
Copyright © 2024 The Author. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2024.052510

ARTICLE

MPDP: A Probabilistic Architecture for Microservice Performance Diagnosis
and Prediction

Talal H. Noor*

Department of Computer Science, College of Computer Science and Engineering, Taibah University,
Madinah, 42353, Saudi Arabia

*Corresponding Author: Talal H. Noor. Email: tnoor@taibahu.edu.sa

Received: 04 April 2024 Accepted: 01 July 2024 Published: 13 September 2024

ABSTRACT

In recent years, container-based cloud virtualization solutions have emerged to mitigate the performance gap
between non-virtualized and virtualized physical resources. However, there is a noticeable absence of techniques for
predicting microservice performance in current research, which impacts cloud service users’ ability to determine
when to provision or de-provision microservices. Predicting microservice performance poses challenges due to
overheads associated with actions such as variations in processing time caused by resource contention, which
potentially leads to user confusion. In this paper, we propose, develop, and validate a probabilistic architecture
named Microservice Performance Diagnosis and Prediction (MPDP). MPDP considers various factors such as
response time, throughput, CPU usage, and other metrics to dynamically model interactions between microservice
performance indicators for diagnosis and prediction. Using experimental data from our monitoring tool, stakehold-
ers can build various networks for probabilistic analysis of microservice performance diagnosis and prediction and
estimate the best microservice resource combination for a given Quality of Service (QoS) level. We generated a
dataset of microservices with 2726 records across four benchmarks including CPU, memory, response time, and
throughput to demonstrate the efficacy of the proposed MPDP architecture. We validate MPDP and demonstrate
its capability to predict microservice performance. We compared various Bayesian networks such as the Noisy-
OR Network (NOR), Naive Bayes Network (NBN), and Complex Bayesian Network (CBN), achieving an overall
accuracy rate of 89.98% when using CBN.

KEYWORDS
Cloud computing; microservices; monitoring; performance; QoS; diagnosis; prediction; Bayesian network

1 Introduction

As application requirements continue to evolve, cloud computing enables the acquisition and
release of computing resources on demand. Users can rent various types of computational resources,
each with its costs and properties, including specialized hardware like Field Programmable Gate
Arrays (FPGAs), Graphics Processing Units (GPUs), Virtual Machines (VMs), bare-metal resources,
or containers. Effective automated control of cloud resource de-provisioning requires consideration

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2024.052510
https://www.techscience.com/doi/10.32604/csse.2024.052510
mailto:tnoor@taibahu.edu.sa


1274 CSSE, 2024, vol.48, no.5

of several key aspects [1] including resource utilization, provisioning and management costs, and
automatable resource management actions.

Cloud providers such as Google Compute Engine (GCE) or Amazon Lambda increasingly offer
resource provisioning services such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS) using a billing technique based on seconds or even milliseconds.
Therefore, it is crucial to recognize the performance implications associated with deploying, terminat-
ing, and maintaining container hosting functions, as this influences a provider’s ability to offer users
more granular charging options for stream analytics or processing application requirements. Several
factors affect provisioning and de-provisioning operations, primarily [2] including overheads related
to actions (e.g., starting a new virtual machine may take minutes) [3]; and variations in processing time
due to resource contention, leading to potential user confusion.

The rapid advancement of web services significantly impacts business outcomes, as an increasing
number of companies utilize the cloud to deliver services. Agile development, coupled with DevOps
[4], is employed by developers to accelerate the delivery of web services. Microservice architecture,
proposed by Lewis et al. [5], has emerged because of the widespread adoption of agile development.
Lewis and Fowler define microservices as “a particular way of designing software applications as suites
of independently deployable services.” These microservices leverage lightweight mechanisms such as
Hypertext Transfer Protocol (HTTP) resources and Application Programming Interfaces (APIs) to
communicate and execute their processes. This architecture enables developers to update specific
segments of a web service without disrupting or shutting down the entire service, fulfilling a critical
requirement for continuous integration in agile development [6].

As the global trend toward microservice architecture development continues, cloud vendors must
accommodate numerous microservices. Individual services within the microservice architecture use
HTTP or other standard protocols for web communication [7]. Additionally, developers utilize Docker
containers to develop web services within the microservice architecture.

Docker containers provide the capability to isolate and manage resources within a process set.
Operating under the Linux kernel, Docker containers are virtualized at the operating system level,
distinguishing them from full virtualization methods like virtual machines. This results in reduced
overhead and lightweight operation [8].

Application containerization, such as deploying application components in containers, has gained
popularity in the cloud services industry. For instance, Google offers all its renowned products on
a container-based platform. Docker containers contain all necessary application software packages,
facilitating quick and easy development and execution of different product versions [9].

Container-based applications are often referred to as microservices and are employed by various
service providers for multiple reasons, including reducing complexity by utilizing small operating
systems, efficiently managing, removing, and introducing components, enhancing consistency across
different systems and tools, improving overall optimization, and enhancing device durability. Con-
tainers have led to increased adoption of lightweight microservice architectures, offering rapid startup
times and low power consumption [8,9].

The primary focus of much of the current research has been on performance modeling of multi-
tier applications in cloud data centers using virtualization technologies based on hypervisors. These
technologies enable cloud providers to create unique virtual machines sharing physical hardware
resources such as CPU, network, disk, and memory [10]. Although hypervisor-based virtualization
offers enhanced security, it often comes with a performance overhead due to each virtual machine



CSSE, 2024, vol.48, no.5 1275

having its operating system image. In recent years, cloud virtualization solutions based on containers
like Docker and Linux Containers (LXC) have emerged to bridge the performance gap between non-
virtualized and virtualized physical resources. However, there is a notable absence of microservice
performance prediction techniques in the literature, which hinders the ability to accurately differentiate
and explain differences in overhead performance between infrastructures and containers.

For example, akin to hypervisor-based infrastructure, the container engine distributes resources
of a single host among several containers, yet each virtual machine receives its separate resources from
hypervisors. Additionally, the runtime performance of a containerized web or database microservice
hinges on factors such as the physical host and the configuration of resources like memory size
and assigned CPU cores [11]. When containerized web services are deployed on hypervisor-based
cloud infrastructure, it is imperative to conduct multi-level modeling across each application level,
encompassing both containers and virtual machine levels. Service providers require a diverse array of
tracking instruments on their networks to capture data from customers for real-time results. Microser-
vice providers face two major challenges: determining the appropriate metrics to track container-
based microservices and identifying anomalous behavior even after collecting measurements [11].
Merely examining the difficulty of determining the underlying reason for microservice performance
by examining the impact of several influencing factors alone is insufficient.

The need to close the performance gap between non-virtualized and virtualized resources and
the growing popularity of container-based cloud virtualization solutions are the driving forces behind
the proposed Microservice Performance Diagnosis and Prediction (MPDP) model. The inability to
forecast microservice performance notwithstanding these developments has a substantial impact on
cloud service users’ capacity to deploy or de-provision microservices effectively. Because of things like
resource contention and variances in processing time, it might be difficult to predict microservice per-
formance and confuse users. To enable precise diagnosis and prediction of microservice performance,
the MPDP architecture dynamically models interactions between different microservice performance
indicators, such as response time, throughput, and CPU consumption.

This paper proposes, develops, and validates a probabilistic model called Microservice Perfor-
mance Diagnosis and Prediction (MPDP). MPDP considers various factors such as response time,
throughput, CPU usage, and other metrics to dynamically model interactions between microservice
performance indicators for diagnosis and prediction. We illustrate how stakeholders can construct dif-
ferent networks for analyzing microservice performance diagnosis and prediction probabilistically and
anticipate the optimal combination of microservice resources for a specific Quality of Service (QoS)
level using experimental data obtained from our monitoring tool. To illustrate the effectiveness of the
proposed MPDP architecture, we gathered our dataset of microservices which comprises 2726 records
across four benchmarks: CPU, memory, response time, and throughput. We have conducted validation
for MPDP and showcased its proficiency in predicting microservices performance. Furthermore, we
compared various Bayesian networks, such as the Noisy-OR Network (NOR), Naive Bayes Network
(NBN), and Complex Bayesian Network (CBN), achieving an overall accuracy rate of 89.98% when
using CBN.

