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ABSTRACT

Technological advances in unmanned aerial vehicles (UAVs) pursued by artificial intelligence (AI) are improving
remote sensing applications in smart agriculture. These are valuable tools for monitoring and disease identification
of plants as they can collect data with no damage and effects on plants. However, their limited carrying and battery
capacities restrict their performance in larger areas. Therefore, using multiple UAVs, especially in the form of a
swarm is more significant for monitoring larger areas such as crop fields and forests. The diversity of research
studies necessitates a literature review for more progress and contribution in the agricultural field. In this review,
the comparative analysis of existing literature surveys is explored. This paper aims to provide an overview of AI-
based UAV swarms, different cameras and sensors, image processing, and machine learning (ML) algorithms for
image analysis having the purpose of monitoring and disease identification. Brassica plants are focused as they
are grown on wider scales globally. Brassica species, the commonly infected diseases, and different types of disease
detection methods are discussed. Investigations show the significance of using UAV swarms for growth monitoring
growth for yield estimation, health monitoring, water status monitoring and irrigation management, nutrition
disorders monitoring, pest and disease detection, and pesticide and fertilizer spraying in Brassica plants. Finally,
some challenges of swarm-based applications are also addressed that require future consideration. The significance
of this paper is that it suggests its readers embrace swarm-based technologies in the pursuit of more efficient
production with relevant economic benefits.
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1 Introduction

The core of many stable economies is highly dependent on the agricultural sector for sufficient
food stocks and its major contribution to a nation’s economy [1]. For example, Brassica plants
are grown on wider scales in many countries and have much importance in their agribusiness. This
importance can be observed by its huge variety of 37 species such as Chinese cabbage, field mustard,
canola or rapeseed, etc., and multiple uses like vegetables, salads, edible oil, condiment crops, remedies
for humans, and fodder for animals [2]. Because of their high production in European countries, they
are leading producers of vegetable oil and protein meals. Mustard and rape are widely grown after
cotton in Pakistan; therefore they contribute a lot to its GDP [3].

Protecting the countries from economic breakdown, monitoring, and disease detection of Brassica
plants are required. Brassica plants become infected due to seasonal climate changes, global environ-
mental chair variations, and cultivation processes. Alternaria Leaf Spot, Bacterial Wilt, Fire Blight,
Downy Mildew, Powdery Mildew, Blackspot, and blackleg are examples of fungal diseases in Brassica
plants. When a Brassica plant is infected by any of these diseases, it stops growing and ultimately
dies [4].

Earlier monitoring and disease identification were performed manually which was inaccurate,
time-consuming, and expensive. Later it was replaced by automation and evolving technology such
as artificial intelligence (AI), Internet-of-Things (IoT), etc. Moreover, the rapid development of
data acquisition modalities such as UAVs, high-technology remote sensors, and ML algorithms have
opened new perspectives for monitoring and disease identification. Especially UAV swarms offer
better protection of Brassica plants, sustainability, and optimize profitability [5]. Various Agritech
startups are providing services of drone-based monitoring and disease identification which reduces
the imports and boosts the exports of a country. UAVs are not only economically beneficial but also
environmentally friendly as they produce negligible or no pollution [6].

UAV swarms are equipped with remote optical cameras and sensors to provide high-resolution
images for appropriate disease diagnosis and monitoring of Brassica plants. The widely utilized sensors
are RGB (red, green, and blue), multispectral, hyperspectral, infrared thermal (IRT), and fluorescence
imaging cameras [7]. However, in some cases, UAV-generated images are blurred and may contain noisy
backgrounds. To remove such effects, various image processing steps such as image acquisition, image
restoration, image enhancement, image segmentation, feature extraction, and image classification are
applied. For analyzing images accurately, different supervised and unsupervised ML algorithms are
employed such as support vector machine (SVM) [8] and KNN [9]. Nevertheless, these methods do not
provide an ideal tradeoff between accuracy and time therefore deep learning (DL) is more significant in
this context as it can improve the trustworthiness and authenticity of the diagnosis and monitoring [10].

Monitoring, accurate identification of disease symptoms, and estimation of the disease’s severity
and effects are important not only for plant research but also for food security. Therefore, the main
purpose of this review paper is to promote applications of UAV swarms for effective monitoring
and early disease diagnosis of Brassica plants. For this purpose, we have plotted a framework while
exploring three research domains, UAV swarms, ML approaches, and Brassica plants as can be seen
in Fig. 1. The primary focus of this framework is from the perspective of integration of these three
domains. Research is widely pursued in isolation of all these domains; however, a review is not
conducted on the integration of all these domains which highlights the research gap. Therefore, the
novelty of this paper is to bridge the gap of lacking a survey that covers maximum research domains
for Brassica plants and UAV swarm-related technologies as shown in the next section.
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Figure 1: Review framework with the research focus

