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ABSTRACT

Fruit infections have an impact on both the yield and the quality of the crop. As a result, an automated recognition
system for fruit leaf diseases is important. In artificial intelligence (AI) applications, especially in agriculture, deep
learning shows promising disease detection and classification results. The recent AI-based techniques have a few
challenges for fruit disease recognition, such as low-resolution images, small datasets for learning models, and
irrelevant feature extraction. This work proposed a new fruit leaf leaf leaf disease recognition framework using deep
learning features and improved pathfinder optimization. Three fruit types have been employed in this work for the
validation process, such as apple, grape, and Citrus. In the first step, a noisy dataset is prepared by employing the
original images to learn the designed framework better. The EfficientNet-B0 deep model is fine-tuned on the next
step and trained separately on the original and noisy data. After that, features are fused using a serial concatenation
approach that is later optimized in the next step using an improved Path Finder Algorithm (PFA). This algorithm
aims to select the best features based on the fitness score and ignore redundant information. The selected features
are finally classified using machine learning classifiers such as Medium Neural Network, Wide Neural Network, and
Support Vector Machine. The experimental process was conducted on each fruit dataset separately and obtained
an accuracy of 100%, 99.7%, 99.7%, and 93.4% for apple, grape, Citrus fruit, and citrus plant leaves, respectively. A
detailed analysis is conducted and also compared with the recent techniques, and the proposed framework shows
improved accuracy.
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1 Introduction

Feeding the fast-growing population is becoming a major challenge, especially when the climate
conditions are changing and affecting the agriculture sector by introducing various risks in the form of
different crop/fruit diseases [1]. Even though the production of fruit quantity and quality is enhanced
due to technological advancements, 14.3% of people still suffer from malnutrition [2]. Additionally,
due to population growth, there is a daily decrease in land available for cultivation. As a result, it is
imperative to cultivate a healthy and sufficient quantity of crops or fruit to meet the needs of the people
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[3]. Fruits are necessary for humans because they provide several critical nutrients, such as vitamins
C and A, folate, potassium, and dietary fiber [4]. However, fruit diseases are causing great losses in
the revenue of important fruit crops every year [5]. Early detection and precise disease classification
are essential for reducing the consequences of fruit diseases. Identifying a variety of fruit illnesses is
crucial because farmers want to experiment with crops besides local plants on their farms, which is
only feasible if an automated disease detection system supports both competent and inexperienced
farmers [6].

While each location has distinctive regional fruit harvests consumed daily, some fruits, including
apples, grapes, and citrus, are grown worldwide [7]. The research’s target plants are the fruit above
crops because of their high production and consumption rates. Manual disease identification takes
a lot of time and resources, including people, knowledge of fruit crops, and agricultural equipment
[8]. Furthermore, it is impossible to accurately carry out the classification work in the real-time
environment or the field areas due to the complexity of disease symptoms and the similarity of
different diseases [9]. Visualizing people and identifying infections through microscopic research are
two methods that could be used for manual disease detection. It also covers methods like molecular and
microbiological diagnostics [10]. These meticulous manual and conventional procedures take time and
demand more human labor and knowledge. The data shows that agricultural diseases are significant in
the expanding population’s food shortage. The prospects of increased crop output are increasing daily
thanks to developments in computer vision, AI methods, and sensor-based technologies [11]. This
data collected through sensors or satellite imagery is fused to make better models for predicting the
crop’s life cycle, including diseases and remedies [12]. Automated computer-based programs support
decision-making, disease classification and prediction, fruit and vegetable quality classification, and
soil quality classification. The application of imaging techniques, such as picture acquisition and
subsequent image processing, is included in the computer science field of computer vision [13].
Some common computer-based techniques used for plant disease detection are classical techniques,
preprocessing, segmentation, feature extraction, and classification methods.

The images taken in a real-world situation have a lot of noise and different illumination intensities.
Therefore, disease classification suffers if the classifier directly supplies the actual image [14]. Several
preprocessing processes are carried out to enhance the visual representation of samples to address
these problems. Image segmentation is one such method. The Region of Interest (ROI) was correctly
identified due to the segmentation procedure, which attempted to remove the unhealthy portion of
the plant leaf. To perform recognition, it then uses it as input. To extract information and recognize
objects or diseases, segmentation in computer vision entails dividing the existing image into segments
or portions [15]. The segmentation technique also makes it easier to recall aberrant regions by reducing
the complexity of the space and the input image data. The image’s boundaries and the necessary ROI
are obtained as part of this procedure. Different techniques, such as K-means clustering [16], Otsu’s
threshold algorithm [17], or by using boundary detection algorithms [18], can be used to segment data.

The feature is the basic information that helps solve computational issues in computer vision
and machine learning [19]. For instance, a feature might be the edge or contour of an image. Multiple
feature extraction techniques must be used on a sample since, typically, just one or two types of features
are sufficient to extract the needed information. For instance, it takes a lot of time and requires
more human resources to detect and identify plant diseases manually. Therefore, it is necessary to
install an automated system on large-scale fields [20]. Deep learning-based models may be applied to
many crops and have good classification accuracy. Farmers already utilize deep learning models for
precise classification, which aids in producing high-quality crops and improves the quality. Thanks to
advances in deep learning, there is no longer a requirement to separately apply feature extraction for



CSSE, 2024, vol.48, no.2 531

categorization. It is possible to complete both procedures in a single unit [21]. A subset of machine
learning (ML) and artificial intelligence (AI) called “deep learning” seeks to mimic the functions of
the human brain in areas including speech recognition, object detection, and decision-making. In the
past few years, deep learning has shown encouraging results in detecting and recognizing illnesses
in agriculture. While deep learning techniques are more beneficial for large-scale datasets, classical
machine learning techniques have been used successfully in agriculture when there is a limited amount
of data. Convolutional layers are used in deep learning to extract an image’s more detailed information.
The key driver of deep learning in agriculture is feature learning across multiple layers of hierarchies.
The complicated model design allows the DL features to handle the challenging imaging situation
more effectively [22,23].

