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ABSTRACT

Existing multiple workflow scheduling techniques focus on traditional Quality of Service (QoS) parameters such
as cost, deadline, and makespan to find optimal solutions by consuming a large amount of electrical energy.
Higher energy consumption decreases system efficiency, increases operational cost, and generates more carbon
footprint. These major problems can lead to several problems, such as economic strain, environmental degradation,
resource depletion, energy dependence, health impacts, etc. In a cloud computing environment, scheduling
multiple workflows is critical in developing a strategy for energy optimization, which is an NP-hard problem. This
paper proposes a novel, bi-phase Energy-Efficient Fruit Fly-based Optimization (E2FFO) algorithm for optimizing
energy consumption for scheduling multiple workflows. In the first phase, the proposed E2FFO algorithm uses first
come, first serve, priority scheduling and a Genetic Algorithm to generate the initial workflow search space. In the
second phase, the energy consumption is optimized by the proposed E2FFO algorithm. Eight NAS benchmarks
and five NAS classes (A, B, C, S & W) are employed as a case study. The simulation results are carried out on
the WorkflowSim 1.0 platform to test the efficacy of the proposed E2FFO algorithm. The experimental results
are compared against energy-aware for workflow scheduling and virtual machine consolidation (EASVMC),
Power-Efficient Scheduling for Virtual Machine Systems (PESVMS), Energy Efficiency Scheduler (EES), and
heterogeneous earliest finish time (HEFT) algorithms and outperformed them with 10.518%, 16.302%, 26.154%,
and 28.982%, respectively, based on average energy consumption on five scientific workflows comprised Montage,
CyberShake, Laser Interferometer Gravitational-Wave Observatory (LIGO), Scripps Institution of Oceanography
High-Throughput (SIPHT), and Epigenomics.
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1 Introduction

Cloud computing uses the pay-per-use model for sharing virtual resources to run large-scale
business/scientific applications by providing high-performance computing, scaling, and virtualized
resources [1]. This process is known as task/workflow scheduling. Due to insignificant scheduling
techniques in cloud computing, the multiple workflow scheduling problems are divided into several
single workflow scheduling problems [2]. Scheduling multiple workflows is essential to execute large-
scale applications, especially in data centers with higher electricity consumption. Some of the world’s
largest data centers containing thousands of IT devices have witnessed exponential growth in internet
users and increased energy consumption [3,4]. According to [5], in a data center, direct electricity
consumption by servers is 45%, by cooling systems 41%, 11% by storage devices, and the remaining
3% by network and sharing devices. As a result, the CPU consumption lies between 35%–50%, so the
power usage in data centers is floundered. Saving maximum energy leads to minimizing the overall
budget and reducing carbon emissions, enhancing system reliability, and reducing the cooling cost
of data centers [6,7]. In cloud computing environments, workflow scheduling is considered an NP-
hard problem [8,9]. Since the last decade, various workflow scheduling techniques have been proposed
that focus on optimizing multiple objectives, such as cost, makespan, and deadline, without bothering
about energy utilization, that proficiently handle large-scale business applications [10].

