signals, performed ten-fold
cross-validation, and used SVM and RF classifiers to classify the ECG signals based on emotions. The
results showed that the SVM classifier had a classification accuracy of 86.6%, while the RF classifier
had an accuracy of 98.2%. The authors of the study [32] implemented the multi-filtering augmentation
technique to improve the classification accuracy of ECG data using the KNN, RF classifier on A2ES,
AMIGOS, and DREAMER datasets. KNN classifier outperformed the results. Dessai et al. classified
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emotions using the early fusion of ECG and GSR signals and validated the results using the various
ML classifiers such as SVM,KNN, RF, and DT [22].

Furthermore, various CNN models have been used to detect emotions through ECG data in
multiple studies. Khare et al. have reviewed emotion recognition using EEG, GSR, and ECG signals
from one hundred and forty-two journal articles using PRISMA guidelines [1]. Dar et al. [33] employed
Z score normalization to normalize the ECG data from the AMIGOS dataset. The output is classified
into four classes: HALV, LVHA, LVLA, and HVHA, and achieved an accuracy of 98.73% using a
CNN LSTM model. Santamaria-Granados et al. [23] preprocessed ECG data from the AMIGOS
database and classified it into four categories: HALV, LVHA, LVLA, and HVHA, and achieved 81%
arousal accuracy and 71% valence accuracy. Sarkar et al. [34] proposed a deep multi-task learning
model for emotion recognition based on ECG data, which utilizes a self-supervised learning approach,
the convolutional layers are kept frozen while the dense layers are trained with labeled ECG data.
This self-supervised learning approach significantly improves the performance of the network when
compared to a network trained using fully-supervised learning. The accuracy rates obtained are as
follows: AMIGOS = 78.95%, DREAMER = 76.00%, WESAD = 95.00%, and SWELL = 92.30%.
Chen et al. [35] proposed a multi-input deep convolutional neural network structure that utilizes
multi-modal physiological signals to automatically extract features and classify emotions using the
GSR, ECG, and respiratory signals from 52 participants. Lee et al. [36] used PPG data from the
DEAP database to classify emotions into valence and arousal. They obtained classification accuracies
of 82.10% and 80.90%, respectively, by combining statistical features and CNN features in a neural
network. Jin et al. [37] introduced a new PPG dataset for emotional analysis and used a 1D CNN with
time and frequency domain features for feature extraction. The extracted features were concatenated
and passed to two dense layers via a flattened layer. The network was trained with an Adam optimizer
for 200 epochs and achieved a maximum accuracy of 75.16% with an LSTM layer. Han et al. [38]
proposed a real-time emotion recognition approach using physiological signals (PPG and EMG) and
a CNN to extract common features. Salih et al. [39] applied a deep fully connected neural network on
the Dreamer dataset and obtained 93.90% and 97.56% accuracy for valence and arousal, respectively.
Timothy et al. [40] used a temporal CNN model on the DREAMER dataset and obtained an accuracy
of 98.68% for arousal and 97.37% for valence. Dessai et al. [41] obtained a classification accuracy
of 91.27% and 91.45% for valence and arousal, respectively, using the InceptionResnetV2 2D CNN
classifier. Rahim et al. [42] used AlexNet for emotion classification using ECG data and obtained
a classification accuracy of 91.5% for ECG data from the AMIGOS dataset. Previous literature
studies have focused on individual settings only, while our study aims to develop a less complex and
faster CNN model with a reduced number of layers for emotion classification in group settings of
participants as well.

3 Materials and Methods

The methodology for ECG-based emotion classification is explained in Fig. 2.