We searched articles in different databases, such as Science Direct, Google Scholar, SpringerLink,
SAGE Journals, IEEE Xplore, and Wiley Online Library Journal. In the advanced search section of
these database repositories, the period from 2018 to 2023 was selected. While plotting the framework
we ensured to include all the important studies. After selecting the first batch of research papers, their
related articles were also searched. To extract relevant articles, we read the abstract of all the retrieved
articles. The screening criteria include deleting non-English and duplicate papers. We included the
papers which were focused on optical sensors and machine learning approaches. We excluded the
papers which were focused on other remote sensing tools and sensors. This review is proposed for
farmers and researchers who are inclined to study Brassica plants and UAV swarms. The major
contributions of the paper include:

1. Comparative analysis with different existing literature surveys.
2. A comprehensive study on Brassica plants, their diseases, and disease detection methods.
3. Explanation of UAV swarm approach, remote sensing cameras and sensors, image processing,

and ML techniques with comparative analysis of other studies.
4. Applications of UAV swarms for Brassica monitoring and disease identification.
5. Examination of certain challenges regarding UAV swarm-based applications.

The layout of the paper has many sections in which Section 1 discusses the introduction, back-
ground, scope and contribution, and paper organization. Section 2 gives an insight into the existing
literature surveys and compares this work with them. Section 3 presents preliminaries of Brassica
plants, diseases, and symptoms, various disease detection methods, and cameras and sensors. Section 4
describes the UAV swarm approach by detailing the bio-inspired approach, swarm optimization, and
multi-UAV remote sensing. Section 5 discusses image analysis by explaining image processing and
ML algorithms. This section also explores various applications of UAV swarms for Brassica plants
and Section 6 evaluates the challenges of UAV swarms-based applications whereas Section 7 presents
the discussion and Section 8 concludes this paper. Section 9 suggests future work.

2 Existing Literature Surveys

Existing surveys show that UAVs remote sensing is widely employed for different research in
plants. The analysis evaluates the opportunities of using UAVs in monitoring plants for yield esti-
mation, health, water stress, and nutrition disorders along with disease detection, pest management,
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irrigation management, fertilizer, and pesticide spraying. All these survey papers discuss the usage of
UAVs with different technologies such as different image analysis techniques and different sensors. We
have discussed some existing literature surveys in this section that use UAVs for studying and analyzing
plants.

In [11], several types, deployment architectures, application areas, sensors, and research domains
of UAVs are evaluated. It also explains a comparative analysis of different kinds of UAVs, sensing
techniques, and architectures with their application in precision agriculture. Some challenges and
future research domains are also outlined. In [12], the monitoring and improvement of irrigation
farming are evaluated. Different monitoring and control techniques based on IoT technology and
systems of commercial irrigation are discussed. This review provides significant ways to ensure water
saving and optimize the energy required for irrigation leading to improvement in crop yield. In
[13], phenotyping of several abiotic and biotic stresses of different plants is discussed. Different
phenotyping platforms, imaging techniques, spectral indices, big data, and machine learning (ML)
techniques are explained. This review presents the potential advantages and limitations of different
high throughput phenotyping (HTP) platforms with ML and DL techniques. In the end, some
conceptual challenges along with future research directions are proposed. In [14], Chen et al. discussed
UAVs as potential tools for spraying. Some factors that affect the spraying performance are also
explained. Technologies such as remote sensing, spray drift models, and vibrate-rate approaches are
also evaluated that increases the application efficiency. This survey paper inspires the researchers to
adopt a combination of these stated technologies to improve aerial spraying in the future. In [15],
opportunities for UAV swarms for multiple missions are explored. Such as coordination for mapping
larger areas, leveraging several types of sensors, and targeting areas to inspect closely and identifying
and solving problems quickly. Different challenges and recent advances for swarm deployment are also
discussed. In [16], drone technology is suggested for the modernization of farms. It discusses different
UAV-based technologies with modifications such as modifications in structure, sensors, and spot area
spraying. It covers UAV applications for monitoring and spraying pesticides. Artificial intelligence (AI)
and DL techniques are also discussed. Table 1 presents a comparative analysis of this review paper with
other existing surveys. It shows that this work bridges the research gap by focusing on the maximum
research domains of plants and UAV-based technologies.

Table 1: Comparison of other existing literature surveys with this work in different focused research
areas of plants

Reference UAV-based tasks in focused research of plants UAV-based technology
Monitoring Irrigation

manage-
ment

Disease
detection

Pest man-
agement

Spraying Swarm Optical
sensor

Image
analysis
techniques

[11] � � � � � � �
[12] � � �
[13] � � � � � �
[14] � � � �
[15] � � � � � � �
[16] � � � �
This work � � � � � � � �
Table Legend: This table shows a comparison of this review paper with other review papers. It shows that our work is comprised of more
details related to UAVs. Monitoring, irrigation management, disease detection, pest management, and spraying are focused research for
UAV-based applications. Swarm, optical sensors, and image analysis using different techniques are UAV-related technology.
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3 Preliminaries

This section provides an initial overview of Brassica plants, diseases and symptoms, methods of
disease identification, and different cameras and sensors. A better understanding of these concepts
helped in planning this review as it is crucial to understand the parameters for interpreting the results
of a study in the desired way.

