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ABSTRACT

Deep learning (DL) plays a critical role in processing and converting data into knowledge and decisions. DL
technologies have been applied in a variety of applications, including image, video, and genome sequence analysis.
In deep learning the most widely utilized architecture is Convolutional Neural Networks (CNN) are taught
discriminatory traits in a supervised environment. In comparison to other classic neural networks, CNN makes
use of a limited number of artificial neurons, therefore it is ideal for the recognition and processing of wheat gene
sequences. Wheat is an essential crop of cereals for people around the world. Wheat Genotypes identification
has an impact on the possible development of many countries in the agricultural sector. In quantitative genetics
prediction of genetic values is a central issue. Wheat is an allohexaploid (AABBDD) with three distinct genomes.
The sizes of the wheat genome are quite large compared to many other kinds and the availability of a diversity
of genetic knowledge and normal structure at breeding lines of wheat, Therefore, genome sequence approaches
based on techniques of Artificial Intelligence (AI) are necessary. This paper focuses on using the Wheat genome
sequence will assist wheat producers in making better use of their genetic resources and managing genetic variation
in their breeding program, as well as propose a novel model based on deep learning for offering a fundamental
overview of genomic prediction theory and current constraints. In this paper, the hyperparameters of the network
are optimized in the CNN to decrease the requirement for manual search and enhance network performance using
a new proposed model built on an optimization algorithm and Convolutional Neural Networks (CNN).
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1 Introduction

Cultivated crops must be increased to meet the world’s population’s food, feed, and fuel demand
projected at more than 9 billion by 2050 [1]. One in nine people currently finds themselves living
under food insecurity [2]. With limited opportunities to expand farming on existing land, increasing
yields could dramatically reduce the number of people at risk of starvation [3]. Given the need to
increase crop production by 50 percent by 2050 [4], our current yield levels are inadequate to achieve
this target [5]. Therefore, it is necessary and urgent to find ways to boost crop productivity, such as
by genetically modifying cultivars and improving agricultural practices [6,7]. The plant sector is the
center of many countries’ production. Growing plant typically has special features, such as habits,
morphology, and economic value. According to statistics, several plants are registered and named
worldwide [8]. We apply genomic prediction techniques in the plant recognition and identification
study to make this industry successful. New approaches and techniques in the detection of plant
diseases are being employed in the Genomic processing industry. Therefore, in recent years, researchers
have become involved in the detection of plant diseases by using genomic processing technology for
their importance and effect on farming’s future. However, the prediction of the wheat gene is a new
problem in machine learning. Through this method, the goal is to achieve a perfect model for wheat
gene expression.

2 Related Work

Deep learning is developing into a strong form of machine learning, which benefits both the
outstanding computational resources and the very large available datasets [9]. The need to specifically
define which features to use or use for data analysis is bypassed by deep learning. Deep learning then
optimizes a robust end-to-end cycle by mapping data samples to outputs compatible with the large
identified network training data sets. The CNNs practice this end-to-end mapping for image processing
activities, by optimizing several layers of filters. The first filters are interpreted simply as low-level
image features (e.g., borders, bright spots, color variations), and the subsequent layer combinations are
more and more complex. CNN greatly outperforms all current alternative methods for image analysis
where adequate training is given. Results improved from 84.6 percent in 2012 [10] to 96.4 percent in
2015 [11] with benchmark-classification tasks attempting to determine which one thousand different
objects are pictures.