For a fixed number of heterogeneous processors, critical path on a processor (CPOP) [11] and
heterogeneous earliest finish time (HEFT) [12] scheduling algorithms were proposed to get the
optimum scheduling time and high performance. The HEFT picked the highest value of the upward-
ranking task at each level. It allocated tasks to the processor, obtaining minimized finish time whereas
to prioritize the tasks, the summation values of the downward and upward ranking were used by CPOP.
In [13], Bahnasawy et al. discussed sorted nodes in leveled DAG division (SNLDD) for heterogeneous
distributed computing systems (HeDCS). SNLDD divided the directed acyclic graph into sublevels
and, as per the computation size of jobs scheduled the sorted jobs (in descending order) in each
sublevel. A comparative study presented that SNLDD outperformed the Longest Dynamic Critical
Path (LDCP) algorithm for parameters like quality of system behavior, schedule length, efficiency,
and speed [14]. The SNLDD worked on HeDCS for static task scheduling only. In [15], an efficient
workflow-scheduling algorithm (EWSA) was proposed to calculate the execution time for dynamically
assigned tasks. To execute the tasks within the deadline, the EWSA algorithm created an apt virtual
machine (VM) for the entire application with the minimum resources. To evaluate the performance of
EWSA, different workloads for a single workflow can be taken to gain better results. Reference [16]
used a genetic algorithm (GA) based approach to find the appropriate solutions for load balancing,
makespan, and cost on the Montage workflow. The authors identified an excellent solution based
on the best solution for each parameter. The algorithm outperformed standard GA [17], specialized
scheduler model, and particle swarm optimization (PSO) [18]. In [19], a hybrid GA and PSO is
proposed to schedule workflow on the heterogonous cloud and reduce cost, makespan, and load
balancing. In the first phase, GA techniques generate the initial population for scheduling (previously,
priority-based FCFS techniques were used). PSO receives the newly generated population and finds
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the optimal solution for defined parameters. The presented work was limited to one data center
containing a homogeneous environment. In [20], a hybrid Gravitational Search Algorithm (GSA)
and HEFT-based technique were proposed to optimize cost and makespan workflow scheduling.
A new parameter, cost time equivalence, was introduced to make optimization more faithful. For
performance metrics, monetary cost ratio (MCR) and schedule length ratio (SLR) were considered
to calculate the efficiency of the proposed technique. This work is limited to the fixed bandwidth
between virtual machines (VM) and a single workflow used to evaluate the efficiency of the presented
algorithm. Reference [21] proposed a fuzzy dominance sort-based heterogeneous earliest-finish-time
(FDHEFT) technique. FDHEFT used a sorting mechanism based on fuzzy dominance and HEFT
scheduling heuristic. The proposed algorithm claimed higher cost-makespan tradeoff fronts with
better speed than the existing algorithms. The presented approach does not consider scenarios like
where makespan and cost overhead the storage and communication time.

We proposed a novel Energy-Efficient Fruit Fly-based Optimization (E2FFO) algorithm for
workflow scheduling to optimize overall energy consumption in a cloud data center. This research
presents an enhancement in the fruit fly optimization algorithm for better energy utilization without
too much negotiation in traditional objectives. The major contributions are summarized as follows:

• E2FFO uses first come, first serve, priority scheduling and genetic algorithm to generate the
initial workflow search space. Amalgamate three algorithms with the proposed and found that
GA showed better alignment.

• The proposed E2FFO algorithm optimizes energy consumption with eight NAS benchmarks
and five NAS classes (A, B, C, S & W).

• The performance evaluation and comparative study show that the proposed E2FFO algorithm
outperformed EASVMC, PESVMS, EES, and HEFT algorithms with 10.518%, 16.302%,
26.154%, and 28.982%, respectively, based on average energy consumption on five scientific
workflows comprises Montage, CyberShake, LIGO, SIPHT, and Epigenomics.

The organization of the paper comprises the following sections. Section 2 demonstrates the back-
ground details related to nature-inspired algorithms for energy consumption. Section 3 highlights the
problem formulation of the energy model for workflow scheduling. Section 4 is the proposed E2FFO
algorithm. Section 5 shows the results and discussions on performance evaluation and comparative
analysis. Section 6 gives a brief conclusion with future directions.

2 Related Work

This section discusses the related information and literature survey on energy-efficient-based
multiple workflow scheduling techniques. The multiple workflow scheduling problems have been
studied through existing literature work. The researchers mainly targeted minimizing the budget,
reducing makespan, and executing tasks within the deadline to ensure the QoS in workflow scheduling.
While achieving these objectives, it is still a crucial point for researchers to use energy resources
efficiently. The literature study showed that few techniques use the VM, VM consolidation, dynamic
voltage, frequency scaling (DVFS), and task migration scheme to reduce overall energy consumption.
VM levels, poor knowledge, and physical infrastructure constraints presented more challenges to
this [22].