Scientists have reported huge work for the timely and accurate identification and classification
of fruit diseases; however, here are some major challenges which degrade the system accuracies: (i)
Similar characteristics of crop symptoms, such as their color and texture, make confusion for correct
recognition into their relevant class, (ii) Change of symptoms shapes for disease regions and (iii)
Variations in illumination and background are the major challenges for accurate recognition. In
addition, the presence of irrelevant and redundant information reduces recognition accuracy. This
work focuses on overcoming the mentioned problems by presenting an ensembling technique involving
four primary stages: contrast improvement, feature computation, feature fusion & selection, and
classification. Our work employs a multi-layer feature fusion and best feature selection approach. The
main contributions of the proposed work are as follows:

i) Prepare a hybrid dataset containing both original and noisy data for learning fine-tuned deep
learning models.

ii) A pre-trained deep model efficient net-b0 is employed and fine-tuned in terms of layer addition
and layer removal. After that, deep transfer learning trained the model on original and noisy
data and extracted deep features.

iii) Deep features of the noisy and original dataset have been fused using a new serially controlled
descending-order probability approach.

iv) A path-find optimization technique is chosen and improved by employing the higher proba-
bility value. The best features are employed for the final classification.

v) An extensive experiment analysis is performed compared to the latest approaches to show the
robustness of the proposed framework.

The later sections of the paper are organized as follows: the existing work on this topic is
mentioned in Section 2. Then, the presented technique is given in Section 3, while the experimental
evaluations are described in Section 4. Finally, in Section 5, the conclusion and plan of the proposed
work are elaborated.

2 Related Work

Many researchers are working in the field of computer vision and machine learning to enhance
the process of fruit disease detection and classification. Bansal et al. [24] discussed the importance of
automated disease detection and classification in fruit plants because the manual process is tedious and
time-consuming. A country’s economy, especially agriculture, depends on good quality and quantity
of food, which highly depends on early disease detection. In the proposed model [24], a concatenation
of features computed from DenseNet and EfficientNet-B7 is performed to classify apple leaf diseases.
The publically available apple leaves dataset is used [25]. The dataset contains four data classes: healthy,
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apple scab, apple rust, and other diseases, including brown and yellow leaf spots. Data augmentation
is performed to minimize the problem of overfitting [26]. Data augmentation includes flipping, noise
addition, rotation, and shifting in data. Canny Edge Detection [27] is used for edge detection, which
helps reduce Area of Interest (AoI).

Multiclass classification is performed because the dataset includes more than two classes for
classification. The proposed model gives an accuracy rate of 96.25%. Li et al. [28] proposed that
intelligent and early disease detection and classification play a vital role in enhancing the quality and
quantity of fruit crops. The respective research presents a CNN-based model RegNet, which deals
with five classes of apple leaf datasets. For validation, the proposed model is compared with other
state-of-the-art models, namely EfficientNet-B0, MobileNet-V3, and ShuffleNet; for data balancing,
multiple data enhancement techniques are used: image rotation, translation, scaling, and brightness
calibration. In training a CNN model, the learning rate is an important parameter. It is a range of
hyper-parameters that are updated in each iteration. A good learning rate adjustment can enhance
the convergence speed of any model. Adam Optimizer is used in the respective research work, which
enhanced the selection process of suitable learning rate. An accuracy rate of 99.23% is attained with
the help of the proposed RegNet model and Adam Optimizer. Di et al. [29] presented that several
researchers are using deep learning methods to detect fruit disease at its early stages.

Due to the difficulty of identifying numerous illnesses, a new model called DF-Tiny-Yolo is
suggested for apple leaf disease detection. For evaluation, the suggested model is tested on four
different data classes. The DenseNet model, which aids in feature propagation, increases detection
accuracy. The proposed model achieved a 90.88% average Intersection over Union (IoU) and 99.2%
Mean Average Precision (MAP). The introduction of DenseNet significantly reduces the vanishing
gradient issue during model training.

Additionally, the feature of DenseNet helps connect the many model layers by creating connec-
tions between them, allowing for the reuse of features and assisting in reducing the overfitting issue.
The performance measures in [29] are precision, recall rate, and average IoU. Gu et al. [30] proposed
a model based on improved deep learning methods and K-Nearest Neighbor (KNN).

Apples and pears are the fruit trees that are being considered. Six distinct data classes—fire blight,
Alternaria leaf spot, anthracnose, scab, marssonina blotch, and black necrotic—have been approved
for testing. Seven pre-trained models—VGG-16, VGG-19, Inception ResNet, ResNet-50, DenseNet-
121, EfficientNet-B0, and NasNet—extract deep features. The RoI is manually trimmed from the
photos, improving recognition precision. The pre-trained CNN models are then fed the retrieved
images for final optimization. The KNN algorithm is then used to detect related symptoms using
the extracted features. The performance of each research is measured by its precision and accuracy,
with ResNet-50 achieving the greatest precision rate of 98.83%. Syed-Ab-Rahman et al. [31] discussed
the effects of fruit disease on crop yield, reducing the economy of any agricultural country. According
to research, Citrus is an important fruit crop cultivated on a large scale; hence, attacks of pests and
other diseases cause significant losses in its production. In the respective research work, a two-stage
model is presented, which is based on Deep Convolutional Neural Network (DCNN). In the first stage
region-based network model is proposed, and in the second stage, a suitable classifier is used to classify
the potential region-based disease. The proposed model yields an accuracy rate of 94.37%, obtained
on classes of three diseases: bacterial canker, huanglongbing, and black spot. In the pre-processing of
available data, multiple steps are taken, i.e., they are initially converted into a greyscale, then histogram
equalization is applied to stabilize the range of intensities. Finally, a Faster R-CNN model is applied,
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a four-stage network model including feature extraction, Region Proposal Network (RPN), pooling,
i.e., Region of Interest (RoI), and classification.