Machine Learning technology have be used in a lot of applications in recent years, including image
processing. CNN as indicated in [12] is the most common architecture and is primarily used in deep
analysis. The CNN is equipped with discriminatory learning features by supervised means. In contrast
to other conventional neural networks, CNN utilizes a few artificial neurons that make it suitable
for image detection and processing. On the other hand, for training phases, CNN needs a broad
sample number. CNN also has hyperparameters and a wide range of special architectures that are
considered expensive and difficult to identify manually such as optimum hyperparameters [13]. We are
responsive to the planning, which dramatically impacts CNN efficiency, of certain hyperparameters.
Moreover, the hyperparameters for each dataset have to be modified because the over-parameters are
different from one dataset to another. The correct values for hyperparameters for a certain dataset are
calculated by trial and error since a math format is not given to manually change the hyperparameters.
Selecting hyperparameter values requires detailed data that forces non-experts to use a random search
or a grid seeking to find the better hyperparameters, which achieve the best performance of CNN. In
[14], they used six deep neural networks and machine learning techniques to investigate and exploit
the methylation patterns of the Chinese spring bread wheat cultivar in order to identify differentially
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expressed genes (DEGs) between leaves and roots. Genes with increased terms at leaves were mostly
engaged in pigment and photosynthesis production activities, as expected, whereas genes with no
difference in expression amidst leaves and roots were mostly implicated in protein processing and
diaphragm structures. In [15], they used this study to see how well the DL model worked in the
spring wheat breeding programme at Washington State University. They compared and evaluated
the execution of two DL techniques, the convolutional neural network (CNN) and the multilayer
perceptron (MLP), ridge retraction better linear equitable predictor (rrBLUP), which is a popular GS
model. They used the nested association mapping (NAM) for the Spring wheat many seeded from the
2014–2016 growth seasons yielded 650 recombinant inbred lines (RILs). They used cross-validations
(CVs), alternative sets, and independent validations of SNP markers, they made predictions for five
various quantitative variables using various genetic architectures. Hyperparameters for models of DL
were adjusted by decreasing the root average square in the training dataset and employing dropout
and regularization to avoid model overfitting.

In [16], they used R-CNN Faster to verify the spike number by using the dataset for high-density
wheat 660K SNP array. They achieved an accuracy of 86.7%. They approve that the R-CNN Faster
model is faster and has a high accuracy that may be applied to genetic investigations of SN in wheat.

3 Deep Learning Principles

A standardized DL architecture consists of a mixture of multiple “neurons” layers. In the 50s, with
a prominent “perceptron” of Rosenblatt, the idea of a nerve network was proposed, inspired by the
activity of the brain [17]. In the past decade, the DL resurgence was focused on the development of
powerful algorithms which can be used in complex network parameters containing multiple layers
of neurons (e.g., backpropagation) [18] and on the fact that they surpass current algorithms in
various automated recognizing functions like picture checking [19]. Deep learning is an area of many
specific jargon terms, which means that some of the most crucial terms are defined in Fig. 1 to make
understanding easier for an inexperienced user.

Figure 1: Multistage perceptron (MLP)

Fig. 1 Multistage perceptron (MLP) graph displaying the feedback of the simple “Neuron” with
n inputs and four hidden layers of single nucleotide polymorphisms (SNPs). The linear combinations’
nonlinear transformations (xi, wi, and biases b) all culminate in a single neuron, where xi represents
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the neuron’s i input, wi represents a weight connected by input i, and b represents a time-invariant
alignment level.

The linear combinations’ nonlinear transformations (xi, wi, and biases b) all culminate in a single
neuron, where xi represents the neuron’s i input, wi represents a weight connected by input i, and b
represents a time-invariant alignment level.

3.1 Deep Learning Architectures

Although all DL techniques generally use stacked neuron layers, they do also include a large
architecture. The most prevalent ones are convolutional neuro-networks (CNN), multilayer perceptron
(MLP), generative opposing networks (GANs), and recurrent neural networks (RNNs). These are
listed in effect, although the reader should be aware of various additional options [20].

The multi-layer perceptron network (MLP) consists of a set of completely connected layers named
hidden and input layers (see Fig. 2) and is one of the most common DL architectures. The first layer
receives SNP genotypes (x) feedback in the sense of genomic prediction [21], while the initial layer’s
output is a weighted, non-linear function of all feedback plus a “bias”. Then the first output layer is
shown in Eq. (1):

z(1) = b0 + W(0)f (0)(x) (1)

When x includes each individual’s genotypes, b is considered a “bias” and is measured along with
the remaining weights W0 and f is a nonlinear function (activation function available on Keras). The
same term is used in successive layers so that the neuron’s inputs of a certain layer are the outputs of
the preceding layer z(k−1):

z(k) = bk + W(k−1)f (k−1)(z(k−1)) (2)