The input ECG data is segmented, preprocessed using Z score normalization, and classified
using the 1D CNN model. Performance measures such as Accuracy, Precision, Recall, and Confusion
matrices are computed. Further details are explained below.
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Figure 2: Block diagram of the proposed methodology

3.1 Dataset

Emotion classification is done using the ECG data from the AMIGOS dataset [16] in both the
individual settings and group settings. The AMIGOS dataset is a publicly available database that
contains ECG data of forty healthy adults, including thirteen females, aged from twenty-one to forty
years. The ECG data was collected using the Shimmer sensor with a reference electrode placed on
the left ankle and two other electrodes on the right and left arm. The ECG data was obtained at a
sampling frequency of 256 Hz [16]. ECG signal is shown in Fig. 3 [43] and consists of PQRST waves.

• Scenario 1, Individual Settings using short video data (Non-social context).

The AMIGOS dataset [16] contains data from forty individuals who individually watched sixteen
short videos of duration less than 250 s. For this study, data from four videos (video 1 (HVLA), video
6 (LVLA), video 8 (LVHA), and video 12 (HVHA)) [16] were considered, each representing a different
quadrant of Russell’s model. The valence classification uses data of videos 6 and 12 and the arousal
classification uses data of videos 1 and 12 [16].

• Scenario 2, Group Settings using long video data (Social context).

The data from the AMIGOS dataset [16] was collected in a group setting with five groups of
four people. The subjects watched long videos of a duration greater than sixteen min. Videos 17–20
represent these long videos [16]. The group valence classification uses data from videos 18 and 19 and
the group arousal classification uses data of videos 17 and 20 [16].

3.2 Segmentation

The ECG signal is divided into segments of 200 sampling points, with the peaks used as fiducial
points for QRS complex detection. In Scenario 1, for individual classification, a total of 2720 samples
are obtained, with one class having 1360 samples. In Scenario 2, for group classification, each class
has 1377 samples, and there are 2754 samples for two classes.

3.3 Z Score Normalization

The data is preprocessed using Z score normalization [33] to reduce the variation in training data
and improve the CNN model’s performance.
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Figure 3: ECG waveform (reprinted from reference [43])

3.4 1D CNN

One-dimensional (1D) CNNs are suitable for time series data such as ECG signals. Convolutional
Neural Networks work by performing feature extraction using convolution operations between the
input data and filters. The number of filters and filter sizes are fixed in the convolutional layers. The
filters slide over the input data and the convolution operation is performed between the filter data and
input data [44]. The max pooling layer reduces the dimensionality of the input data, preserving the
most essential features based on the maximum value across the filter dimension. The pooled feature
map is then converted into a vector with the help of a flattened layer. Finally, fully connected layers
are used to classify the extracted features [45]. In this work, we have developed a CNN model as shown
in Fig. 4 with two convolutional layers, one max pooling layer, and one fully connected layer.

Figure 4: 1D CNN architecture

The proposed CNN model uses an input data size of 200 with 64 filters in the first convolutional
layer. In the next CNN layer, 80 filters are used for convolution. Furthermore, the input data is
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normalized in a batch size of 80. The batch normalization helps to reduce the variations within the
input data. After passing through the max pooling layer, the feature map is reduced to 100. The
features are automatically extracted with the help of the convolution layers and pooling layers in the
CNN model. Relu Activation function is used that helps to avoid the vanishing gradient problem.The
flattened layer produces a vector of size 8000, which is then fed to the fully connected layer (dense layer)
for classification. In the dense layer, all neurons are fully connected. The classification is carried out
with the help of the softmax classifier and the softmax activation function. This function transforms
the input vector of p numbers into a probability distribution of p potential outcomes. This provides
the probability distribution of the classes, and the class with the highest probability is considered as
the predicted class. To prevent overfitting, a dropout rate of 0.3 is employed for regularization. During
training, the trainable parameters are updated with backpropagation, while non-trainable parameters
remain static. The model is trained using 80 epochs. The hyperparameters such as number of layers,
filter sizes, number of filters, batch size, number of epochs are varied till the model achieves the
optimum performance in terms of classification. The parameters indicating the best performance are
then finalized.

3.5 K Fold Cross-Validation

To improve the performance of a model, the training dataset is split into K folds, and each fold
is validated separately as shown in Fig. 5 [46]. The validation accuracy is then calculated based on
the average accuracy of all the folds. By using this method, the model’s performance can be more
accurately validated.