The key features of the proposed MPDP model include:

• Through monitoring agents, which are combined into the conceptual framework of a Smart-Agent
(SA), real-time monitoring of data described by metrics is carried out.

• Fault injection is implemented by mounting an injection agent on each service container. CPU and
memory faults are simulated by certain software deployments and managed through a Secure Shell
(SSH) protocol connection.



1276 CSSE, 2024, vol.48, no.5

• With the use of Bayesian networks and the Expectation Maximization algorithm, benchmarking
analysis enables accurate diagnosis and prediction of stochastic microservice performance even in
the case of sparse or restricted data.

The remaining sections of the paper are structured as follows: Section 2 discusses the related work.
Section 3 provides an overview of MPDP architecture. Section 4 covers the MPDP implementation.
Section 5 details the experiments and analyzes the results. Finally, Section 6 concludes the paper and
discusses the future work.

2 Related Work

The issue of monitoring and diagnosing microservice performance has garnered significant
attention among researchers recently. Several surveys have been conducted to explore topics such
as challenges, emerging technologies, and future research directions in microservice monitoring and
performance diagnosis [12–16].

Some researchers focused on monitoring and performance diagnosis of microservices. For exam-
ple, Gribaudo et al. [17] address the challenge of decision-making support concerning the design, main-
tenance, and management of infrastructures based on microservices. They introduce a novel approach
for evaluating the performance of infrastructures that facilitate the operation of microservice-based
software applications. Their approach facilitates parametric simulation, enabling providers to model
such architectures, especially in scenarios involving diverse and adjustable workloads. The primary
objective of this approach is to provide an initial estimation of how various classes of microservice-
based applications may behave under specific system configurations. Wu et al. [18] address the chal-
lenge of identifying problematic microservices. This task is challenging due to the highly distributed
and complex architecture of microservices. The authors propose a system that is not specific to
any application but aims to pinpoint the causes of performance degradation in microservices. Their
approach involves creating a service dependency graph to identify potential problematic services
and then utilizing an autoencoder to detect abnormal service metrics based on a predefined list of
errors. In contrast to research works that concentrate on microservice monitoring and performance
diagnosis either through infrastructure analysis or identification of problematic microservices via
service dependency graphs, this paper showcases how stakeholders can construct various models for
probabilistic microservice performance analysis and prediction. It illustrates how stakeholders can
anticipate the optimal resource combination for achieving specific levels of Quality of Service (QoS)
using experimental data collected by our monitoring tool. Moreover, we incorporated well-known
key QoS metrics such as CPU, memory, response time, and throughput to comprehensively diagnose
microservice performance [13,16].

However, there is a growing interest among researchers in exploring monitoring and performance
diagnosis within cloud services. The evolution of cloud services has opened new opportunities for
cloud applications. Analysis, benchmarking, and prediction of cloud performance have become focal
points of interest for both industry and academia [19–23]. Various domains in the cloud, such as
Amazon CloudWatch [19], CloudHarmony [20], and Cloud Workbench [24], have previously devel-
oped benchmarking and monitoring systems for cloud businesses and academic institutions. These
platforms provide user-friendly visual tools, allowing modelers to concentrate solely on simulation
parameters without delving into system intricacies. Bashar [25] employs Bayesian networks (BNs) for
cloud autoscaling to fulfill the required Quality of Service (QoS) and service level agreement (SLA)
objectives. According to the author’s preliminary research, BNs are capable of modeling workloads
and QoS factors like CPU utilization and response time. An empirical study by Philipp et al. [26]



CSSE, 2024, vol.48, no.5 1277

focuses on evaluating the performance predictability of public Infrastructure-as-a-Service (IaaS)
clouds by systematically reviewing previous studies and conducting in-person experiments. The
authors present fifteen theories about why performance varies in IaaS systems, ranging from temporal
impacts to hardware heterogeneity and multi-tenancy. Four cloud providers are used for empiri-
cal validation, which shows significant platform-level performance variations and emphasizes the
effect of multi-tenancy on performance predictability. Hardware heterogeneity is discovered to be
less common than previously thought, while multi-tenancy is found to be a significant predictor
of performance variances. The study emphasizes the necessity of more investigation to improve
benchmarking techniques and broaden our comprehension of cloud performance dynamics. Simon
et al.’s [27] research work seeks to understand the stability of performance tests for serverless apps. By
examining two datasets repeats of the same performance test over ten months and repetitions of the
test for varied memory sizes and load intensities. Laaber et al.’s [28] research examine performance
microbenchmarking using public cloud services. The findings of the study demonstrate that there
are significant differences in the variability of microbenchmarking outcomes between cloud provider
benchmarks and instance kinds. Still, statistical analysis can be used to identify slowdowns by running
a test on the same instance. Eismann et al.’s [29] research work investigates software development’s
move toward microservice-based architectures. Small, focused services define these designs, which
provide advantages like flexibility and scalability. Performance testing has difficulties even though
microservices enable targeted functional testing. In the past, creating baseline metrics for software
versions to compare was a necessary step in performance testing. The paper does highlight the
challenge of figuring out what baseline performance looks like in microservice architectures. Through
trials on the TeaStore application, the paper highlights the difficulty of obtaining trustworthy results
in microservice contexts and sheds light on the subtle effects of microservices on performance testing.

Zhang et al. [30] address the challenge of fault detection in cloud services to enhance the reliability
of cloud data centers. To find host faults in the cloud data center, they developed a fault detection
approach that makes use of a Weighted One-Class Support Vector Machine (WOCSVM). The authors
proposed conducting important metrics for lowering complexity by performing a correlation analysis
among monitoring metrics. Additionally, they proposed a weight allocation strategy to assign weights
to samples, aiming to enhance fault detection accuracy. Moreover, the authors optimized parameters
using a parameter optimization algorithm based on Quantum-behaved Particle Swarm Optimization
(QPSO) to improve accuracy further. Alexandros et al. [31] address the challenge of selecting the most
suitable cloud and edge infrastructure solution for specific applications. This task is complex as it
involves considering both operational costs and the Quality of Service (QoS) required for various
application types within these environments. The authors proposed a method for generating and
refining multidimensional vectors that depict the hardware usage characteristics of an application.
They integrated a machine-learning classification algorithm to develop a system capable of producing
hardware-agnostic profiles for a wide range of containerized applications. Hidayat et al. [32] address
the challenge of monitoring virtual machines (VMs) within data centers (DCs). They highlight issues
such as virtual network management, memory usage, and CPU utilization affecting VMs. To assist
VM users in making informed decisions about their VMs’ performance status, the authors propose
various approaches, including fuzzy Mamdani, holdout validation, and Naive Bayes methods.

In contrast to prior research works focusing on cloud services or virtual machine monitoring
and performance diagnosis, our research specifically targets microservice performance diagnosis and
prediction. Unlike previous works utilizing simulated datasets, we have collected our data using a
dedicated monitoring tool for this study. Additionally, while prior research has not developed a model
capable of predicting microservice output under instability and missing data values, our proposed



1278 CSSE, 2024, vol.48, no.5

MPDP architecture considers various variables, including response time, throughput, CPU, and
memory metrics. It effectively models dynamic interactions among these microservice performance
indicators for diagnosis and prediction. Furthermore, the MPDP architecture introduces a hierarchical
and integrated framework centered on BNs to model dynamic connections among different microser-
vice performance diagnostic and prediction variables. It illustrates how stakeholders can construct
different models for the performance analysis of probabilistic microservice performance diagnosis
and prediction. Table 1 provides a concise summary of each research work focus, techniques used, as
well as advantages and disadvantages, aiding in understanding the breadth of research on monitoring
and performance diagnosis in microservices and cloud services.