Figure 2: Total view of 1D fully convolutional SNP-matrix neural network

The final layer generates a number matrix, whether the goal is a true phenotype, or if the goal
is a class (i.e., a problem with classifying) an array of probabilities for each point. Although MLPs
constitute a powerful strategy for managing classification or regression issues, they are not the perfect
way to handle space or time sets [22]. In latest years, other methods of DL have been suggested in
order to deal with these challenges, such as recurrent neural networks, deep generative networks, or
convolutional neural networks.
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Input variables have been spread in accordance with space models with one dimension (for
example, SNPs or text) and two or three dimensions (for example, images), to conform to the
circumstances of the implementation of neural networks. CNN’s have been introduced. CNN is a
particular type of neural network that uses convolution in hidden layers rather than of full matrix
reproduction [23]. A CNN consists of thick layers and “convolutional layers” that are fully connected
(Fig. 2). An overall operation as well as the input of predetermined width and steps are done in every
convolutionary layer. A ‘kernel’ or ‘buffer’ is a collection of convolutional processes that functions
similarly to a ‘neuron’ in an MLP [24].

After each convolution, the output is generated using an activation function. Finally, the results
are frequently evened out through a “pooling” method. The kernel outputs of the various positioning
positions are combined by using all values of those positions on average, maximum, or minimum.
Its capability to which the amount of parameters to be determined is one of the main advantages of
convolution networks. These networks have already restricted connections and are translations similar.
Fig. 3 provides an example of a one-dimensional (1D) kernel convolution with a scale of 3K [25].

Figure 3: Simple one-dimensional (1D) operation scheme

3.2 Convolutional Neural Network

The CNN is so good at categorizing simple patterns in data, it might be utilized to build additional
complicated patterns during higher layers. CNNs are a specific type of multilayer neural network.
It is trained using the backpropagation algorithm, which is used by practically all other neural
networks. CNN’s architecture sets it apart from the competition. In a CNN design, there are input
layers, numerous hidden levels, and output layers. The hidden layer is made up of pooling layers,
Convolutional layers, and fully connected layers [26].

The input data is received by the convolution layer, which applies a filter to it, essentially, the input
data is multiplied by the kernel to generate the adjusted output data. A convolution layer subsampling
method is the Pooling layer. The goal is to reduce the number of dimensions. An input layer serves as
the first layer in the proposed CNN algorithm used in this study. The second layer makes up a one-
dimensional convolution layer with three kernel sizes, a 30 filter, and RELU activation. The third layer
is the max pooling layer, with two pool sizes. The next layer is a completely connected layer with the
ability to activate RELU.

Finally, the output layer is made up of a single sigmoid activation in a neuron. The ADAM
optimizer is applied for learning, as a cost function with binary cross-entropy.
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3.3 Recurrent Neural Network

RNN is the only algorithm with internal memory. Therefore, it is a very powerful and reliable
algorithm, the RNN is incredibly powerful since it is still the only algorithm with internal memory.
The internal memory of the RNN allows the algorithm to recall and research critical information
about the input it receives; this ability allows the program to predict what will happen next with great
accuracy [27]. The information in an RNN loops back on itself. As demonstrated in Fig. 4, it considers
the current input as well as what it has learned from previous inputs before making a decision.

Figure 4: Recurrent neural network

This study employs a simple RNN layer, with the output being fed back into the input. The simple
RNN layer is used to apply the RELU activation function. A sigmoid activation algorithm was also
employed for the output layer. For learning, the ADAM optimizer is employed, and as a cost function,
binary cross-entropy is used.

4 The Proposed Approach

In this section, the dataset used to implement the proposed approach is first described, then the
details of the approach proposed are explained.

4.1 Dataset Description

The data for this study is from the Global Wheat data set, which is open to the public [28]. The
original genotypic data consisted of 73,345 polymorphic markers anchored to the Chinese Spring Ref
Seqv1 map. Before filtering the genotypic data, RILs with lacking phenotypic data in a single setting
were deleted. SNP markers having a missing data rate of higher than 20%, minor allele frequencies
of less than 0.10, and RILs with more than 10% genotypic data were also eliminated, leaving 40,000
SNP and 635 RILs markers for analysis. Using 635 RILs and 40,000 SNP markers, The demographic
structure of the 26 NAM families was investigated using principal component analysis (PCA).