Figure 5: K fold cross validation (reprinted from reference [46])

In this study, the dataset has been divided into two parts: 70% for training and 30% for testing.
Additionally, the training dataset is further split into seven folds using the cross-validation technique
[47]. In Scenario 1, 816 samples were used for testing, while Scenario 2 used 827 samples for testing.
The average accuracy of all seven folds is obtained, and testing is performed on the test data. We used
Python software to implement the methodology.
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4 Results and Discussion

The performance of the lightweight CNN model has been tested on ECG data from the
AMIGOS dataset for two different scenarios: individual settings and group settings. Seven-fold cross-
validation accuracy, Precision, Recall, F1 score, and confusion matrices have been obtained to validate
the model’s performance. Additionally, training and validation accuracy and loss plots have been
generated. When the predicted class is positive and the actual class is also positive, it is considered
a true positive (TP). Similarly, when the predicted class is negative and the actual class is also negative,
it is considered a true negative (TN). On the other hand, if the predicted class is positive but the actual
class is negative, it is considered a false positive (FP). And, if the predicted class is negative but the
actual class is positive, it is considered a false negative (FN). Accuracy is defined as the ratio of the
total correctly predicted outcomes (TP and TN) to the total number of cases (TP, TN, FP, and FN).
Precision is the ratio of TP to the total number of predicted positives (TP and FP). Recall, on the
other hand, is the ratio of TP to the total number of actual positives (TP and FN). Finally, F1 score
is a measure of a model’s accuracy that takes both Precision and Recall into account. It is defined
as the ratio of twice the product of Precision and Recall to the sum of Precision and Recall [41]. The
confusion matrix is shown in the Fig. 6 [48].

Figure 6: Confusion matrix (reprinted from reference [48])

Quantitatively the Accuracy, Precision, Recall, and F1 score can be computed from the confusion
matrix using the Eqs. (1)–(4) respectively as indicated below:

Accuracy = TP + TN
TP + FP + TN + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

The emotion classification model may misclassify many emotions. Performance parameters such
as Accuracy, Precision, Recall, and F1 score, obtained from the confusion matrix, provide an overview
of the model’s classification task performance.

The seven-fold cross-validation accuracy obtained for valence classification is shown in Table 1,
and Fig. 6 in individual, and group settings.
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Table 1 indicates that the accuracy of the model varies between 76.34% and 86.27% for individual
settings. However, for the group settings, the accuracy is consistently around 99% for all folds. This
indicates that the model has performed well across all the folds for valence classification and has
delivered reasonable results. The K fold cross-validation accuracy is useful for determining the best
and worst case scenarios. For valence classification in individual settings, the worst case accuracy is
76.34% and the best case accuracy is 86.27%, as presented in Table 1. Table 2 indicates the performance
measures for valence classification in terms of Precision, Recall, and F1 score in individual, and group
settings. The average accuracy for valence classification is 82.21% for individual settings and 99.56%
for group settings. Precision, Recall, and F1 score values are 0.86 and 1 for individual settings and
group settings, respectively. The model’s Precision, Recall, and F1 score values in Table 2 confirm its
performance in line with its accuracy.

Table 1: K fold cross-validation accuracy for valence classification

K fold number Individual settings valence accuracy (%) Group settings valence accuracy (%)

Fold 1 83.82 99.63
Fold 2 85.66 99.63
Fold 3 79.9 99.39
Fold 4 83.7 99.63
Fold 5 76.34 99.27
Fold 6 79.77 99.75
Fold 7 86.27 99.63

Table 2: Performance evaluation for valence classification

Scenario Accuracy (%) Precision Recall F1 score

Individual settings 82.21 0.86 0.86 0.86
Group settings 99.56 1 1 1

The matrices indicate the suitable performance of the model for valence classification in both
scenarios. Similarly, the seven-fold cross-validation accuracy obtained for arousal classification is
shown in Table 3 and Fig. 7. The accuracy of the model varies between 82.59% and 90.56% for
individual settings. However, for the group settings, the accuracy is consistently around 99% for all
folds. This indicates that the model has performed well across all the folds for arousal classification.