Table 1: Summary of research on monitoring and performance diagnosis in microservices and cloud
services

Research work Focus Techniques Features

Gribaudo et al. [17] Infrastructure
performance
evaluation

Parametric
simulation

- Provides initial
estimation of
microservice-
based application
behavior under
specific system
configurations

- Relies on
assumptions and
simplifications in
the simulation
process

Wu et al. [18] Identification of
problematic
microservices

Service
dependency
graph,
autoencoder

- Offers a
systematic
approach to
pinpoint causes of
performance
degradation in
microservices

- Requires
preprocessing to
construct
accurate service
dependency
graphs

Bashar [25] Cloud autoscaling Bayesian
networks

- Employs BNs
for modeling
workloads and
QoS factors,
aiding in cloud
autoscaling
decisions

- Relies on
accurate data for
training BNs, may
be sensitive to
variations in data
quality

Philipp et al. [26] Performance
predictability in
IaaS clouds

Systematic review,
real-life
experiments

- Employs real-life
experimentation
to validate
hypotheses about
performance
predictability in
IaaS clouds

- Requires access
to multiple cloud
providers for
comprehensive
experimentation

(Continued)



CSSE, 2024, vol.48, no.5 1279

Table 1 (continued)

Research work Focus Techniques Features

Simon et al. [27] Stability of
performance tests
for serverless apps

Analysis of
performance test
results

- Investigates the
stability of
performance tests
for serverless
applications over
an extended
period, providing
insights into their
reproducibility

- Limited to
serverless
applications, may
not generalize to
other types of
applications

Laaber et al. [28] Performance
microbenchmark-
ing using public
clouds

Statistical analysis - Provides insights
into the
variability of
microbenchmark-
ing outcomes in
public cloud
services

- May require
substantial data
preprocessing and
statistical analysis
to draw
meaningful
conclusions

Eismann et al. [29] Impact of
microservices on
testing

Experimental
trials on TeaStore
application

- Demonstrates
the subtle effects
of microservices
on performance
testing through
real-world
experimentation

- Limited to the
context of the
TeaStore
application, may
not generalize to
all microservice
architectures

Zhanget al. [30] Fault detection in
cloud services

WOCSVM,
correlation
analysis, QPSO

- Utilizes
advanced
machine learning
techniques for
fault detection

- May require
significant
computational
resources for
parameter
optimization

Alexandros et al. [31] Selection of cloud
and edge
infrastructure

Machine-learning
classification
algorithm

- Provides
hardware-
agnostic profiles
for a wide range
of containerized
applications,
enhancing
decision-making
in infrastructure
selection

- Relies on
historical data for
machine learning
training, which
may not always
reflect current
conditions

(Continued)



1280 CSSE, 2024, vol.48, no.5

Table 1 (continued)

Research work Focus Techniques Features

Hidayat et al. [32] VM monitoring
within data
centers

Fuzzy mamdani,
holdout
validation, Naive
Bayes methods

- Offers various
approaches for
VM performance
monitoring,
providing
flexibility to users

- Fuzzy Mamdani
approach may
require
fine-tuning of
parameters for
optimal
performance

MPDP model Microservice
performance
diagnosis and
prediction

Data collection,
MPDP
architecture

- Collects own
data using a
dedicated
monitoring tool,
ensuring
relevance to the
study context.
- Fault injection is
implemented by
mounting an
injection agent on
each service

- The use of
Bayesian
networks for
accurate diagnosis
and prediction of
stochastic
microservice
performance

3 MPDP Architecture

Various technologies, such as virtual machines and Docker containers, have been employed to
expand the array of components requiring management for application development. This includes
utilizing containers for executing software, web servers, or processing big data. While traditionally,
only hardware and software components like servers, databases, or proxies needed monitoring, there
is a growing need for monitoring even at lower levels such as cloud systems, microservices, and APIs,
as well as internally used methods or functions [1]. This paper aims to present an automated man-
agement architecture for the diverse layers utilized in applications decomposed within a microservice
architecture and container clusters (refer to Fig. 1).

Container-based applications can be deployed not only on a single host but across multiple
container clusters [11]. Each container cluster consists of several nodes (hosts), and each node contains
multiple containers. Monitoring data from various layers of code, such as the node layer, database
layer, and server layer, can be collected for applications running in container-based environments.
Applications are allocated a specific set of resources by a group. Alongside Docker Engine on Linux,
another technology known as control groups (cgroups) is utilized [33]. Control groups enable Docker
Engine to allocate available container hardware resources and optionally enforce limitations. For
example, the memory available to a particular container can be restricted. Managing this complexity
involves specialized monitoring tools capable of processing extremely detailed output data.

The MPDP model architecture depicted in Fig. 1 aims to address this challenge by implementing
a multi-layer monitoring system for applications decomposed and deployed within containers. This
involves obtaining information on software and hardware metrics by keeping an eye on server and



CSSE, 2024, vol.48, no.5 1281

database operations, as well as internal metrics like method latency or API call processing rates.
Moreover, it employs a Publish/Subscribe communication model to facilitate high availability and
potential scalability. The MPDP model architecture consists of three modules including Monitoring,
Fault Injection, and Bayesian Networks. External agent encoding was based on a method that
was previously disclosed in [34], which switched from REST to Publish/Subscribe as the mode of
communication.

Figure 1: MPDP architecture

3.1 Monitoring Module

As illustrated in Fig. 1, a monitoring agent is deployed on each container to collect and store
performance metrics. Building upon a previously published solution [34], we enhanced it to comprise
three main components (see Fig. 2): external monitoring agents, internal code agents, and managerial
consumers for data storage.

Figure 2: Monitoring process

The external agents, called Outside Agents (OAg), are designed to gather systems and process
data utilized by the microservices. For example, a microservice that uses MySQL as the database
and Tomcat as the web server would need at least three external agents: one for MySQL (MySQL-
CPU, MySQLMemory), one for Tomcat (Tomcat-CPU, Tomcat-Memory, etc.), and one for the system
(Disk, Network, System-CPU, etc.). External agents utilize the Publish/Subscribe communication
protocol, leveraging Advanced Message Queuing Protocol (AMQP) producers compatible with



1282 CSSE, 2024, vol.48, no.5

RabbitMQ to publish monitored data on pre-defined message topics. RabbitMQ acts as the AMQP
server, serving as a message broker between producer agents and managerial consumers. For example,
the AMQP client connects to the RabbitMQ server and begins delivering data to the relevant queue,
“Process,” when an agent keeps monitoring a process’s CPU utilization. This data is then collected by
consumer managers or query consumers.

Similarly, internal agents, or Inside Agents (IAg), utilize AMQP clients to communicate with pre-
registered topics in RabbitMQ. These agents collect two microservice code metrics: Response Time and
Throughput, by annotating methods with @Response Time and including variables to calculate the
response time of microservice methods. RabbitMQ is also used by managerial consumers to subscribe
to topics and get agent messages. The time-series data from continuous microservice monitoring is
stored for a lengthy period in a MySQL database, which houses these metrics.

3.2 Fault Injection Module

Each service container is equipped with an injection agent. Through an SSH connection, this agent
manages CPU and memory faults simulated by certain software deployments. One agent utilizes an
iterative algorithm to increase CPU utilization for abnormal CPU consumption, while another agent
allocates fixed-sized arrays until the memory consumption reaches the limit set by the user, thereby
increasing memory consumption. As depicted in Algorithm 1, we propose utilizing a fault injection
system to induce anomalies in both CPU and memory utilization. The user defines parameters such
as the type of fault denoted as � (CPU or Memory), the container where the error will be injected
denoted as α, the duration of the fault denoted as �, and the pause time of the error denoted as �P.
The workload λ is a crucial component of the algorithm and is defined beforehand. To build a Pascal
triangle, an iterative process is carried out continuously until the CPU fault injection time is reached.
The algorithm allocates 1 MB byte arrays for memory error injection until the memory utilization
rate hits 90%. It then keeps this memory occupation rate going until � is reached. Based on the defect
type, the algorithm first creates a workload. The fault type is then assigned by calling the injection
method. The created workload is then injected into the designated container. Ultimately, the injection
is stopped within the given time window �P.