The following papers considered energy consumption as a main or secondary objective that needs
to be minimized. In [23], Durillo et al. proposed an energy-efficient list-based technique, considering
energy utilization and performance for multi-objective workflow scheduling. Cao et al. [24] developed
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an algorithm based on the DVFS scheme to improve energy efficiency in scientific workflows of data
centers. The proposed algorithm took four server modes, i.e., idle, active, transition, and sleep. In
[25], Bousselmi et al. reduced the data communication between workflows by partitioning methods
to minimize energy consumption. Then, they applied the cat swarm optimization technique for
scheduling partitions on VMs to reduce overall network energy intake. In [26], Chen et al. proposed
an energy-efficient online scheduling (EONS) algorithm to schedule various tasks from heterogeneous
workflows. EONS dynamically adjusted the system resources to maintain the host’s frequency.

Rehman et al. [27] recently designed a Multi-Objective Genetic Algorithm (MOGA) to optimize
lifespan, cost, deadline, and energy consumption using DVFS. A gap search algorithm was used
for cloud resource optimization. Garg et al. [28] have proposed a reliable and energy-efficient
workflow-scheduling algorithm. This algorithm executes in four sub-modules: The priority calculation
module, tasks clustering, target time distribution, and cluster assigning with suitable frequency/voltage
levels. In [29], Ahmad et al. proposed a scheduling algorithm called reducing energy consumption
using fair pre-assignment of available budget (RECFPAB). The proposed algorithm optimizes the
energy consumption within the client budget by reducing the schedule length using different budget-
constrained scheduling methods. Hussain et al. [30] proposed an Energy and Performance-Efficient
Task Scheduling (EPETS) technique for the heterogeneous virtualized cloud. EPETS works in two
phases: The initial phase helps to minimize the execution time without bothering about the energy
consumption, and the next phase optimizes the energy consumption by discovering the best execution
place of the scheduled task within the deadline constraint. The task priority scheme is used for an
efficient energy system that balances energy saving and task scheduling. Medara et al. [31] proposed
an energy-aware for workflow scheduling and virtual machine consolidation (EASVMC) approach
based on water wave optimization for resource utilization and VM migrations. Mohanapriya et al. [32]
proposed a PESVMC algorithm that merged the VM scheduling and VM consolidation problem
to schedule the workflow tasks. Huang et al. [33] proposed EES to minimize energy consumption
rate compared to performance-based SLA. The following paragraph discusses the problems and gaps
identified in these works.

While scheduling multiple workflows, researchers have mainly focused on makespan, load bal-
ancing, deadline constraints, budget constraints, storage, bandwidth, memory requirement, and QoS
Support. Unfortunately, energy consumption is a less targeted parameter, and few techniques have
been developed to optimize energy usage in a cloud data center during workflow scheduling [34].
Further, many research efforts [35–37] have been done to reduce/optimize energy consumption using
DVFS, adaptive multi-objective task scheduling (AMTS), and E-PAGA techniques by decreasing
operational voltage and frequency of the processor leading to the degradation in response time. Still,
their scopes are normally limited to the particular resource site or within the homogeneous cluster.
Nevertheless, optimization of energy consumption at a complex cloud data center is still to be explored.

3 Problem Formulation

3.1 Energy Model for Workflow

In data centers, the energy consumption of servers is due to memory devices, network devices,
CPUs, storage devices, and other extensively used circuits. Among these devices, the CPU consumes the
maximum amount of energy. Traditional energy monitoring techniques correlate energy consumption
and CPU utilization [38]. A physical server with zero loads consumes 50%–70% energy compared to
a physical server running with maximum load capacity [39]. Therefore, the total power utilization by
a server can be obtained by Eq. (1).
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Ptu = PCPUi + (PCPUf
− PCPUi) ∗ CPUtu (1)

where Ptu is total power utilization, PCPUi does idle CPU consume the power, and PCPUf
does the max-

imum loaded CPU consume the power and CPUtu is the total CPU utilization. Energy consumption
(Ec) obtained when the machine is running is computed by Eq. (2).

Ec = Ptu ∗ Time (2)

The energy utilization of task tk executing on the virtual machine Vm is represented using Eq. (3).