The authors of the methodologies above performed classification after using pre-trained models
for training. A few writers created customized models and extracted characteristics that were subse-
quently categorized using machine learning classifiers. The studies mentioned above did not use noisy
data for training. The scalability of a model can be improved by training it on noisy data. Additionally,
they did not concentrate on feature optimization to shorten the computational time.

3 Proposed Work

This section explains the proposed methodology as shown in Fig. 1. First, the dataset of three
fruit leaf diseases, including apple, Citrus, and grapes leaves, is collected for evaluation. The originally
obtained samples are given the name original data, whereas the data in which different artifacts are
added is called noisy data. Then, on both the original and noisy data, a finely tuned EfficientNet-
B0 Deep Convolutional Neural Network model is applied using transfer learning. As a result,
two newly trained models, namely Model 1 and Model 2, are obtained. Then, the state-of-the-
art feature extraction technique is applied to obtain useful and non-redundant features, which are
later fused to get original and noisy data features. Finally, the path Finder Algorithm (PFA) based
optimization technique is applied to obtain a set of optimized features classified using multiple
classifiers, including Medium Neural Network, Wide Neural Network, Support Vector Machine, and
others for classification.

Figure 1: Proposed deep learning and optimization-based framework of fruit disease classification
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3.1 Database Preparation

The database created for the evaluation is divided into two parts: the original dataset and the
noisy dataset. The original dataset is comprised of three fruit leaves, including apples, grapes, and
Citrus. Apple dataset contains four classes of data, including three classes of diseased leaves and one
class of healthy leaves. The other three classes involve black rot, cedar rust, and scab. All four classes
contain an equal number of images, i.e., 3000 of each class. The grapes dataset contains data of four
classes, including healthy with 846 images, black rot with 2360 images, esca (black measles) with 2800
images, and leaf blight with 2200 images. Citrus is divided into citrus fruit and Citrus leaves data. The
Citrus fruit dataset contains five classes: healthy, canker, black spot, greening, and scab. Each class
contains an equal number of images, i.e., 3000 images in each class. The Citrus leaves dataset contains
five classes with approximately 200 images of each class; classes include black spot, canker, greening,
healthy, and melanosis. The images of the original dataset are shown in Fig. 2. For training and testing
of the proposed architecture, 50:50 of the available datasets have opted to validate our results.

Figure 2: Sample images of the original dataset

The noisy database contains the same fruit leave diseases as used for the original data but with
an additional noise added to the available dataset. Apple, Citrus, and grapes fruit leaves are used for
evaluation purposes with the same number of images as used for the original. The type of noises
added to the data are Gaussian Noise, Uniform Noise, Rayleigh Noise, Exponential Noise, and Salt
and Pepper Noise. A few samples from the noisy dataset are given in Fig. 3. The detail of each class’s
images is also given below in Table 1.

Figure 3: Sample images of the noisy dataset
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Table 1: A brief description of the selected dataset and classes

Apple dataset Apple dataset

Images before augmentation Images after augmentation

Class No. of images Class No. of images

Black rot 3000 Black rot 3000
Cedar rust 3000 Cedar rust 3000
Healthy 3000 Healthy 3000
Scab 3000 Scab 3000
Grapes dataset Grapes dataset
Images before augmentation Images after augmentation

Class No. of images Class No. of images

Black rot 2360 Black rot 2360
Black measles 2800 Black measles 2800
Leaf blight 2200 Leaf blight 2200
Healthy 846 Healthy 846
Citrus fruit dataset Citrus fruit dataset
Images before augmentation Images after augmentation

Class No. of images Class No. of images

Black spot 3000 Black spot 3000
Canker 3000 Canker 3000
Greening 3000 Greening 3000
Healthy 3000 Healthy 3000
Scab 3000 Scab 3000
Citrus leaves dataset Citrus leaves dataset
Images before augmentation Images after augmentation

Class No. of images Class No. of images

Black spot 200 Black spot 200
Melanosis 200 Melanosis 200
Canker 200 Canker 200
Greening 200 Greening 200
Healthy 200 Healthy 200

3.2 Convolutional Neural Network

Before the advent of CNN models, the recognition or classification process involved extracting
features that were either insufficient or did not achieve a higher level of accuracy [32]. CNN models
are achieving higher levels of accuracy efficiently in all fields in which it is deployed. CNN models also



536 CSSE, 2024, vol.48, no.2

follow a set of algorithms involving backpropagation, including convolutional and pooling layers and
steps like feature extraction. The working of Neural Networks is based on mimicry of the human brain
to the possible level. CNN involves multiple convolutional layers and helps recognize digital images
or data.