Algorithm 1: Fault injection method
Input: α - container id,

αn - list of containers,
� - fault type,
�k - list of fault types,
� - injection duration,
�P - pause time,
λ - workload.

1 // Choose fault type �

2 � ← Choose (�k)
3 // Generate λ

4 λ ← Generate (λ)
5 // Start the fault injection process
6 for each α in αn do
7 for each � in �k do
8 //Run Injection method

(Continued)



CSSE, 2024, vol.48, no.5 1283

Algorithm 1 (continued)
9 i ← Assing (�, �)
10 //Inject into the α

11 α← Inject (i)
12 //pause the fault injection process for �P

13 sleep (�P)
14 end
15 end

3.3 Bayesian Networks Module

This study presents complicated interdependencies across microservice performance parameters,
including response time, throughput, CPU utilization, and memory metrics. By accurately simulating
these dynamic interactions, BNs enable us to represent the stochastic aspect of microservice perfor-
mance. This ability sets the proposed approach apart from traditional deterministic models and is
essential for precise diagnosis and prediction. Bayesian inference is made easier by BNs, enabling us
to revise the probability estimates of various performance metrics as new evidence becomes available.
They represent conditional dependencies through edges in a directed graph, making them suitable for
modeling such dependencies. Through this representation, BNs allow for easy inference of random
variables in the graph using factors. These networks have several advantages: they utilize factors to
eliminate the need for explicit rules, they can accommodate both numerical and categorical variables,
they can handle uncertainty in inventory environments like microservices and networks, and they
can be extended over time to Bayesian functional networks to clarify various theories. Additionally,
BNs enable decision-making under uncertainty through utility theory. We demonstrate how BNs are
utilized in modeling multiple variables for effective microservice diagnosis and prediction. A BN can
be defined as follows:

Definition 1. The Bayesian Network (BN) is a Directed Acyclic Graph (DAG) comprising
random variables represented as network nodes. The directed links between nodes represent causal
relationships, where β is the parent of γ in the direction of an β−γ link. The Joint Probability
Distribution (JPD) in a Bayesian network can be determined for every entry using:

P(β1, . . . , βx) =
x∏

y=1

P
(
βy|Parents

(
βy

))
(1)

The parents are denoted as βy, representing the fundamental values of the parents. Each entry in
the joint distribution of a Bayesian Network (BN) is determined by the product of the elements in the
Conditional Probability Tables (CPTs) [35].

BNs offer a comprehensive delineation of the problem domain and provide a detailed elucidation
of the causal connections between various nodes within the BN [33]. Fig. 3 depicts an example of
BNs used for diagnosing and predicting microservices. In these BNs, the oval nodes represent random
variables, which are collectively modeled to probabilistically ascertain their mutual influence. A parent-
child relationship in a BN is represented by the course of an arc connecting a node (or nodes) to another
node (or nodes), where the parent node is probabilistically influenced by the child node. To evaluate the
effect of CPU and throughput on reaction time, for example, the arcs from the CPU and throughput
nodes to the response time node in Fig. 3C show that these nodes are parent nodes of the “response
time” node.



1284 CSSE, 2024, vol.48, no.5

Figure 3: Bayesian networks for microservices diagnosis and prediction: (A) Noisy-OR Network
(NOR), (B) Naive Bayes Network (NBN), and (C) Complex Bayesian Network (CBN)

A BN can be built in several ways (see Fig. 3A–C), including the Noisy-OR Network, the Naive
Bayes Network, and a more complex model (shown in Fig. 3C) where the majority of nodes are
connected based on causality theory. It can be difficult to manually build BNs because stakeholders or
subject matter experts may find it difficult to determine causal linkages. For instance, consider nodes
A and B to test the theoretical connection between two factors or random variables. If a domain expert
determines that the state of node A (denoted as t ∈ T where T is a set of states) determines the state
of node B, according to the relation, if node B’s states remain unchanged (the degree of certainty and
probability in a state t ∈ T where T is a collection of states for node B), then node A is not a cause of
node B; otherwise, it is.

The Random Variable (RV) factor in each BN node is the random variable. This RV can be divided
into several different states. The T is then awarded probabilities, which are shown through the CPT.
For continuous RVs, a Conditional Probability Distribution (CPD) like the Gaussian distribution is
defined. The CPT can be learned from datasets or provided by domain experts, although setting CPTs
accurately can be challenging even with reliable statistical methods [36]. In such cases, high-entropy
techniques may be employed. To automatically construct a BN structure, stakeholders can also take
into consideration BN structural learning methods, such as the Monte Carlo Chain and structural
expectation maximization [35]. Determining the ideal structure for the BNs is a combinatorial problem
(i.e., NP-hard) and has a computational complexity of O (n2 · 2n) where n is the number of nodes
(i.e., variables) in BN. For illustration purposes, let’s refer to the BN depicted in Fig. 3C. This
paper demonstrates that even simpler BNs can effectively serve microservice modeling, diagnosis, and
prediction.

Microservice behavior is probabilistic, influenced by a set of variables denoted by B. Each variable
b ∈ B can have z ∈ Z different states. BNs offer a method to represent these relationships, employing
various techniques like regression analysis, decision trees, and neural networks to define the nodes g ∈
G in the network. Through the inclusion of evidence in a BN, we aim to attribute a level of confidence to
a particular state t ∈ T (i.e., assigning probabilities) associated with a Random Variable (RV). Inference
in BNs, which involves computing the posterior probability of specific variables based on observable
data, is also computationally intensive having a worst-case time complexity of O (n ·2w) where w is the
treewidth of BN.



CSSE, 2024, vol.48, no.5 1285

Once a BN is constructed, whether through computational learning algorithms or expert input,
it undergoes validation to ensure its accuracy and reliability [36]. Cross-validation is a standard
procedure used for this purpose, where a portion of the available data is used to train the BN, and
the remainder is reserved for testing its predictive performance. The widely employed expectation-
maximization algorithm is commonly utilized for testing the parameters of the BN model [36]. Once
the BN demonstrates satisfactory prediction accuracy, stakeholders or domain experts can confidently
apply it in real-world scenarios.

4 MPDP Implementation

For the implementation of the MPDP architecture, we used Java (version 8), which consists of
three modules including Monitoring, Fault Injection, and Bayesian Networks.

For the Monitoring module, we have developed various monitoring techniques, including external
agents for collecting metrics, internal agents for collecting metrics, and managerial consumers for
data storage. The external agents, known as Outside Agents (OAg), were constructed using the
SIGAR (https://github.com/hyperic/sigar, accessed on 19 February 2024) libraries. Communication
was facilitated through the Publish/Subscribe protocol, utilizing AMQP producers compatible with
RabbitMQ via the (com.rabbitmq.amqp-client, accessed on 19 February 2024) library (version 5.6.0).
In contrast, the internal agents (IAg) employed the org.javassist.javassist, (accessed on 19 February
2024) library (version 3.26-GA) to manipulate the application’s Bytecode. The managerial consumers
also utilized the (com.rabbitmq.amqp-client, accessed on 19 February 2024) library (version 5.6.0) for
communication. The metrics collected by these consumers persisted in a MySQL database, serving
as a long-term storage solution for the time-series data obtained from the continuous monitoring of
microservices.

In the Fault Injection module, we developed two distinct components using Java (version 8):
one for injecting CPU faults and another for injecting memory faults into the data collection
system individually. This allowed us to observe the system’s behavior under different conditions when
subjected to these faults. By simulating real anomalies such as high CPU and memory consumption
after injecting the faults, we aimed to evaluate the system’s response.