E(tk) = PVm ∗ Time(tk, Vm) (3)

where PVm is the power consumption of Vm and Time(tk, Vm) is the running time of a task tk on Vm.
The total energy consumption for an executing workflow is given by

E(Wf ) =
K∑

k=1

Etk
(4)

3.2 Problem Definition (Objective Function)

As per Eq. (4), the minimum energy consumption model for heterogeneous workflows is required.
The objective function for an efficient energy optimization model is represented by Eq. (5).

f (Obj) = Maximum

x = 1, 2, 3, . . . N
y = 1, 2, 3, . . . .F

⎛
⎝

Minimize︷ ︸︸ ︷
E(Wf ).ξxy

⎞
⎠ (5)

where x represents the number of nodes and y is the related available frequency of each node in
heterogeneous workflows. Then, the objective function f (Obj) can be used for any workflow energy
model with scaling factor ξ that can help to choose the optimal solution.

4 Proposed Algorithm

This section presents a novel E2FFO algorithm for scheduling multiple workflows for data center
applications.

Algorithm 1: E2FFO (Energy-Efficient Fruit Fly-based Optimization) for workflow scheduling
Input:
Q Swarm size (Set of scheduled workflows)
SLl Initial location of individual swarm ∀ l ∈ {1, 2, 3, . . . , L}
Max Maximum no of iteration, i.e., {20–40}
Spowα Static powers of each swarm
Dpowα Dynamic powers of each swarm
CMWf

During each iteration, the communication time of all tasks with the highest frequency
in a single workflow

CPWf
During each iteration, the computation time of all tasks with the highest frequency
in a single workflow

Fqmax Maximum frequency of all tasks
Fqdg Differences between the two frequencies of each task

(Continued)
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Algorithm 1 (continued)
Output: Pareto optimal solution

max
SN ∈[LBN ,UBN]N=1,2,3...,K

f (P, E) = {S1, S2, S3 . . . , SN}
∴ QoS = P − E and Outmax = max(QoS)

1. f (Obj) = Maximum

x = 1, 2, 3, . . . , N
y = 1, 2, 3, . . . , F

⎛
⎝

Maximize︷ ︸︸ ︷
P(Wf ).ξxy −

Minimize︷ ︸︸ ︷
E(Wf ).ξxy

⎞
⎠

2. for Max ← 1 to r do
3. xEF

r = xω + RV , yEF
r = yω + RV

//
(
xEF

r , yEF
r

)
the initial position of each swarm particle, RV = (0, 1)

4. Calculate Distr =
√(

xEF
r

)2 + (
yEF

r

)2

SC
r = 1

Distr

// Distt is the distance between individual fruit fly and food and SC
t is smell concentration

5. Smellr = f
(
SC

r

)
//for each fruit fly

6. F (Smellr) = 1
v

∑v

r=1 fr (Smellr)

7. Call Algorithm 2
8. Update swarm particles’ location with energy (xω, yω, zω){ { {

8.1 xω = xω + xω ∗ RV (0, 1) + xω ∗ F (Smellr)}
8.2 yω = yω + yω ∗ RV (0, 1) + yω ∗ F (Smellr)}
8.3 zω = E

(
Wf

)
ξxy}

8.4 Go to step 3.
9. End for

The proposed E2FFO algorithm optimizes the previous solution and forms a new solution using
the smell concentration function. All input and output parameters are well explained in Algorithm
1. The objective function is used to maximize the difference between performance and energy. Here,
f(P, E) = {S1, . . . , SN} is a set initial workflow schedule. Max is used for the maximum number of
iterations. The GA approach used for the initial position of each swam particle (individual solution)(
xEF

r , yEF
r

)
. Calculate the mean of smell concentration. F (Smellt) and update the new swarm position.