The convolutional Layer is the most important and basic in a CNN architecture [33]. In this layer,
the respective image’s activation function or map is generated by convolving the matrix of image pixels.
The activation map is useful in storing the values of discriminant features, hence reducing the amount
of data for processing. Convolution is the most important step of any CNN model, and Convolutional
Layer (CL) is the most important layer among other layers. It is responsible for the 2D convolution
of input and kernel in the forward go. In the beginning, the weights of kernels are selected randomly
and then updated as the iteration moves on. The loss function updates weights as the network training
starts. Ultimately, the final learned kernel can detect some patterns in the input image. The three steps
of CL involve convolution initially, then stack and Non-Linear Activation Function (NLAF) at the
end. Mathematically, let Y be the input matrix, and X. denotes its output. Let’s suppose a set of kernels
such that. Hk, ∀k ε [1, . . . , k], output O(k) convolution after step 1 of convolution is given by [34]:

Ok = Y ∗ Hk, ∀k ε [1, . . . , k] (1)

where ∗ shows the operation of convolution. It is the dot product between inputs and the filter. In the
second step of the stack, all the activation maps Ok are combined to form a new activation map which
is 3D in nature, as mentioned in Eq. (2):

B = J(O1, . . . , Ok) (2)

where K is the total number of filters and J shows the compilation operation of activation maps. Three
matrixes input, filter, and output sizes J are assumed such that:

J =

⎧⎪⎨
⎪⎩

ZI × SI × TI

Zm × Sm × Tm

Zc × Sc × Tc

y = Y y = Hk, k ε [1, . . . , k] y = 0 (3)

where Z, S, and T are the height, width, and number of channels, respectively. I , m, and c in the
subscript denote the input, filter, and output. There are two equalities first one is TI = Tm, i.e.,
channels of input are equal to the number of channels of filters. Secondly, Tc = k, i.e., the number
of output channels equals the number of filters k. The values of Zc, Sc and Tc can be interpreted after
a supposition such that D be the padding and F be the stride, as elaborated in Eqs. (4) and (5):

Zc = 1 + gfl [(2 × D + ZI − Zm)/F ] (4)

Sc = 1 + gfl[(2 × D + SI − Sm)/F ] (5)

where gfl is the floor function, the NLAF uses rectified Linear Unit (ReLU) function [35]:

σReLU = ReLU (bik) = max(0, bik) (6)

where bik ε B, members of the activation map B. ReLU is used extensively due to its better performance
than other functions, such as the sigmoid function and hyperbolic tangent functions. Better gradient
propagation is also one of the reasons for the ReLU function’s good performance.
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Pooling Layer: The important function of this layer is to reduce the spatial dimensions of a given
feature map without losing key information from the map. As a result, the number of features to be
learned by the training model is reduced, and the problem of overfitting is resolved through pooling
[36]. The pooling layer helps the CNN model learn all the dimensions of an input image, making the
recognition process efficient. There are different types of pooling layers, like max and average pooling
layers. Pooling, also called down-sampling, is an operation performed in a local region. It saves the
information that is either redundant or unique in the neighbor of receptive fields and gives dominant
information as an output response from that local region, as given in Eq. (7):

X m
n = hp(Zm

n ) (7)

where, X m
n shows the pooled feature map of nth layer, for mth input feature map given by Zm

n and hp is
given as the type of pooling operation performed.

Fully Connected Layer: The last layer fed to the neural network is a fully connected layer used
for classification. A fully connected layer’s operation differs from convoluting and pooling layers
because it is a globally performed operation [37]. This layer can also replace the global average pooling
layer [38]. It takes features as input and then analyses the output globally of the previous layers. To
mathematically define an FC layer, assume h and l as input and output dimensions, respectively. Weight
Matrix G ∈ Hh,l(R) where h is rows and k are columns. The bias vector is given by a ∈ R

h, the input
vector is given by g ∈ R

k and activation function is given by z.

FC (g) = z (Gg + a) ∈ R
h (8)

3.3 Pre-Trained Deep Model: EfficientNet-B0

EfficientNet-B0 is trained on more than one million images of the ImageNet dataset [39]. It is
a CNN model that can classify the images into 1000 classes of objects. The input size of images for
this model is 224-by-224 and contains 290 × 1 CNN layers [40]. Scaling a model does not change the
operator. Ĝi of the layer in the baseline network model. Due to resource constraints, there is a need for
model scaling in the convolutional network, which is possible through different methods. For example,
ResNet-18 and up models [41] adjust network depth, i.e., the number of network layers. Wide-ResNet
[42] controls the width of a network, i.e., the number of network channels. In EfficientNet, three-
way model scaling is performed by depth, width, and resolution. Targeted accuracy is maximized by
keeping in view the three constraint resources, i.e., depth d, width w, and resolution r, which are given
by the equations given below:

maxd,w,r Accuracy(C(d, w, r)) (9)

where C stands for convolutional network and is defined as:

C (d, w, r) = �i=1,...,8Ĝ
d.Ĥi
i (Y<r.k̂i , r,M̂i , w.N̂i>

) (10)

A baseline network model is developed, which helps optimize accuracy and FLOPS (Floating
point operations per second). The architecture of EfficientNet-B0 is depicted in Table 2.
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Table 2: Baseline network model of EfficientNet-B0

Stage i Operator Ĝ i Resolution k̂i × M̂i No. of channels N̂ i No. of layers Ĥi

1 Conv 3 × 3 224 × 224 32 1
2 MBConv 1, k 3 × 3 112 × 112 16 1
3 MBConv 6, k 3 × 3 112 × 112 24 2
4 MBConv 6, k 5 × 5 56 × 56 40 2
5 MBConv 6, k 3 × 3 28 × 28 80 3
6 MBConv 6, k 5 × 5 14 × 14 112 3
7 MBConv 6, k 5 × 5 14 × 14 192 4
8 MBConv 6, k 3 × 3 7 × 7 320 1
9 Conv 1 × 1, Pooling and FC 7 × 7 1280 1