4.2 The Proposed Approach for Classification of Wheat Gene Expression

The solution suggested is an incredibly effective way of optimizing the efficiency of the CNN
network by the incorporation of the terminals of two pre-trained CNN networks. In fact, the model’s
hyperparameters are designed such that each model performs better. As seen in Fig. 5, the proposed
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algorithm steps will be summed up in four main stages, i.e., (a) stage planning details, (b) stage
optimization hyperparameters, (c) learning stage, (d) evaluation stage. The following parts explain
additional descriptions for every point.

Figure 5: The proposed approach block diagram

The Multilayer Perceptron (MLP) with numerous hidden layers is an excellent example of a
model with a deep architecture. On huge data, the most recent deep learning algorithm has overcome
generalization, training stability, and scale are all issues that need to be addressed. Deep learning
algorithms are typically the algorithm of choice for reliable forecast accuracy, and they perform well
in a wide range of problems. There are several theoretical frameworks for deep learning, and we adopt
the feedforward architecture in this study [29].

MLPs are feedforward neural networks with an architecture consisting of three layers: input,
hidden, and output, as shown in Fig. 1. Neurons are little particles that make up each layer. The
neurons in the input layer receive the input data X and forward it to the next layer of the network.
The following layer, the hidden layer, receives input from each neuron; these data are a weighted total
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of the neuron’s outputs from the preceding layer. Each neuron uses an activation function to govern
the input. A nonlinear mapping of an output vector to an input vector is created by this network, with
weights (the vector of weights) as the parameters (W). The initial phase is to select the parameters
of weight for the model and determine the MLP’s right structure, which is dictated by the number
of neurons and hidden layers, as well as the number of output and input variables and the kind of
activation function. Second, using the training data derives the weight parameters. The training selects
the proper weight vector W to ensure that the output is as close to the aim as possible [30].

Our suggested MLP approach includes input layers, four hidden layer, and one neuron output
layer. Except for the output layers, all levels utilize the rectified linear unit (RELU) activation
function, which utilizes the non-linearity sigmoid activation function. The MLP model is trained using
the backpropagation algorithm. ADAM: For the learning algorithm, a stochastic gradient descent
optimizer was employed, with binary cross entropy as a cost function [31–35].

4.3 Improving DNN by Applying Dropout

Dropout is a model improvement strategy that prevents the model from overfitting. Dropout refers
to the process of removing nodes from a neural network. Excluding a node means tentatively removing
it from the network, together with all of its incoming and outgoing connections. The nodes are dropped
out at random. As can be seen in Fig. 6. The dropout strategy was used in our proposed MLP model
with a 20% dropout rate for all hidden layers, and the results were significantly better for our dataset.

Figure 6: MLP with dropout

5 Experiments and Result

The protein interaction network was mapped to the gene expression levels from our dataset. Each
time, 95 samples were used as testing data and 285 samples were used as training data to train the
convolutional neural network architecture. There were 60 epochs in total. Then, by 95 samples (4 × 95
= 380) and k = 4, we rank-fold cross-validation (CV). The selecting test data were then randomized to
a 10-time process of randomization, after which the average value for the following machine learning
metrics—accuracy, specificity, recall (sensitivity), and precision—was calculated. These matrices show
the relationship between correctly and incorrectly predicted outcomes. TN (True Negative), TP (True
Positive), FN (False Negative), and FP (False Positive) are the four categories in the confusion matrix.
which were defined as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

recall = TP/(TP + FN) (4)

precision = TP/(TP + FP) (5)
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specificity = TN/(TN + FP) (6)

The size and number of convolutional filters, as well as the number and size of convolutional
layers and hidden layers, were all examined in various combinations. With the architecture, the best
outcomes were obtained. Table 1 shows that with our sample, with a mean accuracy of 99.4%, the
improved DNN was the most accurate, followed by DNN with 98.2% and 97.5% for CNN and RNN,
respectively.