Algorithm 2: Energy consumption and CPU performance with frequency scaling (ξg)

1. CPScaleg =
max︷ ︸︸ ︷

g = {1, 2, 3, . . . . . . , G} (
CPTimeg

)
CPTimeg

2. Fqg = Fqmaxg

CPScaleg

∀g ∈ {1, 2,

3. Timepre =
max︷ ︸︸ ︷

g = {1, 2, 3, . . . . . . , G}(CPTimeg + CMTimeg)

(Continued)
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Algorithm 2 (continued)

4. Etotal = ∑G

g=1(Dpowg ∗ CPTimeg + Spowg ∗ Timepre)
5. while (∀g �= Fqmin) do
6. if (Fq �= Fqlast)

a. Fqg = Fqg − Fqdg

b. ξg = Fqmaxg

Fqg

endif

7. Timenew =
max︷ ︸︸ ︷

g = {1, 2, 3, . . . , G}(CPTimeg ∗ ξg) + min(CMTimeg)

8. Ered = ∑G

g=1(S
−2
g Dpowg ∗ CPTimeg + Spowg ∗ Timenew)

9. P
(
Wf

) = Timepre

Timenew

and E
(
Wf

) = Ered

Etotal

10. QoS = P
(
Wf

) − E
(
Wf

)
endwhile

Algorithm 2 shows the energy consumption and found CPU performance with frequency scaling
(ξg). The first two steps find the frequency of nodes that consume more energy. Steps 3 and 4 calculate
the total time and energy of each node. Step 5 is used for the maximum number of predefined iterations.
The next step calculates the frequency scaling factor. Steps 7 and 8 calculate the new time and amount
of reduced energy. Step 9 evaluates the performance and total amount of saved energy. The overall
complexity of the proposed work is O(n2).

5 Performance Evaluation

5.1 Experimental Setup

The simulation experiments were implemented using the proposed E2FFO algorithm on the work-
flows im 1.0 Toolkit [40]. This toolkit supported additional features for workflow management and
analysis of different workflow scheduling parameters. Table 1 shows various simulation parameters
used for simulation setup.

Table 1: Simulation setup

Hardware CPU Intel® Core™ i7-10710U CPU @ 4.70 × GHz 1.10 GHz, 6 core

Software RAM 64 GB
External storage 2 TB
Internet Gigabit ethernet
Operating system Windows 10 Pro
JAVA Java version “16.0.1” 2021-04-20

Java (TM) SE Runtime Environment (build 16.0.1 + 9–24)
Java HotSpot (TM) 64-Bit Server VM (build 16.0.1 + 9–24,
mixed mode, sharing)

Middleware Eclipse
Compiler environment WorkflowSim-1.0
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5.2 Evaluation Parameters

For simulation purposes, five heterogeneous workflows that are LIGO, SIPHT, Montage, Cyber-
Shake, and Epigenomics, are used with the graph properties like heterogeneity factor (HF), scalability,
communication to computation time ratio (CCTR), range of computation cost with three different
power consumption scenarios. These five workflows are considered with eleven different workloads
mentioned in Table 2. As per the nature of such workflows, the initial workload for each workflow was
taken, and almost the same workload assumptions were considered in [41,42]. The initial workloads are
20, 40, 70, 90, and 100 of Epigenomics, Montage, LIGO, CyberShake, and SIPHT. To compare better,
all workloads have their last (eleventh) value as 1000 nodes. The efficiency of the proposed E2FFO
algorithm mainly depends on the (Algorithm 2 point 4). The workflow energy consumption model
depends on communication time, i.e., static energy, whereas computation time is related to dynamic
energy. The present research proposed a static energy model to simulate an Infrastructure-as-a-Service
(IaaS) environment. A virtualization platform provided by IaaS cloud to schedule scientific workflow
applications. We have taken five VMs in cloud data centers and each VM has its resource capacity.

Table 2: Workflow setup

Workflow Number of tasks

Montage 40 70 95 125 150 400 500 750 850 900 1000
CyberShake 90 130 170 210 250 290 330 370 410 450 1000
LIGO 70 100 130 160 190 220 250 280 310 340 1000
SIPHT 100 150 250 350 450 550 650 750 850 950 1000
Epigenomics 20 60 100 140 180 220 260 300 340 380 1000