3.4 Transfer Learning

Transfer learning is mathematically defined as follows for fruit leaf disease classification [43]. A
domain H is considered, which is divided into two parts, i.e., a feature vector space Y and a probability
distribution function given by P(Y), Y = [y1, . . . , yn] ∈ Y . yi is the ith feature vector or instance, n
is the total number of features in Y, and Y is the possible space of feature vectors. A task L of a given
domain H is divided into two parts one is predictive function h(.), and the other is labeled space J; these
two are learned from feature vectors of labeled pairs [yi, ji] where yi ∈ Y, ji ∈ J. Labels are denoted by
J, which contain the values true and false, function h(y) denotes the learner which predicts the value
of labels. From this explanation, domain H and task L are given by H = [Y, P(Y)] and L = [J, h(.)].
Now consider data of the source domain as Hs = [(ys1, Js1), . . . , (ysn, Jsn)], here ysi ∈ Y s which is
the ith instance of source data Hs and Jsi∈ Js is the class label for corresponding Y si. Similarly, target
domain HT is given by HT = [(yT1, JT1), . . . , (yTn, JTn)] where yTi ∈ Y T represents the ith instance of
target data HT also JTi ∈ J is the respective class label for yTi. The predictive function is given by hs(.),
and the predictive function is given by hT(.). By the above-given variable, transfer learning is defined
as a process to improve the predictive function of target data hT(.) by using the source domain Hs and
source task Ks, where Hs �= HT . A graphic view of the transfer learning is shown in Fig. 4.

In the fine-tuning process, the last three layers of EfficientNet-b0 models have been removed and
added three new layers have fully connected, softmax, and classification output. After that, trained
the model separate from the original images and generate noisy images. Several hyperparameters have
been initialized randomly, such as a learning rate of 0.0003, epochs of 50, momentum value of 0.625,
and SGD optimizer. Then training was performed using the transfer learning concept, and two new
models were obtained for the feature extraction process.

3.5 Novelty 1: Features Extraction and Fusion

After the training using TL, features are extracted from the average pooling layer and obtained
two feature vectors of dimension N × 1280 and N × 1280, respectively. Feature fusion is performed
later using the serial concatenation probability approach. Fusion is a process in which more than one
feature vector is combined to get one feature vector, which is more appealing and discriminative than
the input feature vectors.
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Figure 4: Transfer learning process representation for fruit leaf disease classification

Let us have two feature vectors, h1(i) and h2(i) having dimensions N × 1280 and N × 1280,
respectively. Suppose a fused vector of dimensions (N × 1280 + N × 1280) represented by h3(i). The
proposed fusion approach is based on the following three steps.

In the first step, the probability of each feature value is computed and sorted features into
descending order. Mathematically, it is represented from Eqs. (11)–(14), respectively.

Pi (h1) =
∑h

i=1

h1(i)
N

(11)

Pi (h2) =
∑h

i=1

h2(i)
N

(12)

d(h1) = Descending(Pi (h1)) (13)
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d(h2) = Descending(Pi (h2)) (14)

where Pi (h1) denotes the probability values of feature vectors h1, Pi (h1) denotes the probability values
of feature vectors h2, d(h1) denotes the descending value of h1, d(h2) denotes the descending value of
h2. In the next step, both vectors d(h1) and d(h2) are fused in one matrix as:

Fusion =
(

d(h1)

d(h2)

)
(N×k1+N×k2)

(15)

where k1 and k2 are 1280, and the total features after the fusion process are 2560.

3.6 Novelty 2: Improved Path Finder Algorithm (PFA) Optimization

Path Finder Algorithm (PFA) is a metaheuristic optimization algorithm [44]. This algorithm is
also like other swarm-based intelligence algorithms. This algorithm is derived from the rules of living
beings for their survival. Besides swarm-based intelligence algorithms, one plus point in PFA is that
it is limited to only one species. If this algorithm take the example of the grey wolf algorithm, it is
based on only the population of grey wolves. In PFA, the algorithm is based on the animal group,
which is divided into two types depending on the fitness value. Two types of classes are the leader and
followers, where the leader has a small fitness value. The leader is responsible for finding the path and
location of food or hunt and leaving traces for the followers to reach the destination. The followers
follow Pathfinder based on traces left by the leader. There is uncertainty for both the Pathfinder and
the follower. The role of Pathfinder and follower become interchangeable after running some iterations
by the algorithm based on searching capabilities, i.e., the Pathfinder can become a follower and vice
versa (Pseudocode 1). For problem optimization, PFA is divided into two phases. Exploration is the
first phase in which the location is updated by the PFA using the following updating formula:

am+1
b = am

b + 2h3.
(
am

b − am−1
b

) + Z (16)

where am+1
b reflects the updated position vector of Pathfinder, am

b is the current position vector of
Pathfinder, am−1

b is representing the previous position vector of Pathfinder, Z is generated in each
iteration given below, random vector h3 is uniformly generated in the range [0,1], m is the number of
current iterations. Exploitation is the second phase of PFA in which location updating is performed;
updating of location is given below:

am+1
j = am

j + X1.
(
am

l − am
j

) + X2.
(
am

b − am
j

)+ ∈, j ≥ 2 (17)

where am+1
j represents the new position vector of the jth position after updating the location, am

j is
representing the position vector if jth member, am

b is the position vector of the Pathfinder, X1 and X2

are random vectors. X1 = αh1 and X2 = βh2, h1 and h2 are uniformly generated random variables lie
in the range of [0,1]. The α and β denote the coefficients where α represents the interaction, i.e., the
duration of movement of any member with its neighbor members. The β represents the coefficient of
attraction, i.e., it sets a random distance that enables the swarm’s rough consistency with the leader,
as given in Eqs. (18) and (19).

∈ =
(

1 − m
mmax

)
.v1.Yjl, Yjl = ∥∥aj− al

∥∥ (18)

Z = v2.e
−2m

mmax (19)
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where v1 and v2 are randomly generated vectors that lie in the range of [−1,1], Yjl represents the
distance between two members of the swarm or herd, m is the current iteration number and mmax

are the maximum number of iterations. For guaranteed random and multidimensional motion, ∈ and
Z must lie in an appropriate range. The fine-KNN classifier is employed as a fitness function in this
work and obtained a selected feature vector of dimension N × 722. The selected features are sorted
into descending order and computed as a probability value. A threshold function is developed based
on the highest probability value and selects only the features under that value.