In the Bayesian Networks module, we developed the module using Java (version 8) to facilitate
probabilistic diagnosis. This involved inserting evidence in the form of probability assignments into
the BN to determine the likelihood of a random variable (or factor) assuming a specific value. We
incorporated various types of BNs, including a simple Noisy-OR network, Naive Bayes Network, and
a more complex Bayesian Network, as depicted in Fig. 3.

4.1 Dataset

To showcase the effectiveness of the proposed MPDP architecture, we gathered our dataset of
microservices. This dataset, sourced from our monitoring tool deployed on Amazon EC2 (AWS),
comprises 2726 records across four benchmarks: CPU, memory, response time, and throughput. The
CPU benchmark measures the total time required (in seconds). For the memory benchmark, we
allocated 256 MB arrays to calculate read-write memory velocity in MB/s. Response time data was
obtained at the start and end of each method to calculate the system’s response time in nanoseconds.
Lastly, the throughput benchmark measures the number of requests serviced per second. Further
details about the dataset are outlined in Table 2.

https://github.com/hyperic/sigar
http://com.rabbitmq.amqp-client
http://org.javassist.javassist
http://com.rabbitmq.amqp-client


1286 CSSE, 2024, vol.48, no.5

Table 2: Statistics related to all values present in the dataset

Benchmark Min. Max. Mean Std. Dev. Count

CPU 0.6 94.1 52.8406 21.3421 2726
Memory 215 4575 1999.46 1824.83 2726
Response time 0.002 27,750 957.2568 2793.91810 2726
Throughput 0.033 415.66 44.9970 67.2328 2726

4.2 Microservices

For the Microservices implementation, we developed a Bookshop application in Java (version
9), utilizing the Restlet (https://restlet.talend.com/ (org.restlet.jse), accessed on 20 February 2024)
library to construct its APIs. Docker containers (version 18.09) were employed for the implementation,
facilitated by the Docker Compose tool (version 1.24.1). The entire Book Shop Application, along
with the architecture infrastructure for our experiment, was deployed on Amazon EC2 cloud services,
running Ubuntu version 18.04. Each microservice was packaged into JAR files, which were then
used to create Docker Images based on OpenJDK 9 (https://hub.docker.com/_/openjdk, accessed
on 20 February 2024). To ensure consistent performance results and mitigate hardware differences,
all containers had restricted resources specified using cgroup (docker.com/compose/compose-file/,
accessed on 20 February 2024) directives: (deploy: resources: limits: CPU: ‘0.50’, memory: 256 MB).

5 Experiment and Results Analysis

An evaluative experiment was conducted to assess the effectiveness of the MPDP architecture in
monitoring and generating alerts based on implemented metrics. The experiment involved analyzing
data collected over a 48-h period, which served as input for the Data Processing and Fault Injection
modules. The target application for this evaluation comprised three microservices: User Interface (UI),
Book Service (BS), and Purchase Service (PS). These microservices are part of an application designed
to manage purchases and inventory for an electronic bookstore.

The UI microservice handles the processing of Javascript and HTML content to construct web
pages for the electronic bookstore. For simplicity in application development, the UI service does not
include a database for storing user or shopping cart attributes; instead, these attributes are simulated
in memory for the experiment’s purposes.

On the other hand, the BS microservice manages information related to books and their respective
stocks. It includes a MySQL database dedicated to storing data related to the Books domain. Similarly,
the PS microservice stores purchase data and utilize its own MySQL database, containing a single table
named Purchases.

We used Apache JMeter (https://jmeter.apache.org/, accessed on 20 February 2024) to generate
HTTP requests to test the capability of MPDP’s architecture. During the experimental evaluation, the
operations and requests conducted are as follows:

• The first request involves the UI receiving a book listing request, which redirects to the BS.
The BS processes the request and returns a list of books in JSON format, which is converted to
HTML format by the UI before being sent back to JMeter.

• The second request entails JMeter sending a detailed information request for 10 random books
to the BS. The BS processes this request using its MySQL database and returns a JSON list
containing the requested data.

https://restlet.talend.com/
org.restlet.jse
https://hub.docker.com/_/openjdk
http://docker.com/compose/compose-file/
https://jmeter.apache.org/


CSSE, 2024, vol.48, no.5 1287

• The third request involves JMeter sending a request to the PS to include a book purchase.
The PS consults the BS to check for available stock before saving the purchase in its MySQL
database.

These simulated requests are sent continuously, starting with 10 users initially and gradually
increasing up to 150 simultaneous users over a 48-h interval.

The Bookshop application, deployed according to the parameters outlined in Section 3.2, under-
went a workload simulation as depicted in Fig. 4. JMeter initiated the requests (step 1 in Fig. 4),
simulating access by up to 150 concurrent users for 48 h. Throughout this duration, the MPDP
architecture captured (step 2 in Fig. 4), Sending the collected data through the RabbitMQ (step 3
in Fig. 4), and stored the data in MySQL database (step 4 in Fig. 4). The median results obtained are
presented in Table 3. The following subsection will explain the results of our experiments.

Figure 4: Workload

Table 3: Median results for CPU, memory, response time, and throughput from all microservices

Microservices Median CPU Median memory Called methods Response time Throughput

UI 45.2/% 283.5 MB UI-API 41.21 18.57

Books 48.45/% 3.1 GB
Books-API 21.47 28.48
Books-DB 20.15 28.47

Purchase 46.02/% 3.816 GB
Purchase-API 31.28 17.95
Purchase-DB 31.22 18.04

5.1 CPU Results

The average CPU utilization across microservices was 45.2%, 48.35%, and 46.02% for UI, BS,
and PS, respectively. The aggregated CPU usage results are depicted in the graph shown in Fig. 5.
The higher consumption observed in the BS microservice can be attributed to the larger volume of
requests processed by this service, as it handled all three types of requests sent. However, the CPU usage
results across the microservices were consistent, which can be attributed to the limitations imposed
by the Cgroup parameters. Furthermore, the internal operations carried out by the requests (i.e.,
first, second, and third) exhibited similar computational requirements, primarily involving processing
HTTP requests (first to third) and converting SQL result data into JSON format (first to second) or
inserting data in SQL format (third).

5.2 Memory Results

In terms of average memory usage, the UI microservice utilized only 272.12 MB (median value),
whereas the BS and PS microservices used 2.7 and 3.0 GB, respectively, as depicted in Fig. 6. The
observed variations in memory consumption can be attributed to the specific operations performed



1288 CSSE, 2024, vol.48, no.5

by each microservice. The UI primarily functions as a proxy, handling UI-API requests by redirecting
them to the BS service. Consequently, it does not incur significant memory usage for processing objects
resulting from MySQL queries or translating data formats. In contrast, the BS service is responsible
for querying MySQL databases and translating data to JSON format, resulting in higher memory
utilization. Similarly, the PS microservice handles request redirection and MySQL manipulation,
utilizing additional memory due to transactions performed by the Purchase-DB. The Purchase-
API receives requests, forwards them to Purchase-DB, and interacts with Books-API while inserting
purchase records into the MySQL database if the requested book stock is available.

Figure 5: Microservices CPU usage from OAg

Figure 6: Microservices memory consumption from OAg



CSSE, 2024, vol.48, no.5 1289

5.3 Network Results

The network traffic, measured in bytes transferred, is illustrated in Fig. 7. For the UI microservice,
the download and upload rates were 602.32 and 645.79 GB, respectively. Similarly, the BS microservice
recorded 828.80 GB of download and 852.83 GB of upload. As anticipated, the upload rate exceeded
the download rate for both the UI and BS services, as they primarily deliver HTTP responses in JSON
format, containing extensive lists of books. Conversely, the PS microservice exhibited 567.95 GB of
download and 543.35 GB of upload, indicating higher download traffic compared to upload. This can
be attributed to the Purchase-API returning an HTTP response with JSON data containing details of
the recently completed purchase transactions.