3.1 Brassica Plants

Brassica plants include bok choy, broccoli, cauliflower, cabbage, choy sum, kohlrabi, napa
cabbage, rutabaga, turnip, etc. Fig. 2 shows that several species and varieties are obtained from
different parts of Brassica Oleracea. For example, cabbage is obtained from terminal buds, brussels
sprouts are picked from lateral buds, kohlrabi is chosen from the stem, kale is obtained as leaves,
broccoli is picked from stems and flowers, and cauliflower is obtained from flower clusters. Brassica
chinensis, a leafy vegetable belonging to the mustard family, is very helpful to provide nutrition to
humans. Brassica plants are good sources of dietary fiber containing a high level of Vitamin A,
Vitamin C, Vitamin E, and Vitamin K, Iron, Calcium, Potassium, Phosphorus, and Folate as well
as glucosinolates. These plants have multiple uses from usage as raw materials for oil production to
usage as food. Usually, the growth of these plants is affected by multiple factors such as the quality of
soil, fertility, and environmental agronomic factor [17]. In a controlled environment, large varieties of
Brassica vegetables are monitored in plant factories.

Figure 2: Different parts of Brassica plants provide different species and varieties

3.2 Diseases and Symptoms

Fungi, viruses, and bacteria infect Brassica plants with different diseases [18]. Fig. 3 highlights
some of the common Brassica diseases such as (a) Clubroot (CR), (b) Blackleg (BL), (c) Stem Rot
(SR), (d) Turnip Mosaic Virus (TuMV), (e) Blackrot (BR), (f) Downy Mildew (DM), (g) Fusarium
Wilt (FW) and (h) Alternaria Leaf Spot (ALS). A detailed overview of these diseases is given below.
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Figure 3: Core diseases in Brassica are (a) Clubroot (CR), (b) Blackleg (BL), (c) Stem Rot (SR), (d)
Turnip Mosaic Virus (TuMV), (e) Blackrot (BR), (f) Downy Mildew (DM), (g) Fusarium Wilt (FW)
and (h) Alternaria Leaf Spot (ALS)

Turnip Mosaic Virus (TuMV) is the most existing viral disease of Brassica crops that has a
significant impact on production losses immensely [19]. Its symptoms are irregular lesions on leaves.
This disease was reported in B. rapa in the United States in 1921. Its life cycle is 3 to 4 days and it
is transmitted by aphid vectors. Control weeds and rotating crops may prevent Brassica from TuMV.
Blackrot (BR), a casual variant of Xanthomonas campestris pv, campestris (Xcc), is another existing
bacterial disease that affects the growth of Brassica crops [20]. Yellow to light brown patches at the
leaves signifies the presence of BR. This disease originated in the United States by Garman as a disease
of cabbage. It can stay up to 2 years and splashing rain and insects are the main transmission sources
of it. Using copper products may prevent plants from it. Blackleg (BL) or stem canker is a fatal
fungal disease for the Brassica crops affected by Leptosphaeria maculans (Lm) reported on cabbage
in Wisconsin [21]. Its symptoms are light brown lesions with a purplish outline having pinhead-sized
black dots. These lesions are linear and irregularly distributed and the period of this disease is 2
years. BL is usually transmitted by skin wounds and contaminated needles or injection equipment.
Vaccination of all calves at an early age may prevent this disease.

Stem Rot (SR) is another prevailing fungal disease caused by Sclerotinia sclerotiorum (Ss), which
affects enormously the Brassica crops [22]. Rapid yellowing and wilting are the significant symptoms.
SR was reported in 1837 as a pathogen and now exists worldwide. SR has a life cycle of 1 year
and is transmitted field to the field by air-borne spores. Minimizing the carryover inoculum level
may keep Brassica plants safe from SR disease. Fusarium Wilt (FW) is another fatal fungus disease
caused by the Fusarium oxysporum conglutinans (Foc). Yellowing, stunting, and death of seedlings
and yellowing and stunting of older plants identify the presence of FW. Smith in the United States
identified this plant disease in 1895 specifically in cabbage [23]. FW can stay up to 5 to 10 years and
most often enter through root wounds caused by cultivation or by nematode feeding. Using resistant or
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tolerant cultivars is a preventive measure. Downy Mildew (DM) is also a fungus and foliar fatal disease
of Brassica crops and is considered a casual variant of the oomycete pathogen Hyaloperonospora
brassicae (Hb). Yellow spots start appearing on the leaves if DM has affected the leaves [24]. DM can
stay in Brassica for 7 to 10 days only and can be transmitted by air and waterborne. Air circulation is
an effective preventive measure against DM.