4 Results and Discussion

Experimental Setup-The findings that were reached for the three different fruit plants—apples,
grapes, and citrus—are covered in this section. To clarify the effectiveness of the proposed study, first
discussed the results for each fruit separately before comparing them with more recent methods. The
suggested framework is assessed using 10-fold cross-validation and a 50:50 evaluation ratio. Several
hyperparameters have been initialized for fine-tuning deep learning models, including a learning rate
of 0.0003, epochs of 50, momentum value of 0.625, and SGD optimizer. Several classifiers have been
used for classification accuracy, and each classifier’s performance is evaluated using accuracy and time
measures.

4.1 Apple Dataset Results

Accuracy and training time is the main statistical measures to evaluate the proposed methodology.
For experimentation, four classes of apple data are used, namely black rot, cedar rust, scab, and
healthy, which are evaluated by using 10-fold cross-validations. In the case of the apple plant, the
highest classification accuracy rate of 100% is achieved on Medium Neural Network (M-NN) classifier
with a training time of 14.303 s. This accuracy is achieved after implementing an optimizer, i.e., Path
Finder Algorithm (PFA) based optimization technique. Cubic Support Vector Machine (C-SVM) and
Wide Neural Network (W-NN) classifiers also gave good accuracy rates.

For this reason, ten different classifiers are used for evaluation, as mentioned in Table 3. The
confusion matrix also proved the achieved accuracy rate through M-NN (Fig. 5). Diagonal values in
the confusion matrix show the True Positive Rate (TPR). The values in Fig. 5 are clearly showing that
the proposed approach shows improved TPR rates of 100%, 99.9%, 100%, and 100% for the Black Rot,
Cedar Rust, healthy, and Scab classes of apple fruit diseases that are clearly showing the robustness of
the proposed work. The t-test analysis is also computed, and values are noted in Table 4.

Table 3: Results attained for apple plant

Classifiers Features Measures
Original Noise Fused Optimization Accuracy (%) Time (sec)

C-SVM � 99.8 57.946
� 98.6 127.47

� 100 140.84
� 100 46.948

(Continued)
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Table 3 (continued)
Classifiers Features Measures

Original Noise Fused Optimization Accuracy (%) Time (sec)

Q-SVM � 99.8 48.928
� 98.5 76.474

� 100 129.51
� 100 36.066

M-NN � 99.8 16.772
� 98.4 35.138

� 99.9 34.422
� 100 14.303

ES-KNN � 99.8 860.54
� 97.6 519.68

� 99.9 1909.7
� 99.9 666.37

LDA � 99.7 28.167
� 98.1 42.68

� 99.9 145.18
� 100 20.289

W-NN � 99.8 20.212
� 98.4 33.867

� 99.9 45.713
� 100 14.956

ESDA � 99.7 192.85
� 98.3 314.68

� 100 789.98
� 100 137.86

GNB � 98.1 30.526
� 93.2 48.321

� 99.5 70.086
� 99.6 26.245

F-KNN � 99.7 66.984
� 96.7 56.437

� 99.8 166.05
� 99.8 52.227

W-KNN � 99.6 68.772
� 97.0 65.68

� 99.9 161.86
� 99.9 56.562

After calculation mean value obtained is μ = 2, standard deviation σ = 2.32091, the value of t =
1.72346, degree of freedom N − 1 = 3, cumulative probability p = 0.05 and Range = −3.182, +3.182.

Hypothesis: Value of t = 1.72346 which lies in the range of −3.182, +3.182 of the two-tails test
table. It shows that our t-test passed because the difference between the classifiers is very small.
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Figure 5: Confusion matrix for Apple dataset

Table 4: t-test analysis for Apple dataset results

t-test Original Noise Fused Optimized

Classification Test-1 Test-2 Test-3 Test-4

C1 99.8 98.6 100 100
C2 98.1 93.2 99.5 99.6
|C1 − C2| 1.7 5.4 0.5 0.4

4.2 Grapes Dataset Results

This section discussed the evaluation results of the proposed work for the grapes plant. The main
statistical parameters used for evaluation are classification accuracy and training time. The grape
dataset comprises four different classes, i.e., black rot, black measles, leaf blight, and healthy, which
is used for model verification using 10-fold cross-validations. Ten different state-of-the-art classifiers
are used for classification, and the results achieved are shown in Table 5. The values in Table 3 show
that the highest classification accuracy is achieved by using a Quadratic Support Vector Machine (Q-
SVM), i.e., 99.7% accuracy rate with a training time of 21.7 s. Wide and medium Neural Networks
also achieved good accuracy rates, i.e., 97.4% and 99.7%. The major reason for improved classification
accuracy is the PFA optimization technique, which extracts a nominative set of image features.

Table 5: Results attained for grapes plant

Classifiers Features Measures
Original Noise Fused Optimization Accuracy (%) Time (sec)

C-SVM � 99.3 40.422
� 95.4 65.961

� 99.7 124.67
� 99.6 32.935

(Continued)
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Table 5 (continued)
Classifiers Features Measures

Original Noise Fused Optimization Accuracy (%) Time (sec)