Table 1: Comparison of classification accuracy results with the improved DNN, DNN, RNN, and
CNN

Epoch number Improved DNN DNN RNN CNN

Epoch 1 99.1 98.1 97.5 97.4
Epoch 2 99.3 98.3 97.4 97.3
Epoch 3 99.4 98.0 97.2 97.5
Epoch 4 99.0 98.2 97.3 97.4
Epoch 5 98.9 98.3 97.6 97.1
Epoch 6 99.0 97.98 97.4 97.5
Epoch 7 98.8 97.99 97.3 97.4
Epoch 8 99.4 98.0 97.5 97.3
Epoch 9 99.3 98.1 97.1 97.2
Epoch 10 99.2 98.2 97.4 97.4

Overall, the improved DNN algorithm can be observed that attained maximum accuracy in this
study’s dataset. There were 100 epochs in total. Fig. 7 shows the curves of the high-accuracy model
discovered by Improved DNN on the convex dataset for 100 epochs when compared to DNN, RNN,
and CNN models. We can see that accuracy of our models have improvement when compared to other
models, implying that the Improved DNN is actually capable of identifying perfect models for a given
dataset.

Figure 7: The comparison results
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The performance results based on the three matrices (Accuracy, specificity, and precision) are
shown in Table 2. Accuracy, specificity, and precision have respective means of 99.4%, 98.64%, and
91.85%.

Table 2: Results respective Accuracy, specificity, and precision

Models Accuracy Specificity Precision

Improved DNN 99.4 98.64 91.85
DNN 98.2 97.8 89.9
RNN 97.5 97.1 89.96
CNN 97.5 97.2 89.5

Fig. 8 shows the curves of the performance results based on the three matrices (Accuracy,
specificity, and precision) when compared to DNN, RNN, and CNN models. We can see that accuracy
of our models, specificity, and precision have improved when compared to other models.

Figure 8: The comparison results (Accuracy, specificity, and precision)

6 Conclusion

In this paper, we have presented a novel deep learning-based model which improves DNN by
applying the dropout model to classify Wheat gene expressions. In addition to, the deep learning
algorithms CNN, DNN, and RNN, and the proposed model are implemented for the classification of
gene expression data. Moreover, the outliers and noisy data are addressed, by using a pre-processing
methodology for all features of gene expression, after that we trained all of our models individually
using a perfect framework and learning method. Finally, our learned models are applied to testing
data to classify it. For all of the datasets studied, the Improving-DNN outperformed other models in
accuracy terms from the result illustrated our Improving-DNN has a high accuracy of 99.4%, while
DNN has 98.2% accuracy, RNN and CNN have 97.5% accuracy. Therefore, the Improving-DNN
model is actually more appropriate for solving the wheat gene expression dataset.



CSSE, 2024, vol.48, no.2 283

Acknowledgement: This research was supported by Korea Institute for Advancement of Technology
(KIAT) grant funded by the Korean government, the National Research Foundation of Korea, and
the Soonchunhyang University Research Fund.

Funding Statement: This research was supported by Korea Institute for Advancement of Technology
(KIAT) grant funded by the Korea Government (MOTIE) (P0012724, The Competency Development
Program for Industry Specialist), the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. RS-2023-00218176), and the Soonchunhyang University Research
Fund.

Author Contributions: Conceptualization, A.I., M.A.; methodology, A.I., W.H., M.A.; software,
A.M.A., W.A.A., A.I.E., M. A.; validation, A.I., Y.N. and M.A.; formal analysis, B-G.K., W.H.,
A.M.A. and M.A.; investigation, A.I., W.A.A. and M.A.; resources, A.I., A.I.E. and W.H.; data
curation, A.I., W.A.A. and M.A.; writing—original draft preparation, A.I., W.H. and M.A.; writing—
review and editing, A.M.A., A.I.E., Y.N., B-G.K. and M. A.; visualization, A.I., A.M.A., M.A. and
W.H.; supervision, W.A.A.; funding, Y.N., B-G.K.; project administration, A.I., A.M.A. and M.A. All
authors have read and agreed to the published version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, B-G.K., upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] U. N. Desa, World population prospects 2019: Highlights, vol. 11, no. 1. New York, USA: United Nations

Department for Economic and Social Affairs, pp. 125, 2019.
[2] S. McGuire, “FAO, IFAD, and WFP. The state of food insecurity in the world 2015: Meeting the 2015

international hunger targets: Taking stock of uneven progress. Rome: FAO,” Advances in Nutrition, vol. 6,
pp. 623–624, 2015.

[3] M. W. Rosegrant, S. Tokgoz, P. Bhandary and S. Msangi, “Looking ahead: Scenarios for the future of food.
2012 global food policy report. IFPRI. Washington,” International Food Policy Research Institute (IFPRI),
vol. 4, no. 3, pp. 1–15, 2013.