Figure 7: Microservices network rate from OAg

5.4 Response Time and Throughput Results

The response time and throughput values are organized based on the invoked methods, as moni-
tored by the internal code agents (IAg), as shown in Table 3. The median response times (depicted in
Fig. 8) for UI-API, Purchase-API, Book-API, Book-DB, and Purchase-DB were 41.21, 31.28, 21.47,
20.15, and 31.22 ms, respectively. The UI-API exhibits the highest response time due to the inclusion of
both Book-API and Book-DB in its processing. Meanwhile, Purchase-API and Purchase-DB, besides
incorporating Books-API and Books-DB, also execute the purchase insertion operation in the MySQL
database. In contrast, the Throughput results (refer to Table 3 and Fig. 9) display an inverse pattern to
response time, as shorter response times enable the processing of more requests within a given period.
Consequently, the measured Throughput values were 17.57 requests/second (Purchase-API), 18.04
requests/second (Purchase-DB), 18.57 requests/second (UI-API), 28.47 requests/second (Books-DB),
and 28.48 requests/second (Books-API).



1290 CSSE, 2024, vol.48, no.5

Figure 8: Microservices response time from IAg

Figure 9: Microservices throughput from IAg



CSSE, 2024, vol.48, no.5 1291

5.5 Performance Diagnosis Analysis

The response time and throughput values are organized based on the invoked methods, as moni-
tored by the internal code agents (IAg), as shown in Table 3. The median response times (depicted in
Fig. 8) for UI-API, Purchase-API, Book-API, Book-DB, and Purchase-DB were 41.21, 31.28, 21.47,
20.15, and 31.22 ms, respectively. The UI-API exhibits the highest response time due to the inclusion of
both Book-API and Book-DB in its processing. Meanwhile, Purchase-API and Purchase-DB, besides
incorporating Books-API and Books-DB, also execute the purchase insertion operation in the MySQL
database. In contrast, the Throughput results (refer to Table 3 and Fig. 9) display an inverse pattern to
response time, as shorter response times enable the processing of more requests within a given period.
Consequently, the measured Throughput values were 17.57 requests/second (Purchase-API), 18.04
requests/second (Purchase-DB), 18.57 requests/second (UI-API), 28.47 requests/second (Books-DB),
and 28.48 requests/second (Books-API).

We evaluated the proposed MPDP architecture under the following four scenarios as explained
below:

Scenario 1 (S1): In the best-case scenario, where the response time is less than 5 ms and the
throughput exceeds 50 requests/second, the evidence was inserted into the Bayesian network for the
book microservice. The analysis revealed that achieving these optimal values necessitates having a
memory capacity exceeding 400 MB, with a probability of 53%, as depicted in Fig. 10A. Interestingly,
even with CPU values exceeding 65%, which accounts for 59%, there was no significant impact on
response time and throughput.

To achieve optimal performance for the purchases microservice, it is necessary to have a memory
allocation of over 400 MB, yielding a success rate of 77%. Interestingly, despite CPU values exceeding
65%, which achieved a success rate of 59%, there was no significant impact on response time and
throughput, as depicted in Fig. 10B.

Similarly, for the UI microservice, optimal performance is achieved with a memory allocation
below 400 MB, resulting in a success rate of 100%. Surprisingly, despite CPU values exceeding 65%,
which achieved a success rate of 57%, there was no significant effect on response time and throughput,
as illustrated in Fig. 10C.

Scenario 2 (S2): The worst-case scenario where response time exceeds 20 ms and throughput
drops below 5 requests/second. For the book microservice, to achieve optimal performance under
these conditions, a memory allocation greater than 4000 MB is required, resulting in a success rate of
100%, as depicted in Fig. 11A. Interestingly, CPU values below 35%, which yielded a success rate of
53%, had a significant impact on response time and throughput.

Figure 10: (Continued)



1292 CSSE, 2024, vol.48, no.5

Figure 10: Screenshot of microservices implemented in GeNIe platform on scenario 1: (A) Book
microservice, (B) Purchases microservice, (C) UI microservice

Similarly, for the purchases microservice, optimal performance is attained with a memory alloca-
tion greater than 400 MB, yielding a success rate of 99%. Surprisingly, CPU values below 35%, which
achieved a success rate of 49%, had a significant effect on response time and throughput, as shown in
Fig. 11B.

For the UI microservice, to achieve optimal performance under these conditions, a memory
allocation below 400 MB is required, resulting in a success rate of 100%. Interestingly, CPU values
below 35%, which yielded a success rate of 48%, had a significant impact on response time and
throughput, as illustrated in Fig. 11C.

Scenario 3 (S3): Choosing mid-range memory values for each microservice, in this scenario, we
select memory allocations ranging from 400 to 4000 MB and focus on each microservice individually
for validation.

Figure 11: Screenshot of microservices implemented in GeNIe platform on scenario 2: (A) Book
microservice, (B) Purchases microservice, (C) UI microservice



CSSE, 2024, vol.48, no.5 1293

For the book microservice, selecting memory within this range yields an 84% probability of
achieving a response time below 5 ms and a throughput of 50 requests/second or higher, as depicted
in Fig. 12A.

Figure 12: Screenshot of microservices implemented in GeNIe platform on scenario 3: (A) Book
microservice, (B) Purchases microservice, (C) UI microservice

For the purchases microservice, this selection results in a 48% chance of achieving a response time
between 5 and 20 ms and a 56% chance of achieving a throughput of 5 requests/second or lower, as
shown in Fig. 12B.

For the UI microservice, there is a 48% probability of achieving a response time below ms, and
the throughput varies with a 33% probability across all statements, as illustrated in Fig. 12C.

Scenario 4 (S4): Opting for mid-range CPU values for each microservice, in this scenario, we select
CPU utilization ranging from 35% to 65% and examine each microservice individually for validation.

For the book microservice, selecting CPU utilization within this range results in a 40% probability
of achieving a throughput between 5 and 50 requests/second, and a 55% probability of achieving a
response time below 5 ms, as depicted in Fig. 13A.

For the purchases microservice, there is a 48% probability of achieving a throughput of 5 request-
s/second or lower, and a 48% probability of achieving a response time between 5 and 20 ms, as shown
in Fig. 13B.

For the UI microservice, the majority probability lies in achieving a throughput of 5 requests/sec-
ond or lower, with 48%, and a response time below 5 ms, with 39%, as illustrated in Fig. 13C.



1294 CSSE, 2024, vol.48, no.5

Figure 13: Screenshot of microservices implemented in GeNIe platform on scenario 4: (A) Book
microservice, (B) Purchases microservice, (C) UI microservice

5.5.1 CPU Performance Diagnosis

We utilized a hierarchical discretization method with manual fine-tuning to categorize the Quality
of Service (QoS) values. Our hierarchical discretization method’s manual fine-tuning is intended
to improve the QoS categorization’s accuracy and relevance. We can manually modify the dis-
cretization criteria to better fit each microservice’s unique operational environment and performance
requirements. With this customization, the model is fine-tuned to capture the subtleties of the real
performance data, resulting in predictions that are more relevant and accurate. In our study, the
hierarchical discretization method’s manual fine-tuning offers significant advantages in terms of
accuracy, adaptability, and customization. The incorporation of domain knowledge experts and the
adaptability to various workloads serve as further justifications for our method’s manual fine-tuning.
Ultimately, we established three states for this dataset, as depicted in Table 4.

Table 4: QoS value states representation using hierarchal discretization for CPU

State Range Counts

1 0 to 35 862
2 35 to 65 1045
3 Greater than 65 819

Initially focusing on the book microservice, we observed its performance to be reasonably
predictable, with a 38% likelihood that the values would fall within the range of 35% to 65% (state
2, see Table 4).