Q-SVM � 99.3 35.102
� 95.3 47.085

� 99.7 108.21
� 99.7 21.7

M-NN � 99.2 14.104
� 94.5 16.182

� 99.6 49.193
� 99.5 11.399

ES-KNN � 98.4 408.7
� 90.6 343.33

� 98.1 494.71
� 98.2 317.21

LDA � 99.0 26.21
� 93.9 25.479

� 97.5 231.71
� 99.3 16.205

W-NN � 99.4 19.998
� 95.0 20.86

� 99.6 60.781
� 99.6 12.089

ESDA � 99.3 160.03
� 95.0 150.9

� 99.6 710.6
� 99.6 86.08

GNB � 97.1 31.121
� 89.5 28.15

� 98.2 118.89
� 98.0 24.469

F-KNN � 97.8 41.698
� 86.7 37.144

� 96.9 102.82
� 96.2 31.195

W-KNN � 97.5 46.199
� 89.2 37.639

� 97.2 102.66
� 97.4 30.797

Moreover, the confusion matrix for classifying grape plant diseases is also given in Fig. 6. The
values in Fig. 6 also prove the achieved results in which diagonal values show the True Positive Rates
(TPR). The attained TPRs of 99.5%, 99.6%, 100%, and 99.5% for the Black Rot, Black Measles, Leaf
Blight, and Healthy classes, respectively, exhibiting the proposed work’s effectiveness. The t-test-based
analysis results are added under Table 6.
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Figure 6: Confusion matrix for Grapes dataset

Table 6: t-test based analysis of grapes leaf dataset results

t-test Original Noise Fused Optimized

Classification Test-1 Test-2 Test-3 Test-4

C1 99.4 95.4 99.7 99.7
C2 97.1 86.7 96.9 96.2
|C1 − C2| 2.3 8.7 2.8 3.5

After calculation mean value obtained is μ = 4.325, standard deviation σ = 2.95789, value of t =
2.92438, degree of freedom N − 1 = 3, cumulative probability p = 0.05 and Range = −3.182, +3.182.

Hypothesis: Value of t = 2.92438 which lies in the range of −3.182, +3.182 of the two-tails test
table. It shows that our t-test passed because the difference between the classifiers is very small.

4.3 Citrus Fruit Dataset Result

Next, classification performance of the proposed approach in recognizing the Citrus fruit diseases
classification is presented. Accuracy and training time are the main statistical parameters used to
test the proposed methodology. Three classes of Citrus fruit datasets, namely black spot, canker,
greening, scab, and healthy, are considered for experimentation. The data is evaluated using 10-fold
cross validations using ten different classifiers in Table 7. The highest accuracy rate is achieved on the
Quadratic Support Vector Machine (Q-SVM), i.e., 99.7%, with a training time of 372.9 s. Medium
and wide neural network classifiers also performed well in less training time. The accuracy in the case
of citrus fruit is improved by using the fusion technique, i.e., features of original and noisy data are
fused, and then classifiers are implemented. Such model description improves the recognition power
of the proposed work. Further, the confusion matrix for the Citrus fruit is given in Fig. 7. It is quite
visible from Fig. 7 that diagonal values in the confusion matrix showing the TPR depicts the high
classification rate of the proposed approach. t-test results are given in Table 8.

After calculation mean value obtained is μ = 6.45, standard deviation σ = 3.39460, value of t =
3.80015, degree of freedom N − 1 = 3, cumulative probability p = 0.05 and Range = −3.182, +3.182.
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Table 7: Results attained for Citrus fruit
Classifiers Features Measures

Original Noise Fused Optimization Accuracy (%) Time (sec)

C-SVM � 99.3 118.8
� 95.9 189.8

� 99.6 468.9
� 99.5 84.809

Q-SVM � 99.1 102.67
� 95.2 172.69

� 99.7 372.9
� 99.5 70.814

M-NN � 98.7 24.692
� 94.3 55.474

� 99.2 71.724
� 98.8 23.595

ES-KNN � 99.1 1274.8
� 95.0 748.72

� 97.9 1912
� 98.1 414.46

LDA � 98.8 39.911
� 92.8 46.576

� 99.4 184.86
� 99.1 32.924

W-NN � 98.9 33.136
� 94.0 44.169

� 99.2 85.114
� 99.1 29.167

ESDA � 98.4 248.72
� 92.7 408.0

� 99.7 1129.5
� 99.1 234.33

GNB � 88.1 53.698
� 76.7 69.179

� 94.4 195.65
� 93.4 61.611

F-KNN � 99.0 104.55
� 94.2 93.35

� 97.5 207.64
� 97.6 52.997

(Continued)
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Table 7 (continued)
Classifiers Features Measures

Original Noise Fused Optimization Accuracy (%) Time (sec)

W-KNN � 97.7 124.15
� 93.2 87.576

� 97.2 210.83
� 97.4 54.375

Figure 7: Confusion matrix for Citrus fruit dataset

Table 8: t-test analysis of Citrus fruit leaf dataset

t-test Original Noise Fused Optimized

Classification Test-1 Test-2 Test-3 Test-4

C1 99.3 95.9 99.7 99.5
C2 88.1 92.7 94.4 93.4
|C1 − C2| 11.2 3.2 5.3 6.1

Hypothesis: Value of t = 3.80015 which does not lie in the range of −3.182, +3.182 of the two-tails
test table. It shows that our t-test failed because the difference between the classifiers is higher than
the previous results.

4.4 Citrus Leaves Dataset Results

Next, an experiment is performed to validate the model’s effectiveness in recognizing the various
diseases from the leaves images of the citrus plant. The two main statistical parameters for evaluation
are accuracy and training time. In the case of Citrus leaves, five different classes, namely black spot,
melanoses, greening, canker, and healthy, are used to evaluate the proposed methodology. Performance
results for ten different classifiers are given in Table 9. The 10-fold cross-validations is employed on
the available dataset. As a result, the highest accuracy rate is achieved M-NN, i.e., 93.4%, with a
training time of 29.713 s for the fused feature set. Further, the confusion matrix for citrus plant leaves
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diseases is also given in Fig. 8. It is quite visible from Fig. 8 that diagonal values in the confusion
matrix showing the TPR indicate the high recognition power of the introduced model to differentiate
various abnormalities of the citrus plant leaves. Table 10 shows the analysis of the proposed accuracy.