Clubroot (CR) is another threatening plant disease caused by Plasmodiophora brassicae (Pb) [25].
Pb is neither a slime mold nor a fungus disease but emerged as a new taxon of Rhizaria disease. Plants
seem stunted, wilt easily, and may have yellowing leaves. CR was first reported in 1878 in Russia. CR
has the longest life cycle of around 20 years. The movement of soil containing soil-borne resting spores
is responsible for its transmission. Maintaining a soil pH of 6.8 or higher may keep Brassica safe from
CR. The next foliar disease is Alternaria leaf spot (ALS), which is frequently found in Brassica crops,
and can be observed by the fungus Alternaria brassicicola. It was first identified in South Africa in
1929 [26]. The most typical indicator of Alternaria infections is the presence of target-like, concentric
rings on yellow, dark brown to black circular leaf patches. It can stay in plants for 8 to 12 weeks
and lasts up to 23 weeks on stem tissues. Wind, splashing water, insects, workers, and equipment are
responsible for its transmission [27]. Using disease-tolerant cultivars and avoiding overhead irrigation,
and controlling weeds may prevent Brassica from ALS.

3.3 Methods of Disease Identification

Timely and reliable assessments are essential to perform plant protection research and activities
and to stop its spread in the growing regions [28]. It is essential to diagnose the causing pathogen
first for appropriate disease diagnosis. Some common disease identification methods include manual
disease identification by experts, microscopic methods, molecular and serological methods, gas
chromatography, and remote sensing [29]. A brief overview of these methods is given below,

3.3.1 Manual Scouting and Microscopic Methods

Manual scouting is a traditional method in which experts are hired to diagnose diseases with
their naked eyes or magnifying glass. These experts identify diseases with visible pathogen signs or
symptoms and follow detailed guidelines and specific standards. However, this method is subject
to errors and is timely. On the other hand, microscopic methods evaluate morphology features and
follow identification schemes and specification keys. In [30] two diagnostic tools scanning electron
microscopy (SEM) and light microscopy (LM) were employed to study comprehensive micromor-
phological features of four kinds of seeds. These seeds are nonedible sources namely cabbage, wild
safflower, safflower, and easter lily vine. SEM evaluated a huge variety in color, size, shape, periclinal
wall shape, and sculpturing whereas LM showed a huge variety of colors and different size ranges.

3.3.2 Molecular and Serological Methods

Molecular and serological methods are called direct disease detection methods that analyze a large
number of crop samples using rapid and highly specific tests. These tests are directly applied in plant
fields, in greenhouses, and even in the production chain. The enzyme-linked immune sorbent assay
(ELISA) is so far the most commonly used molecular method. Other pathogen detection methods are
(Ribonucleic acid) RNA-based and Deoxyribonucleic acid (DNA)-based methods. Many variants of
polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) are examples of DNA-
based methods whereas nucleic acid sequence-based amplification (NASBA) and reverse transcriptase
PCR are RNA-based methods. Different variants of PCR are applicable for pathogen identification in
plants. A study diagnosed three pathogens causing ALS and BR in Brassica seeds. This study signifies
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the usage of multiplex PCR protocol for facilitating disease-free conservation and exchange of Brassica
seeds [31]. The researchers applied conventional PCR assay in different Indian regions for identifying
a pathogen causing a devastating disease called white rust in mustard and rapeseed [32]. They gave a
new nomenclature to that pathogen.

3.3.3 Gas Chromatography

Plants in their immediate surrounding emit volatile organic compounds (VOCs) that readily
exist in the gaseous state and show the physiological health status of a plant. Gas chromatography
(GC) is an indirect and non-optical disease detection method that involves VOC profiling. The GC
method analyzes the volatile chemical signature of a plant that indicates a specific disease in that
plant [33]. In this study, TuMV was diagnosed accurately using volatile metabolome and transcriptome
analyses. For identifying different unknown compounds and enhancing the analysis performance, GC
is merged with mass spectrometry (GC-MS). Both GC and GC-MS techniques give more accurate
information because of their high specificity. Moreover, it uses quantitative information from the
VOC sample and detects diseases at different stages. The headspace solid-phase microextraction and
gas chromatography along with mass spectrometry (HS-SPME-GC-MS) is applied for identifying
particular volatile metabolic markers [34]. This approach identified markers of fresh and infected with
soft rot disease and proves to be promising for quality control and managing the freshness of cabbages.
Table 2 presents the analysis of different disease detection methods used for Brassica plants.

Table 2: Analysis of different disease detection methods employed for Brassica plants

Reference Brassica species Diseases Detection methods Results

[31] Brassica ALS and BR Multiplex PCR • Identifies the
diseases efficiently

[32] Mustard and White rust Conventional PCR • Detects the disease
rapeseed • Gives a new

nomenclature to a
pathogen

[33] Chinese cabbage TuMV Volatile
metabolome and
transcriptome
analyses

• Distinguishes
between infected
and healthy plants

[34] Cabbage Soft rot HS-SPME-GC-
MS

• Identifies markers
of fresh and
unhealthy cabbages

[35] Brassica chinensis Pest disease by flea
beetle

UAV imagery and
DL

• Detects pest
disease with high
accuracy

Table Legend: Diseases are identified using different detection methods for Brassica species. Remote sensing with ML technique, molecular
and serological methods, and gas chromatography are applied by researchers. All the traditional and trending methods identified the disease
symptoms efficiently.
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3.3.4 Remote Sensing Based Disease Detection