CSSE, 2024, vol.48, no.5 1295

Subsequently, when analyzing the purchases microservice, we noted a similarity to the book
microservice, with approximately a 39% probability of the values falling within the 35% to 65% range
(state 2).

Lastly, in evaluating the performance of the UI microservice, we found a similar likelihood (38%
probability) of the values falling within the 35% to 65% range (state 2), akin to the book microservice.
The size of the figure is measured in centimeters and inches.

5.5.2 Memory Performance Diagnosis

Once again, we applied a hierarchical discretization method with manual adjustments to catego-
rize the QoS values. Overall, we established three states for this dataset, as outlined in Table 5. The
objective of the memory diagnosis was to assess the impact of various factors on memory-intensive
applications.

Table 5: QoS value states representation using hierarchal discretization for memory

State Range Counts

1 0 to 400 958
2 400 to 4000 938
3 Greater than 4000 830

Initially, we examined the book microservice and observed its performance to be reasonably
predictable, with a 76% likelihood of the values falling within the range of greater than 4000 MB
(state 3, see Table 5).

Next, we turned our attention to the purchases microservice and found that the majority of its
performance instances fell within the range between 400 and 4000 MB (state 2) with a probability of
79%.

Lastly, in analyzing the performance of the UI microservice, we observed that all instances of the
UI microservice (100% probability) fell within the range of 0 and 400 MB (state 1).

5.5.3 Response Time Performance Diagnosis

Once more, we utilized a hierarchical discretization method with manual fine-tuning to categorize
the QoS values. Overall, we established three states for this dataset, as illustrated in Table 6.

Table 6: QoS value states representation using hierarchal discretization for response time

State Range Counts

1 0 to 5 1051
2 5 to 20 746
3 Greater than 20 929

Initially, we focused on the book microservice, where we observed its performance to be reasonably
predictable. There was a 58% likelihood that the values would fall within the range of 0 and 5 ms (state
1, see Table 6).



1296 CSSE, 2024, vol.48, no.5

Subsequently, we examined the purchases microservice and noted that the majority of instances
fell within the range between 5 and 20 ms (state 2) with a probability of 49%.

Lastly, in analyzing the performance of the UI microservice, we found that the majority of UI
microservice instances (42% probability) fell within the range of 0 and 5 ms (state 1).

5.5.4 Throughput Performance Diagnosis

To discretize the QoS values, we once more used the hierarchical discretization method with
manual fine-tuning. For this dataset, we ultimately determined three states, as Table 7 illustrates.

Table 7: QoS value states representation using hierarchal discretization for throughput

State Range Counts

1 0 to 5 1094
2 5 to 50 817
3 Greater than 50 815

We initiated the analysis by focusing on the book microservice, revealing that its performance
was reasonably predictable, with a 39% probability of values falling in the range of greater than
50 requests/second (state 3, see Table 7).

Subsequently, we examined the purchases microservice and observed that the majority of its
performance values fell within the range of 0 to 5 requests/second (state 1), with a probability of 44%.

Lastly, our investigation of the UI microservice indicated that most of its performance values,
approximately 43%, were within the range of 0 to 5 requests/second (state 1).

5.5.5 Microservice QoS Prediction

To assess the microservice QoS prediction accuracy of BNs, we employed 10-fold cross-validation,
a commonly employed technique for evaluating the accuracy and reliability of a prediction model. The
Expectation-Maximization (EM) algorithm was utilized for training the model [26]. The prediction
accuracies of all BNs are detailed in Table 8. Our analysis indicates that BNs can effectively forecast
Microservice QoS metrics, achieving an overall prediction accuracy of 89.98% when using Complex
Bayesian Network (CBN).

Table 8: Microservices prediction accuracy (%) for different types of Bayesian networks

BN Type CPU Memory Response time Throughput

NOR 75.42% 89.59% 75.79% 77.00%
NBN 83.33% 89.81% 84.74% 87.38%
CBN 89.87% 92.49% 86.00% 91.54%

We contend that these findings hold valuable insights for stakeholders, enabling them not only
to make informed decisions regarding microservice selection but also to anticipate the QoS that their
application may experience by considering the combination of the aforementioned factors.



CSSE, 2024, vol.48, no.5 1297

6 Conclusion and Future Work

This paper proposes, develops, and validates a probabilistic architecture called Microservice
Performance Diagnosis and Prediction (MPDP). MPDP incorporates multiple variables like response
time, throughput, CPU usage, and other metrics to dynamically analyze the relationships between
microservice performance indicators for both diagnosis and prediction purposes. Through validation,
we confirm MPDP’s ability to predict microservice performance and we compared various Bayesian
networks such as the Noisy-OR Network (NOR), Naive Bayes Network (NBN), and Complex
Bayesian Network (CBN) scoring an overall accuracy of 89.98% when using CBN. We argue that
these results offer significant insights to stakeholders, empowering them to make informed decisions
not only about microservice selection but also to foresee the QoS that their application might
encounter by considering the amalgamation of the mentioned factors. In future work, we aim to
expand the quantity and variety of microservices and to perform experimentation on different cloud
environments to explore the MPDP generalization and enhance the MPDP accuracy using domain
experts. Furthermore, to improve our model and capture finer performance nuances, we intend to
investigate a more granular approach to each QoS metric using several states.

Acknowledgement: I express my gratitude to the anonymous reviewers for their comments and sugges-
tions which have greatly helped me to improve the content, quality, organization, and presentation of
this work.

Funding Statement: There is no funding support for this work.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, Talal H. Noor, upon reasonable request.

Conflicts of Interest: The author declares that they have no conflicts of interest to report regarding the
present study.

References
[1] V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U. Arronategui, and O. F. Rana, “Characterising

resource management performance in kubernetes,” Comput. Electr. Eng., vol. 68, pp. 286–297, 2018. doi:
10.1016/j.compeleceng.2018.03.041.

[2] R. Tolosana-Calasanz, J. Diaz-Montes, L. F. Bittencourt, O. Rana, and M. Parashar, “Capacity manage-
ment for streaming applications over cloud infrastructures with micro billing models,” in Proc. 9th Int.
Conf. on Utility Cloud Comput., Shanghai, China, 2016, pp. 251–256.

[3] A. Wittig and M. Wittig, Amazon Web Services in Action: An in-Depth Guide to AWS. New York, USA:
Simon and Schuster, 2023.

[4] F. Almeida, J. Simões, and S. Lopes, “Exploring the benefits of combining devops and agile,” Future
Internet, vol. 14, no. 2, pp. 1– 63, 2022. doi: 10.3390/fi14020063.

[5] J. Lewis and M. Fowler, “Microservices a definition of this new architectural term,” 2014. Accessed: Jan.
20, 2024. [Online]. Available: http://martinfowler.com/articles/microservices.html

[6] R. Kasauli, E. Knauss, J. Horkoff, G. Liebel, and F. G. de Oliveira Neto, “Requirements engineering
challenges and practices in large-scale agile system development,” J. Syst. Softw., vol. 172, pp. 1–26, 2021.
doi: 10.1016/j.jss.2020.110851.

[7] T. Ueda, T. Nakaike, and M. Ohara, “Workload characterization for microservices,” in Proc. 2016 IEEE
Int. Symp. Workload Characterization (IISWC), Providence, RI, USA, 2016, pp. 1–10.

[8] Z. Kozhirbayev and R. O. Sinnott, “A performance comparison of container-based technologies for the
cloud,” Future Gener. Comput. Syst., vol. 68, pp. 175–182, 2017. doi: 10.1016/j.future.2016.08.025.

https://doi.org/10.1016/j.compeleceng.2018.03.041
https://doi.org/10.3390/fi14020063
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1016/j.jss.2020.110851
https://doi.org/10.1016/j.future.2016.08.025


1298 CSSE, 2024, vol.48, no.5

[9] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Efficiency analysis of provisioning microser-
vices,” in Proc. of IEEE Int. Conf. on Cloud Comput. Technol. Sci. (CloudCom), Luxembourg, 2016, pp.
261–268.