Table 9: Results attained for Citrus plant leaves diseases

Classifiers Features Measures
Original Noise Fused Optimization Accuracy (%) Time (sec)

C-SVM � 88.1 11.32
� 72.3 14.15

� 92.1 39.013
� 91.1 18.513

Q-SVM � 89.1 8.9262
� 73.6 17.304

� 92.4 35.123
� 91.4 13.443

M-NN � 88.1 6.755
� 77.6 11.902

� 93.4 29.713
� 91.7 12.204

ES-KNN � 82.5 12.596
� 65.3 19.952

� 82.5 36.002
� 81.8 16.613

LDA � 87.8 6.2442
� 74.9 11.222

� 92.1 30.143
� 92.4 12.551

W-NN � 88.1 6.4439
� 75.9 13.715

� 90.1 39.451
� 91.1 12.302

ESDA � 88.8 18.354
� 76.9 32.502

� 91.7 65.863
� 92.1 27.418

GNB � 86.1 20.339
� 70.0 37.16

� 86.1 95.087
� 84.8 38.865

F-KNN � 79.2 7.4512
� 62.0 15.22

� 77.9 40.463
� 72.9 15.684

(Continued)
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Table 9 (continued)
Classifiers Features Measures

Original Noise Fused Optimization Accuracy (%) Time (sec)

W-KNN � 80.5 8.071
� 63.0 15.338

� 76.9 40.246
� 81.8 15.515

Figure 8: Confusion matrix for Citrus leaves dataset

Table 10: t-test analysis of citrus leaf dataset results

t-test Original Noise Fused Optimized

Classification Test-1 Test-2 Test-3 Test-4

C1 89.1 77.6 92.4 92.4
C2 79.2 62.0 76.9 72.9
|C1 − C2| 9.9 15.6 15.5 19.5

After calculation mean value obtained is μ = 15.15, standard deviation σ = 3.95010, the
value of t = 7.67069, degree of freedom N − 1 = 3, cumulative probability p = 0.05 and Range
= −3.182, +3.182.

Hypothesis: Value of t = 7.67069 which does not lie in the range of −3.182, +3.182 of the two-tails
test table. It shows that our t-test failed because of the reason that the difference between the classifiers
is higher.

4.5 Comparison

Here, a comparison for all three fruit plants, namely apple, Citrus, and grapes, is performed with
new approaches that attempt to solve the same problem. The attained comparison is given in Table 11.
Sun et al. [45] presented a CNN-based model for classifying common apple diseases. Experimental
results show 83.12% classification accuracy, depicting the model’s efficiency and accurate disease
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classification. Gu et al. [30] presented an improved CNN-based model for accurately classifying
commonly occurring apple diseases. Badjie et al. [46] presented a framework for grape disease
classification and obtained an accuracy rate of 97.75% after the experimentation. Paymode et al. [47]
proposed a Convolutional Neural Network based Visual Geometry Group (VGG) model and obtained
the highest accuracy value of 99.7%. Tiwari et al. [48] discussed automatic plant leaves detection
using Deep Convolutional Neural Networks (DCNN). Elaraby et al. [49] discussed the difficulties
observed during the manual detection of plant diseases because only plant pathologists can classify
diseases with the naked eye, which is also sometimes a complex task. They used AlexNet and VGG-
19, two pre-trained models, for accurate classification and obtained an accuracy of 99.7%. Syed-Ab-
Rahman et al. [31] presented a faster R-CNN two-stage CNN-based model and obtained 94.37%
accuracy. Khattak et al. [50] presented a CNN-based model and achieved 94.55% accuracy. In the
proposed framework, the obtained accuracy of 100%, 99.7%, 99.7%, and 93.4% for Apple, Grapes,
Citrus fruits, and Citrus leaves datasets, respectively. Moreover, the visual analysis is conducted
through Grad-CAM visualization, as shown in Fig. 9. From this figure, it is clearly observed that
the proposed framework diagnosis of disease region is well and also shows the importance of better
trained deep models.

Table 11: Comparison with new approaches

Reference Year Fruit Accuracy (%)

Sun et al. [45] 2021 Apple 83.12
Gu et al. [30] 2022 Apple 98.83

Proposed Apple 100

Badjie et al. [46] 2022 Grapes 97.75
Paymode et al. [47] 2022 Grapes 98.40

Proposed Grapes 99.7

Tiwari et al. [48] 2021 Citrus (Fruit) 99.199
Elaraby et al. [49] 2022 Citrus (Fruit) 94

Proposed Citrus (Fruit) 99.7

Syed-Ab-
Rahman et al. [31]

2022 Citrus (Leaves) 94.37

Khattak et al. [50] 2021 Citrus (Leaves) 94.55

Proposed Citrus (Leaves) 93.4
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Figure 9: Grad-CAM based visualization of the proposed framework

5 Conclusion

Using the concept of feature fusion with key point optimization, an automated method for
classifying diseases of three different types of fruits is provided in this study. All three fruit categories’
photos are first gathered and given original data names. After that, numerous artifacts are added to
the original dataset and given the moniker “noisy data.” Transfer learning is then utilized to apply the
EfficientNet-B0 Deep Convolutional Neural Network model to the original and noisy data, comput-
ing representative and non-redundant features later fused to obtain features from both the original
and noisy data. Finally, employing a variety of classifiers, including the Medium Neural Network,
Wide Neural Network, Support Vector Machine, and others, the PFA optimization technique creates
a collection of optimized features that are then categorized. As a result, it is observed that the suggested
fusion technique boosts processing effectiveness while improving prediction performance.

Additionally, the optimization stage helps shorten testing times while keeping classification
accuracy. Future researchers will propose a CNN-based model and recommend Bayesian optimization
to optimize the model hyperparameters. Additionally, a few effective learning strategies and fresh
keypoint nomination methods will be used.
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