The disease causes variations in leaf shape, tissue color, canopy morphology, transpiration rate,
plant density, and interaction with sunlight. Therefore, plants require new automated ways that detect,
classify and quantify diseases with high accuracy and reliability. Sensor-based methods are gaining
much momentum in this context. Sensors examine the optical properties of plants and are capable to
extract information beyond the visible range. They give early diagnosis even when the symptoms do
not appear by measuring temperature, reflectance, and fluorescence. Some widely used sensors are
RGB, multispectral, thermal infrared, hyperspectral, and others. In [36], RGB images of kohlrabi were
obtained using UAVs that contained weeds and bare soil in the background. Using Otsu’s thresholding
and vegetative indices (VIs), the unhealthy, healthy, and other backgrounds are distinguished in a
better way. Comprehensive details on cameras and sensors are discussed in the succeeding sections.
After analyzing various studies, we have summarized the key advantages and disadvantages of the
above-mentioned detection methods in Table 3.

Table 3: Advantages and disadvantages of different disease detection methods for Brassica plants

Disease detection methods Advantages Disadvantages

Manual scouting and
microscopic methods

• Low cost
• Widely available

• Experts are required, poor
sensitivity, and
time-consuming

Molecular and serological
methods

• Identify several pathogens in
one test

• Require long-time sample
processing and experts

• Applicable for
high-throughput analysis

• Do not allow real-time
monitoring

• Display low-specificity

• Shows high specificity • Require pre-collected
Gas chromatography • Analyzes samples with a

mixture of unknown
compositions

VOC before analysis
• High cost of consumables

and equipment
• Lack of metabolite library

databases
• Limits on-site analysis

• Quickly obtain on-site data
from large areas

• Some sensors are very
expensive

Remote sensing method • High availability and some are
budget-friendly

• Generate large volume of
data

• Solves various problems with
vegetation indices (VI)

• Weather and low resolution
hinder the application

Table Legend: Advantages and disadvantages of all the disease detection methods are compared. Remote sensing has more advantages and
is applicable for real-time disease detection.
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3.4 Cameras and Sensors

With the advances in precision agriculture, new solutions for plant monitoring and disease
identification have developed. Cameras and sensors provide high-resolution data, constitute the basis
for early disease detection, and evaluate health non-invasively. Moreover, the development of low-
cost cameras and sensors providing satisfactory performance is a significant development for future
applications in agriculture. Different cameras and sensors are RGB cameras, multispectral cameras,
hyperspectral cameras, infrared thermal imagers, and fluorescence imaging [37].

3.4.1 RGB Camera

The salient features of mostly used RGB cameras are lightweight, easy to operate, simple data
processing, low cost, and less work environmental requirements. These cameras are capable of
acquiring color and grayscale images that assist in identifying diseases in plant tissues by modifying
texture, color, and spectral information. Nevertheless, because of limited visible light bands, these
cameras may give insufficient spectral information for characterizing symptoms and identifying
diseases accurately [38]. RGB camera was attached to a UAV for capturing images of rapeseed to
estimate chlorophyll amount [39] and images of cabbage, wheat, barley, and pumpkin to evaluate the
growth of individual plants [40].

3.4.2 Multispectral Camera

The second widely used sensor for radiation sensing and recording from the visible as well
as invisible portions of the electromagnetic spectrum is multispectral cameras. These are relatively
cheaper and provide high work efficiency and fast frame imaging [41]. Nevertheless, these sensors
possess some limitations such as they give a discontinuous spectrum, no number of bands, and low
spectral resolution. Multispectral UAV imagery was employed for detecting phenological stages in
winter canola [42] and for estimating the yield estimation of oil seed rape [43].

3.4.3 Hyperspectral Camera

Another commonly applied sensor is hyperspectral sensing, which is capable of sensing and
recording a huge number of narrow bands along with continuous spectra. These sensors provide
more spectral band information with higher spectral resolution, therefore, help in distinguishing the
variation in spectral traits among different plants and diseases [44]. In [7], hyperspectral images of
broccoli provided quantitative parameters for detecting glucosinolates levels. In [45], two cameras were
used for estimating vegetable crop biomass. RGB three-dimensional (3D) was attached to UAV for
acquiring height information and terrestrial hyperspectral imagery was used for obtaining reflectance
information on cabbage, tomato, and eggplant. Analysis of multi-sensory data showed that both
sensors gave promising results.

3.4.4 Infrared Thermal Camera

Infrared thermography (IRT) can detect the emitted radiation only in the thermal infrared range
from 8 to 14 μm. The sensors are used for assessing the surface temperature of plant canopies and
leaves which are usually affected by water status. Due to the loss of healthy tissue, photosynthesis,
and stomatal conductance, the disease tissues and plants mostly suffer from water stress leading to
changes in the temperature of plants. IRT can be used at different spatial and temporal scales from
small-scale to airborne applications. However, these sensors are subject to many environmental factors
such as wind speed, rainfall, sunlight, and extreme temperature. In [46], thermal infrared images using
WWARIC Workswell Wiris Agro R Infrared Camera (WWARIC) and hyperspectral images using
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Analytical Spectral Device (ASD) were captured of choy sum for estimating water stress. Results
showed that this combined technique is non-destructive and rapid.