Table 3: K fold cross-validation accuracy for arousal classification

K fold number Individual settings accuracy (%) Group settings accuracy (%)

Fold 1 83.82 99.75
Fold 2 82.59 99.75
Fold 3 83.08 99.75
Fold 4 90.56 99.51
Fold 5 83.45 99.75

(Continued)
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Table 3 (continued)
K fold number Individual settings accuracy (%) Group settings accuracy (%)

Fold 6 89.95 99.75
Fold 7 85.9 99.51

Figure 7: K fold cross validation arousal accuracy

For arousal classification in individual settings, the worst-case accuracy is 82.59% and the best-
case accuracy is 90.56%, as presented in Table 3.

Table 4 indicates the performance measures for arousal classification regarding the average
accuracy, Precision, Recall and F1 score.

Table 4: Performance evaluation for arousal classification

Scenario Accuracy (%) Precision Recall F1 score

Individual settings 85.62 0.86 0.86 0.86
Group settings 99.68 1 1 1

The average accuracy for arousal classification is 85.62% for individual settings and 99.68%
for group settings. Precision, Recall, and F1 score values are 0.86 and 1 for individual setting and
group setting, respectively. The model’s Precision, Recall, and F1 score values in Table 4 validate
the performance of the model by its accuracy. Thus the performance measures indicate the suitable
performance of the model for arousal classification in both scenarios.

Table 5 and Fig. 8 indicate the Valence Arousal accuracy comparison for the individual and group
settings. This proves the model performs equally well for valence and arousal classification in both
settings.
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Table 5: Valence arousal classification accuracy

Scenario Valence accuracy (%) Arousal accuracy (%)

Individual settings 82.21 85.62
Group settings 99.56 99.68

Figure 8: Valence arousal classification accuracy

Fig. 9 indicates the Confusion matrix for individual setting for valence classification and Fig. 10
indicates the Confusion matrix for group setting for valence classification.

Figs. 11 and 12 show the confusion matrices for arousal classification in individual and group
settings.

Figure 9: Confusion matrix for valence individual setting
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Figure 10: Confusion matrix for valence group setting

Figure 11: Confusion matrix for arousal individual settings
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Figure 12: Confusion matrix for arousal group settings

The confusion matrices further validate the Precision, Recall, and F1 score. Fig. 13 indicates the
training and validation accuracy plot for the individual setting and Fig. 14 for the group settings.

The training and validation accuracy indicate similar performance, proving the suitability of the
model. Table 6 gives a comparison with the other works in the literature.

As indicated in Table 6, Sarkar et al. [34] used a self-supervised CNN model with six convolutional
layers to classify emotions into nine different classes. However, the self-supervised networks require
expert knowledge and could be challenging to formulate. Chen et al. [35] employed 1D CNN with
six convolutional layers to classify emotions using ECG data from fifty-two subjects. Dar et al. [33]
used 1D CNN LSTM model to classify emotions into four categories. However, the addition of
the LSTM layer makes it computationally expensive as compared to the simple CNN model.
Santamaria-Granados [23] used a 1D CNN model to classify emotions into four categories, using
four convolutional layers. Both Dar et al. [33] and Santamaria-Granados et al. [23] developed models
that are appropriate for classifying emotions using ECG and GSR data. The 2D CNN models using
AlexNet [42] and InceptionResnetV2 [41] require complex preprocessing. Furthermore, scalograms
need to be obtained from preprocessed ECG data and converted into images. Moreover, they need
complex hardware and more training time compared to 1D CNN models. Few studies in the literature
have used the 1D CNN model for emotion classification using ECG data. However, they have used
more layers and these parameters can be optimized to develop a lightweight CNN model. Our method
involves developing a lightweight CNN model with fewer layers, resulting in improved speed and
complexity. Thus the model could be implemented on smart phones and can be used for healthcare
scenarios. Our study focused on classifying emotions based on the Valence Arousal scale, specifically
using ECG data and a lightweight 1D CNN model with fewer layers, with improved accuracy.
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Figure 13: Accuracy plot for individual settings

Figure 14: Accuracy plot for group settings

Table 6: Comparison with the other works in the literature

Sr.
No.