[4] D. Tilman, C. Balzer, J. Hill and B. L. Befort, “Global food demand and the sustainable intensification of
agriculture,” in Proc. of the National Academy of Sciences, vol. 108, no. 50, pp. 20260–20264, 2011.

[5] D. K. Ray, N. D. Mueller, P. C. West and J. A. Foley, “Yield trends are insufficient to double global crop
production by 2050,” PLoS One, vol. 8, no. 6, pp. e66428, 2013.

[6] H. Spiertz, “Avenues to meet food security. The role of agronomy on solving complexity in food production
and resource use,” European Journal of Agronomy, vol. 43, no. 5, pp. 1–8, 2012.

[7] J. L. Araus, R. Park, D. Calderini, D. Miralles, T. Shen et al., “Prospects of doubling global wheat yields,”
Food and Energy Security, vol. 2, no. 1, pp. 34–48, 2013.

[8] W. Hamdy, A. Ismail, W. A. Awad, A. H. Ibrahim and A. Hassanien, “A support vector machine model
for rice (Oryza sativa L.) leaf diseases based on particle swarm optimization,” in Artificial Intelligence: A
Real Opportunity in the Food Industry. Cham: Springer, pp. 45–54, 2023.

[9] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
[10] A. Elaraby, W. Hamdy and M. Alruwaili, “Optimization of deep learning model for plant disease detection

using particle swarm optimizer,” Computers, Materials & Continua, vol. 71, no. 2, pp. 4019–4031, 2022.
[11] J. R. Ubbens and I. Stavness, “Corrigendum: Deep plant phenomics: A deep learning platform for complex

plant phenotyping tasks,” Frontiers in Plant Science, vol. 8, no. 12, pp. 2245, 2018.



284 CSSE, 2024, vol.48, no.2

[12] A. Elaraby, W. Hamdy and S. Alanazi, “Classification of citrus diseases using optimization deep learning
approach,” Computational Intelligence and Neuroscience, vol. 2022, no. 10, pp. 9153207–9153212, 2022.

[13] N. Ni and S. Xu, “Model optimization strategies based on deep neural networks Learning and application
of pruning optimization algorithms,” Journal of Physics: Conference Series, vol. 2303, no. 1, pp. 012033,
2022.

[14] A. N. Diaye, B. Byrns, A. T. Cory, K. T. Nilsen, S. Walkowiak et al., “Machine learning analyses of
methylation profiles uncovers tissue-specific gene expression patterns in wheat,” The Plant Genome, vol.
13, no. 2, pp. e20027, 2020.

[15] K. S. Sandhu, D. N. Lozada, Z. Zhang, M. O. Pumphrey and A. H. Carter, “Deep learning for predicting
complex traits in spring wheat breeding program,” Frontiers in Plant Science, vol. 11, no. 4, pp. 613325–
613335, 2021.

[16] L. Li, M. A. Hassan, S. Yang, F. Jing, M. Yang et al., “Development of image-based wheat spike counter
through a Faster R-CNN algorithm and application for genetic studies,” The Crop Journal, vol. 12, no. 3,
pp. 1–12, 2022.

[17] P. Matteo, “Machines that morph logic: Neural networks and the distorted automation of intelligence as
statistical inference,” Glass Bead, vol. 1, no. 1, pp. 25–36, 2017.

[18] L. B. Balzer and M. L. Petersen, “Invited commentary: Machine learning in causal inference-how do I love
thee? Let me count the ways,” American Journal of Epidemiology, vol. 190, no. 8, pp. 1483–1487, 2021.

[19] I. H. Sarker, “Deep learning: A comprehensive overview on techniques, taxonomy, applications and
research directions,” SN Computer Science, vol. 2, no. 6, pp. 420, 2021.

[20] G. Jing, P. Li, Z. Chen and J. Zhang, “A survey on deep learning for multimodal data fusion,” Neural
Computation, vol. 32, no. 5, pp. 829–864, 2020.

[21] G. R. T. de Lima and G. B. Scofield, “Feasibility study on operational use of neural networks in a flash
flood early warning system,” Revista Brasileira de Recursos Hídricos, vol. 26, no. 2, pp. 1–10, 2021.