5.3 Experimental Results

This sub-section comprises two parts. The first part calculates the energy consumption and
efficiency of the proposed E2FFO algorithm based on eight NAS benchmarks. The second part,
E2FFO is applied to five heterogeneous scientific workflows with eleven workload classes. In the first
phase, the proposed E2FFO was applied on eight parallel benchmarks (MF, CG, FT, IS, EP, BT, SP,
LU) with five classes: A, B, C, S, and W. The total energy consumption for Eq. (5) was calculated
based on these five classes. The experimental results are presented in Figs. 1 to 5, these results are
included with the average values from several experiments for energy evaluation based on 1000 nodes.
Even though we can simulate the same algorithm for fewer nodes due to lack of space, we only show
evaluation results based on 1000 nodes. The results depict the different energy level consumption based
on the NAS benchmarks. Figs. 1 and 2 depict that the benchmarks MG, FT, and SP, the considered
classes, show no difference in energy saving up to 1000 nodes. However, CG and EP benchmarks show
a small difference in energy consumption for S-W and A-B-C classes. However, there is a significant
difference between S-W and A-B-C classes for IS, LU, and BT. These results may help choose the
appropriate workflow for a large cloud-based application.

Figs. 3 to 5 depict that the benchmarks MG and FT, the considered classes, show no significant
variations in energy-saving up to 1000 or fewer nodes. However, CG, SP, and EP benchmarks show a
small difference in energy consumption for the S-W and A-B-C classes. However, there is a significant
difference between S-W and A-B-C classes for IS, LU, and BT. Due to many memory requirements,
experiments for bigger NAS classes than C, like D, F, and F, are not conducted.
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Figure 1: Running NAS benchmarks on 1000 nodes for montage workflow

Figure 2: Running NAS benchmarks on 1000 nodes for cybershake workflow

Figure 3: Running NAS benchmarks on 1000 nodes for LIGO workflow

Figure 4: Running NAS benchmarks on 1000 nodes for SIPHT workflow
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Figure 5: Running NAS benchmarks on 1000 nodes for epigenomics workflow

5.4 Comparative Results

This subsection provides the comparative analysis of the proposed E2FFO concerning EASVMC,
PESVMS, EES, and HEFT algorithms. Due to resource constraints, we do not compare the traditional
algorithm with E2FFO, and while tradeoff NAS benchmarks, the proposed E2FFO was compared
with EASVMC, PESVMS, EES, and HEFT algorithms for five different scientific workflows. Fig. 6a
depicts that up to 170 workloads, all five algorithms show almost the same behavior. In contrast,
after 200 nodes, the proposed algorithms show noteworthy improvement in energy consumption for
the Montage workflow. While comparing with other contemporary algorithms, the proposed E2FFO
consumes an average of 15.6477%, 28.7031%, 29.9459%, and 35.9054% less energy in comparison
with EASVMC, PESVMS, EES, and HEFT algorithms. Similarly, Fig. 6b for Cybeshake workflow
comparison, E2FFO, EASVMC, and PESVMS show similar behavior for energy consumption, where
as, in comparison with EES and HEFT algorithms, the proposed algorithm shows better results. For
large applications like workloads more than 600, the E2FFO shows significant improvement in energy
saving and average energy-saving 2.7992% (EASVMC), 1.9178% (PESVMS), 7.9083% (EES), and
9.6307% (HEFT).

In the case of LIGO workflow, Fig. 6c depicts that up to 130 nodes, the proposed E2FFO
shows less improvement as compared to EASVMC and PESVMS, though E2FFO presents notice-
able improvement concerning EES and HEFT. For large applications like workloads more than
130, E2FFO shows significant improvement in energy saving and average energy-saving 17.8928%
(EASVMC), 20.7847% (PESVMS), 53.9209% (EES), and 55.6101% (HEFT). In Fig. 6d, for SIPHT
workflow, the proposed algorithm (overall) shows slightly better results in comparison with EAVMC;
for 200–570 nodes, the E2FFO shows significant results as compared to the PESVMS, EES, and
HEFT. While taking 800–950 nodes, EES outperformed the rest four algorithms, but for 1000 or
above nodes cloud application, the E2FFO saves more energy (average) as compared to EASVMC,
PESVMS, EES, and HEFT with 3.1198%, 8.8413%, 6.4517%, and 7.238%, respectively. In Fig. 6e,
for Epigenomics workflow, the proposed algorithm shows slightly better results in comparison with
EASVMC, PESVMS, EES, and HEFT up to 160 nodes (however, 90–110 EASVMC is better than the
E2FFO. After 140 or more node-based applications, the proposed E2FFO outperformed EASVMC,
PESVMS, EES, and HEFT algorithms and saved significant energy with an average of 13.1302%
(EASVMC), 21.267% (PESVMS), 32.5441% (EES), and 36.5302 (HEFT).
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(a) (b)