3.4.5 Fluorescence Imaging Camera

Fluorescence cameras are not widely used for disease detection in active plants. These cameras
have a laser light source or a light-emitting diode (LED) to analyze the changes in the photosynthetic
activity under different biotech and abiotic stress levels. Several parameters are applied for estimating
differences in the photosynthetic plant activities. Therefore, fluorescence cameras have the potential
for the classification and qualification of fungal diseases in plants. The limitation of using a fluores-
cence camera is to prepare the plants following a strict protocol [47]. Downscaling of solar-induced
chlorophyll fluorescence (SIF) was applied in [48] to better examine the relationship between SIF and
gross primary production (GPP) over Chinese cabbage, sweet potato, pumpkin, thyme, and cotton.
Random forest gave efficient results for estimating SIF escape probability. The proposed method is
effective for both airborne and ground-based SIF measurements. Table 4 shows the significance of
utilizing remote sensing cameras and sensors with different objectives for Brassica plants in different
studies.

Table 4: Comparative analysis of remote sensing cameras and sensors for Brassica plants

Reference Brassica species Objective Cameras or sensors Opportunities

[7] Broccoli Postharvest
senescence
evaluation

Hyperspectral • Provides quantitative
parameters for
detecting
glucosinolates level

• Potential to give early
disease detection

[42] Winter canola Phenological stages
detection

Multispectral-UAV • Shows high potential
for phenology
estimation

[43] Oil seed rape Identification of
suitable VI for field
prediction

Multispectral-UAV • Assesses growth
conditions and yield
estimation with high
accuracy

[44] Cabbage, wheat,
barley, and pumpkin

Growth evaluation RGB-UAV • Proves to be optimal
for the closed
canopy-pumpkin and
cabbage

[45] Cabbage, tomato,
and eggplant

Biomass estimation RGB 3D-UAV and
terrestrial hyperspectral

• Shows multi-sensory
data collection is best

[46] Choy sum Water stress
estimation

Thermal
infrared-WWARIC and
Hyperspectral-ASD

• WWARIC-ASD is
user-friendly,
non-destructive, and
rapid

• Detects water stress
accurately

Table Legend: Different remote sensing sensors and cameras are used for Brassica species and a few other plants. All studies showed the
significance of using these cameras and sensors for different purposes.
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4 UAV Swarm Approach

This section explains the bio-inspired approach with its prime capabilities and swarm optimiza-
tion. Then, it explains the significance of using multi UAVs remote sensing in agriculture.

4.1 Bio-Inspired Approach

Swarm intelligence (SI) is one of the most popular bio-inspired computational optimization meth-
ods for dealing the real-world applications more effectively [49]. The primary reason for its popularity
is that this algorithm is best suited for solving various nonlinear problems in terms of versatility and
flexibility. Bio-inspired computation algorithms have penetrated all areas of engineering, sciences, and
industries from data collection and data mining to the optimization approach [50]. This algorithm
can also be beneficial for a smooth transition from computational intelligence to business planning
and from bioinformatics to industrial applications. Therefore, it is one of the most innovative and
advanced research subjects in multidisciplinary fields like agriculture, engineering, and sciences. The
key capabilities of Swarm intelligence are reflected in Fig. 4, where it can be observed as a collective
intelligence including four core parameters such as scheduling, clustering, routing, and optimization.
The scheduling process is initiated to adapt swarm intelligence for addressing meeting scheduling
(MS) problems. Clustering represents a huge amount of data sets by concise it into a fewer number
of prototypes of clusters. Routing provides the best path to follow and obtain the desired results.
Optimization is characterized by the biological or movement form of the material.

Figure 4: Core capabilities of swarm intelligence

4.2 Swarm Optimization

Optimization is a broad area of research and is an important paradigm with a wide range of
applications. In the field of engineering and industry, the term optimizes means to minimize the cost
and energy consumption or to maximize profit, performance, and efficiency. In practical applications,
resources, time and money can be considered major limiting factors so optimization is a very important
aspect of an effective and efficient system [51]. The optimization problem looks simple but usually,
it is very challenging to achieve the desired result. These challenges are nonlinearity and complex
constraints. Nonlinearity complicates the search boundaries and search domains because of its highly
multimodal and potentially non-smooth behavior. Therefore, algorithm evaluations for addressing all
constraints can be complex and time-consuming. In different applications, the optimization algorithm
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involves the estimation of objectives many times. There may be thousands or millions of configurations
involving extensive computational tools such as finite element solvers and simulators. Therefore, an
effective optimization technique must work in a combination of both a simulator and an efficient
solver.

4.3 Multi UAVs Remote Sensing

Since the last decade, remote sensing has become one of the most attractive fields for researchers.
Remote sensing is extensively applied in agriculture, as it requires up-to-date and accurate data in terms
of improved spectral, spatial, and temporal resolutions [52]. Because of the traditional airborne remote
sensing platforms, satellites have a slow update rate and provide low spatial and temporal resolution
data therefore they are not appropriate for real-time objectives. Other airborne platforms may provide
more appropriate data but are expensive. On the other hand, UAVs possess low operational costs,
collect high-intensity data, host multiple sensors, and can be flexibly used for real-time operations. And
provide a large scale of applications. UAVs can significantly reduce labor requirements and working
hours and improve work efficiency. Therefore, these peculiarities make it a more suitable alternative
for agricultural tasks [53].