[22] J. M. Silva, A. Figueiredo, J. Cunha, J. E. Dias, S. Silva et al., “Using rapid chlorophyll fluorescence
transients to classify vitis genotypes,” Plants (Basel), vol. 9, no. 2, pp. 174–189, 2020.

[23] M. Mostavi, Y. C. Chiu, Y. Huang and Y. Chen, “Convolutional neural network models for cancer type
prediction based on gene expression,” BMC Medical Genomics, vol. 13, no. 5, pp. 1–13, 2020.

[24] S. D. O’Donovan, K. Essens, D. Lopatta, F. Wimmenauer, A. Lukas et al., “Use of deep learning methods
to translate drug-induced gene expression changes from rat to human primary hepatocytes,” PLoS One,
vol. 15, no. 8, pp. e0236392, 2020.

[25] H. Lahmer, A. E. Oueslati and Z. Lachiri, “Classification of DNA microarrays using deep learning to
identify cell cycle regulated genes,” in 5th Int. Conf. on Advanced Technologies for Signal and Image
Processing (ATSIP), Sousse, Tunisia, pp. 1–5, 2020.

[26] B. He, L. Bergenstrahle, L. Stenbeck, A. Abid, A. Andersson et al., “Integrating spatial gene expression and
breast tumour morphology via deep learning,” Nature Biomedical Engineering, vol. 4, no. 8, pp. 827–834,
2020.

[27] O. Ahmed and A. Brifcani, “Gene expression classification based on deep learning,” in 4th Scientific Int.
Conf. Najaf (SICN), Najaf, Iraq, pp. 145–149, 2019.

[28] K. W. Jordan, S. Wang, F. He, S. Chao, Y. Lun et al., “The genetic architecture of genome-wide
recombination rate variation in allopolyploid wheat revealed by nested association mapping,” The Plant
Journal: For Cell and Molecular Biology, vol. 95, no. 6, pp. 1039–1054, 2018.

[29] W. Hamdy, A. Darwish and A. E. Hassanien, “Artificial intelligence strategy in the age of COVID-19:
Opportunities and challenges,” in Digital Transformation and Emerging Technologies for Fighting COVID-
19 Pandemic: Innovative Approaches. Cham: Springer International Publishing, pp. 81–93, 2021.

[30] Y. C. Chiu, H. Chen, T. Zhang, S. Zhang, A. Gorthi et al., “Predicting drug response of tumors from
integrated genomic profiles by deep neural networks,” BMC Medical Genomics, vol. 12, no. 1, pp. 18–155,
2019.



CSSE, 2024, vol.48, no.2 285

[31] H. Wang, R. Liu, P. Schyman and A. Wallqvist, “Deep neural network models for predicting chemically
induced liver toxicity endpoints from transcriptomic responses,” Frontiers in Pharmacology, vol. 10, no. 4,
pp. 42, 2019.

[32] M. Abouhawwash, K. Deb and A. Alessio, “Exploration of multi-objective optimization with genetic
algorithms for PET image reconstruction,” Journal of Nuclear Medicine, vol. 61, no. 1, pp. 572, 2020.

[33] M. Kumar, K. Venkatachalam, M. Masud and M. Abouhawwash, “Novel dynamic scaling algorithm for
energy efficient cloud computing,” Intelligent Automation & Soft Computing, vol. 33, no. 3, pp. 1547–1559,
2022.

[34] G. Ravikumar, K. Venkatachalam, M. A. AlZain, M. Masud and M. Abouhawwash, “Neural cryptog-
raphy with fog computing network for health monitoring using IoMT,” Computer Systems Science and
Engineering, vol. 44, no. 1, pp. 945–959, 2023.

[35] K. S. Bhuvaneshwari, J. Uma, K. Venkatachalam, M. Masud, M. Abouhawwash et al., “Gaussian support
vector machine algorithm based air pollution prediction,” Computers, Materials & Continua, vol. 71, no. 1,
pp. 683–695, 2022.


	A Novel Deep Learning-Based Model for Classification of Wheat Gene Expression
	1 Introduction
	2 Related Work
	3 Deep Learning Principles
	4 The Proposed Approach
	5 Experiments and Result
	6 Conclusion
	References