[10] J. F. Pérez, L. Y. Chen, M. Villari, and R. Ranjan, “Holistic workload scaling: A new approach
to compute acceleration in the cloud,” IEEE Cloud Comput., vol. 5, no. 1, pp. 20–30, 2018. doi:
10.1109/MCC.2018.011791711.

[11] Q. Du, T. Xie, and Y. He, “Anomaly detection and diagnosis for container-based microservices with
performance monitoring,” in Proc. of Int. Conf. on Algorithms and Archit. for Parallel Process., Guangzhou,
China, 2018, pp. 560–572.

[12] N. Fareghzadeh, M. A. Seyyedi, and M. Mohsenzadeh, “Toward holistic performance management
in clouds: Taxonomy, challenges and opportunities,” J. Supercomput., vol. 75, pp. 272–313, 2019. doi:
10.1007/s11227-018-2679-9.

[13] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Ḿarquez, “Design, monitoring, and testing of
microservices systems: The practitioners’ perspective,” J. Syst. Softw., vol. 182, pp. 111061, 2021. doi:
10.1016/j.jss.2021.111061.

[14] M. Usman, S. Ferlin, A. Brunstrom, and J. Taheri, “A survey on observability of distributed edge
& container-based microservices,” IEEE Access, vol. 10, pp. 86904–86919, 2022. doi: 10.1109/AC-
CESS.2022.3193102.

[15] X. Zhou et al., “Fault analysis and debugging of microservice systems: Industrial survey, bench-
mark system, and empirical study,” IEEE Trans. Softw. Eng., vol. 47, no. 2, pp. 243–260, 2018. doi:
10.1109/TSE.2018.2887384.

[16] J. Soldani and A. Brogi, “Anomaly detection and failure root cause analysis in (micro) service-based cloud
applications: A survey,” ACM Comput. Surv., vol. 55, no. 3, pp. 1–39, 2022.

[17] M. Gribaudo, M. Iacono, and D. Manini, “Performance evaluation of massively distributed microservices-
based applications,” in Proc. of the 31st Eur. Conf. on Model. and Simul. (ECMS), Budapest, Hungary,
2017, pp. 598–604.

[18] L. Wu, J. Bogatinovski, S. Nedelkoski, J. Tordsson, and O. Kao, “Performance diagnosis in cloud
microservices using deep learning,” in Proc. of the Int. Conf. on Serv.-Orient. Comput. (ICSOC), Dubai,
United Arab Emirates, 2020, pp. 85–96.

[19] Amazon cloudwatch. 2024. Accessed: Feb. 7, 2024. [Online]. Available: https://aws.amazon.com/
[20] Cloudharmony. 2024. Accessed: Feb. 10, 2024. [Online]. Available: http://cloudharmony.com/
[21] K. Alhamazani et al., “An overview of the commercial cloud monitoring tools: Research dimensions, design

issues, and state-of-the-art,” Computing, vol. 97, no. 4, pp. 357–377, 2015. doi: 10.1007/s00607-014-0398-5.
[22] B. Varghese, O. Akgun, I. Miguel, L. Thai, and A. Barker, “Cloud benchmarking for performance,” in

Proc. of IEEE 6th Int. Conf. on Cloud Comput. Technol. Sci., Singapore, 2014, pp. 535–540.
[23] J. S. Ward and A. Barker, “Observing the clouds: A survey and taxonomy of cloud monitoring,” J. Cloud

Comput., vol. 3, no. 1, pp. 1–24, 2014. doi: 10.1186/s13677-014-0024-2.
[24] J. Scheuner, J. Cito, P. Leitner, and H. Gall, “Cloud workbench: Benchmarking IaaS providers based

on infrastructure-as-code,” in Proc. of the 24th Int. Conf. on World Wide Web, Florence, Italy, 2015,
pp. 239–242.

[25] A. Bashar, “Autonomic scaling of cloud computing resources using bn-based prediction models,” in Proc.
of IEEE 2nd Int. Conf. on Cloud Netw. (CloudNet), San Francisco, CA, USA, 2013, pp. 200–204.

[26] L. Philipp and J. Cito, “Patterns in the chaos—A study of performance variation and predictability in public
iaas clouds,” ACM Trans. Internet Technol., vol. 16, no. 3, pp. 1–23, 2016. doi: 10.1145/2885497.

[27] E. Simon et al., “A case study on the stability of performance tests for serverless applications,” J. Syst.
Softw., vol. 189, pp. 1– 38, 2022.

[28] L. Christoph, J. Scheuner, and P. Leitner, “Software microbenchmarking in the cloud. How bad is it really?”
Empir. Softw. Eng., vol. 24, no. 4, pp. 2469–2508, 2019. doi: 10.1007/s10664-019-09681-1.

https://doi.org/10.1109/MCC.2018.011791711
https://doi.org/10.1007/s11227-018-2679-9
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1109/ACCESS.2022.3193102
https://doi.org/10.1109/TSE.2018.2887384
https://aws.amazon.com/
http://cloudharmony.com/
https://doi.org/10.1007/s00607-014-0398-5
https://doi.org/10.1186/s13677-014-0024-2
https://doi.org/10.1145/2885497
https://doi.org/10.1007/s10664-019-09681-1


CSSE, 2024, vol.48, no.5 1299

[29] E. Simon, C. Bezemer, W. Shang, D. Okanović, and A. Hoorn, “Microservices: A performance tester’s
dream or nightmare?” in Proc. of the ACM/SPEC Int. Conf. on Perform. Eng., Edmonton, AB, Canada,
2020, pp. 138–149.

[30] X. Zhang and Y. Zhuang, “A fault detection algorithm for cloud computing using qpso-based weighted
one-class support vector machine,” in Proc. of the 19th Int. Conf. Algorithms and Archit. for Parallel Process.
(ICA3PP), Melbourne, VIC, Australia, 2020, pp. 286–304.

[31] A. Psychas, P. Dadamis, N. Kapsoulis, A. Litke, and T. Varvarigou, “Containerised application
profiling and classification using benchmarks,” Appl. Sci., vol. 12, no. 23, pp. 12374, 2022. doi:
10.3390/app122312374.

[32] T. Hidayat and M. Alaydrus, “Performance analysis and mitigation of virtual machine server by using naive
bayes classification,” in Proc. of 4th Int. Conf. on Inform. Comput. (ICIC), Semarang, Indonesia, 2019,
pp. 1–5.

[33] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang, “Houdini’s escape: Breaking the resource rein of Linux
control groups,” in Proc. of the 2019 ACM SIGSAC Conf. on Comput. Commun. Security, London, UK,
2019, pp. 1073–1086.

[34] A. Noor et al., “A framework for monitoring microservice-oriented cloud applications in heterogeneous
virtualization environments,” in Proc. of the IEEE 12th Int. Conf. on Cloud Comput. (CLOUD), Milan,
Italy, 2019, pp. 156–163.

[35] J. Rohmer, “Uncertainties in conditional probability tables of discrete bayesian belief networks: A compre-
hensive review,” Eng. Appl. Artif. Intell., vol. 88, pp. 103384, 2020. doi: 10.1016/j.engappai.2019.103384.

[36] B. G. Marcot and A. M. Hanea, “What is an optimal value of k in k-fold cross-validation in discrete bayesian
network analysis?” Comput. Stat., vol. 36, no. 3, pp. 2009–2031, 2021. doi: 10.1007/s00180-020-00999-9.

https://doi.org/10.3390/app122312374
https://doi.org/10.1016/j.engappai.2019.103384
https://doi.org/10.1007/s00180-020-00999-9

	MPDP: A Probabilistic Architecture for Microservice Performance Diagnosis and Prediction
	1 Introduction
	2 Related Work
	3 MPDP Architecture
	4 MPDP Implementation
	5 Experiment and Results Analysis
	6 Conclusion and Future Work
	References