Deploying a single UAV may not be suitable for more challenging tasks for example real-time
mapping and monitoring of large-scale fields [54]. A single UAV takes considerable energy and time,
whereas multi-UAVs work in collaboration and carry out tasks more efficiently in less time. Such as a
UAV was employed to spray picarbutrazox on Chinese cabbage [2]. Results showed that the residual
distribution of pesticides was not uniform and high in the center. In another study, multispectral images
were obtained using multi-UAVs under different spatiotemporal conditions in the highlands of South
Korea [55]. The framework efficiently detected the cabbage fields and suggested replacing the manual
field surveys with multiple UAVs.

However, analysis of the existing agricultural applications of UAVs shows that single UAVs are
more utilized than multi-UAVs. The most important factor for the application of a multi-UAVs system
is the ease of control such that a single operator easily controls a group of UAVs. The distributed
swarm control algorithm is the solution for safely and efficiently controlling multi-UAVs. Additionally,
the computational modeling techniques require different mapping techniques and path planning
for multiple UAVs [56]. Therefore, it is feasible to create agent-based models for swarm clusters
(UAVs) with the mapping of a wide area field with several optimality conditions such as minimum
energy usage, time, optical sensing, infrared sensing, acoustic sensing, and all other relevant sensing
requirements. Individual UAVs in the swarm cluster are usually dedicated to the designated regions
of the field depending on the requirements. Moreover, the development of microelectromechanical
systems and wireless technology makes it easier to deploy a swarm of UAVs for more challenging
tasks.

A coverage planning algorithm based on an ant colony system (ACS) is suggested for hetero-
geneous UAVs to achieve multi-resolution semantic segmentation [57]. The applied strategy obtains
good enough paths with full coverage of all regions efficiently and allows performance enhancement
with reductions in time consumption and energy wastage. Experimental results validate this strategy.
Reinforcement learning (RL) frameworks are suggested for multi-UAVs to solve intricate joint
optimization problems [58]. A non-orthogonal multiple access (NOMA) is proposed in this context.
Results validate this strategy for performance enhancement in terms of energy efficiency and sum-rate
and consequent outage reduction. Moreover, it outperforms existing frameworks.
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The collected data is transferred to ground stations or relevant UAVs for processing mostly in
case of large computation consumption or insufficient energy resources. Different energy-saving data
aggregation protocols are suggested for multi-UAVs to gather and express the summary of the acquired
data based on certain variables [59]. These protocols also relieve the degradation of performance due
to collisions. Some protocols for large-scale networks are based on the combination of hop-by-hop
routing and store-carry-forward routing. After data aggregation, different algorithms are applied to
analyze the data.

5 Image Analysis

Image analysis uses computer algorithms for the evasive interpretation of digital images auto-
matically. It merges different technologies such as image processing, pattern recognition, computer
graphics, and various other technologies [60]. It is employed for detecting edges, counting objects,
removing noise, and calculating growth, particle, color, texture, and shape analysis. For example,
images of Chinese cabbage were analyzed by four image processing steps namely, image acquisition
by UAV, segmentation by Simple Linear Iterative Clustering (SLIC) Superpixel algorithm, feature
selection by Local Binary Pattern (LBP) for Random Forest (RF), and classification by RF and
CNN [61].

This section describes different image processing steps used for image analysis. It gives an insight
into ML techniques with their advantages and disadvantages. Moreover, applications of UAVs for
different Brassica plants are explained and a comparative analysis of different studies is also presented
in this section.

5.1 Image Processing

The process that transforms an image into its digital form and performs some operations to extract
specific information is known as image processing. Its basic components include a general-purpose
computer, hardware, digital storage, camera sensor, image display, software, hardcopy equipment,
and networking. Its fundamental steps are image acquisition, image restoration, image enhancement,
image segmentation, feature extraction, and classification [62]. Fig. 5 represents these phases whereas
brief descriptions are given below.

Image 
Acquisition

Image 
Restoration

Image 
Enhancement

Image 
Segmentation

Feature 
Extraction

Classification

Figure 5: Image processing
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Image acquisition is the first image processing step. Images are retrieved from a hardware-based
source such as a camera, sensor, mobile phone, and others. These images are captured with desired size
and resolution [63]. The next phase which performs various geometric and radiometric corrections to
ensure that the captured aerial images look similar to the ground ones is called image restoration.
Noise, image errors due to atmospheric scattering, topographic variation, differences in sun angles,
sensor features, and positional errors that affect the images while imaging, and storing require image
restoration [64]. The next step that improves the information content and quality of images before
processing is called image enhancement. This step adjusts digital images by brightening and sharpening
the image for better image analysis [65]. Extensively used practices are spatial filtering, contrast stretch,
edge enhancement, fuzzy contrast correction (FCC), and density slicing.