(c) (d)

(e)

Figure 6: Proposed E2FFO performance comparison with EASVMC, PESVMS, EES, and HEFT for
(a) Montage, (b) Cybershake, (c) LIGO, (d) SIPHT, (e) Epigenomics

Regarding energy consumption, the proposed E2FFO outperformed EASVMC, PESVMS, EES,
and HEFT for all five mentioned workflows. Table 3 presents the percentage-wise efficiency energy
consumption results, e.g., for Montage workload with workload 40–1000, the proposed E2FFO saves
15.6477% energy as compared to the EASVMC algorithm. Montage with workload capacity 40–1000,
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Cybershake with 90–1000, LIGO with 70–1000, SIPHT with 100–1000, and Epigenomics with 20–
1000 taken, and an overall average result for energy consumption is shown in Table 2.

Table 3: Comparative analysis of the proposed E2FFO

Proposed EASVMC PESVMS EES HEFT

Montage 15.6477 28.7031 29.9460 35.9054
CyberShake 2.7992 1.9179 7.9083 9.6307
LIGO 17.8928 20.7847 53.9210 55.6101
SIPHT 3.1199 8.8413 6.4518 7.2381
Epigenomics 13.1302 21.2670 32.5441 36.5302

The proposed E2FFO used an improved fruit fly optimization algorithm that addressed the
exploration and exploitation problem while scheduling the multiple workflows. The GA approach
shows an additional advantage in generating the initial workflow schedules. These schedules need to
be optimized. Traditional FFO (and hybrid FFO) used the best smell values to update the location of
other flies, which will be stuck into local minima. To address this problem, the proposed E2FFO uses
the mean of smell concentration, i.e., the global best solution, and updates all other nodes as per the
mean value. The E2FFO calculates the reduced time and static energy with the scaling factor ξxy. The
energy scaling factor ξxy used to avoid exploration and exploitation during the execution.

6 Conclusions

Minimizing the carbon footprints is a worldwide concern in cloud computing. To achieve this goal
efficient energy approaches are vital in optimizing energy consumption in cloud data centers. The
proposed E2FFO approach uses an improved fruit-fly optimization (IFFO) algorithm to minimize
energy consumption. The proposed algorithm uses selected GA for generating the initial set of
solutions and the IFFO algorithm was used to reduce the overall energy of the cloud data center.
Workflowsim 1.0 simulator used for simulation of the proposed algorithm. The proposed E2FFO used
five scientific workflows (Montage, CyberShake, LIGO, SIPHT, and Epigenomics) to schedule three
different capacity VMs (Micro, Small, and Medium). Eleven workloads from each scientific workflow
were considered for better simulation.

Furthermore, the proposed E2FFO used 11 NAS benchmarks with 5 NAS classes and depicted
the results. Four state-of-the-art algorithms (EASVMC, PESVMS, EES, and HEFT) were taken
with five scientific workflows for comparative analysis. Table 2 showed that the proposed algorithm
outperformed the existing algorithm and reduced average energy consumption from 1.91% to 55.61%
compared to existing algorithms. The experimental results show that the E2FFO is 10.51% at least and
28.98% at most, better efficient for variable workloads with multiple workflows in a cloud data center.
This improvement in energy optimization increases the overall system efficiency, decreases operational
cost, and helps to generate less carbon footprint.

As the proposed approach worked on energy efficient parameters only, an extension of this work
can be altered to sustain multiple QoS parameters such as cost, makespan, load balancing, security,
latency, etc., with different magnitudes and dimensions. The initial phase of E2FFO can be enhanced
to minimize the solution space in the GA. Work can be improved by handling complex scenarios of
dynamic factors in a heterogeneous environment.
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