Reference
number

Physiological
signals

Database Method Convolutional
layers

Max
pooling
layers

Fully
connected
layers

Classes Classification
accuracy

1 [34] ECG AMIGOS Self supervised
CNN

6 3 2 9 Valence: 87.5%
Arousal: 88.9%

2 [35] ECG 52 subjects 1D CNN 6 3 2 2 Valence: 64.5%
Arousal: 75.6%

3 [33] ECG AMIGOS 1D CNN-LSTM 2 2 3 4 Valence: 98.73%
Arousal: 98.73%

4 [23] ECG AMIGOS 1D CNN 4 3 4 2 Valence: 75%
Arousal: 76%

5 [41] ECG AMIGOS InceptionResnetV2
2D CNN

– – – 2 Valence: 91.27%
Arousal: 91.45%

6 [42] ECG AMIGOS AlexNet 2D CNN – – – 2 Valence: 91.5%
Arousal: 91.5%

7 Proposed ECG AMIGOS 1D CNN 2 1 1 2 Valence: 82.21%
Arousal: 85.62%
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5 Conclusion

This study explores the use of ECG signals for emotion recognition, which accurately identifies
genuine emotions. Emotion recognition plays a vital role in healthcare systems such as stress detection,
elderly care, and surveillance systems, providing timely support to patients and increasing the quality
of their lives. The advancements in deep learning technology benefit healthcare systems in developing
sophisticated models for emotion detection. The study proposes a novel method for classifying
emotions based on ECG data. The method involves developing a lightweight CNN model with
fewer layers, resulting in improved speed and complexity. The model’s performance is optimized
by reducing the number of convolutional layers, max pooling layer, and fully connected layer. The
study evaluates the model’s performance in both individual and group settings, making it the first
research to explore the use of a lightweight 1D CNN model for emotion classification based on
ECG data in group settings. The model demonstrated superior performance in group settings than in
individual settings and exhibited subject-independent classification. Moreover, the lightweight model
can be implemented on smartphones, making it versatile and suitable for a variety of applications,
including smart healthcare systems. The AMIGOS dataset has a limitation in that it only contains
ECG recordings of young adults with similar cultural backgrounds. However, it is possible to test
the model on people from diverse age groups and cultural backgrounds. Currently, in the field of
emotion detection, there is a lack of publicly available datasets that consider the ECG recordings of
participants from diverse age groups, ethnicities, cultural backgrounds, and unhealthy subjects. In the
future, such datasets could be developed and the model’s performance could be tested. Furthermore,
the AMIGOS dataset used in this research contains ECG recordings taken in a laboratory environment
in a noise-free scenario. However, when implementing the model in real-time scenarios, factors such
as environmental noise need to be taken into account. Suitable preprocessing techniques need to be
designed to remove noise. In the future, it would be interesting to test the model for real-time emotion
detection using ECG signals. Additionally, the model could be modified to classify emotions using
other physiological signals such as Galvanic Skin Response and electroencephalogram. This can be
accomplished by making suitable changes to the preprocessing stages and tuning the hyperparameters
of a lightweight CNN, such as the number of filters, filter dimensions, batch sizes, etc. The peak
occurrence duration varies in different types of physiological signals. The fiducial points in the signals
need to be detected based on the location of the peaks or using various algorithms and suitable
segmentation to be performed. Furthermore, the hyperparameters of the CNN model need to be
obtained for optimum performance for each of these physiological signals. Such modifications would
enable the implementation of the model in a multimodal scenario for emotion detection.
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