The most crucial step that simplifies the image representation making it more significant and
easier to assess is called image segmentation [66]. It partitions an image into its parts. Being a basis
of the feature extraction step, it is also a fundamental phase in image processing. Various segmen-
tation methods are edge-based, region-based, clustering-based, thresholding, watershed, and neural
networks-based. Fig. 6 shows the segmentation of Broccoli heads by improved ResNet, GoogleNet,
VggNet, and ResNet taken by the concept of [67].

Figure 6: Results of Broccoli head segmentation are (a) original images, (b) annotation results (c)
segmentation by improved ResNet, (d) segmentation by GoogleNet, (e) segmentation by VggNet, and
(f) segmentation by ResNet

The step that involves the extraction of features from an area of interest is named as feature
extraction step. These extracted features are required for determining the interpretations of the sample
image. These features are based primely on texture, color, and shape. Widely used feature extraction
methods are gray-level co-occurrence matrix (GLCM), spatial grey-level dependence matrix, color
co-occurrence method, and histogram-based methods. Besides these ML techniques and CNN
architectures provide optimal solutions for feature extraction [68]. The last step that classifies the
input images as diseased or healthy following distinct criteria is image classification. For diseased
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images, the images are further categorized into various disease classes. Several classifiers are assorted
together according to various rules such as object-based, pixel-based, parametric, and nonparametric-
based. Supervised and unsupervised ML classifiers detect diseases with higher accuracy [69]. These
are discussed comprehensively in the next section. Table 5 presents the evaluation of image processing
steps along with different methodologies used for it. Results show image analysis and ML techniques
are potential approaches for studying Brassica with different objectives.

Table 5: Evaluation of image processing and the applied techniques for Brassica plants

Reference No. Brassica plants Image processing
steps

Techniques Accuracy Results

[35] Brassica chinensis
Acquisition,
preprocessing,
image restoration,
disease detection

UAV and
CenterNet with
attention
mechanism and
DIoU loss

87.2
• Shows

superior
performance

• Effective for
pest
detection

[39] Rapeseed

Acquisition,
stitching, cropping,
segmentation,
feature extraction,
and classification

RGB-UAV, Pix4D
Mapper software,
Arc Map10.6
software, K-means
clustering,
univariant
regression model,
multiple stepwise
regression model,
and RF model

Univariant
model-56.21

• RF
outperforms

Multiple stepwise
model-56.48
RF-80.5

• Estimates
chlorophyll
content
quickly
without
damages

[55] Cabbage

Acquisition,
preprocessing, and
semantic
segmentation

Multispectral-
UAV, ECC, U-Net,
SegNet, and
DeepLab V3+

GNM
Dataset-90.97
ABD
Dataset-82.23

• DeepLab 3+
outperforms

• Distinguishes
the fields
accurately

[61] Chinese Cabbage
Acquisition,
preprocessing,
segmentation,
feature extraction,
and classification

UAV, SLIC, LBP,
RF, and AlexNet

RF-86.18
AlexNet-92.41

• AlexNet
outperforms

• Efficiently
differentiates
weeds from
crops and
soil

[67] Broccoli
Acquisition,
preprocessing,
segmentation, and
classification

RGB, LED light
source, surface
laptop,
self-develop
platform, FPCA,
Improved ResNet,
PSOA, and Otsu

89.6

• Allows rapid
segmentation
and grading

• Minimizes
memory
requirements
and the data
volume

(Continued)
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Table 5 (continued)

Reference No. Brassica plants Image processing
steps

Techniques Accuracy Results

[70]
WHU-Hi-HongHu
dataset-Chinese
cabbage, rape,
Brassica
parachinensis,
lettuce, etc.

Acquisition,
preprocessing,
feature extraction,
and classification

Hyperspectral-
UAV and
MDvT

WHU-Hi-
HongHu-90.2

• Classifies
plants in the
presence of
highly
similar
spectral
features

• MDvT
outperforms
all classical
methods

[71] Rape flower
Acquisition,
feature extraction,
and classification

RGB-UAV,
RapeNet, and
RapeNet+

RapeNet-90.62
RapeNet+−95.38

• Accurately
predicts the
rape flower
clusters

• Assists in
studying the
relationship
between yield
and
phenotype

Table Legend: Different image processing techniques and steps are discussed for Brassica. All the methodologies gave high accuracies in
different applications. ECC stands for enhanced correlation coefficient transformation, GNM is the second testing dataset from Gwinemi
and ABD was the third testing dataset from Anbanduck areas. LED is a light-emitting diode and FPCA denotes a fancy principal component
analysis algorithm whereas SLIC represents a Simple Linear Iterative Clustering Superpixel algorithm and LBP denotes a local binary
pattern. DIoU is Distance-Intersection over union and MDvT stands for a mobile 3D convolutional vision transformer network.

5.2 Machine Learning Approach

Machine learning (ML) approaches are considered to be potential tools that can be applied to a
wide variety of structured and unstructured data. ML techniques are capable to solve complex prob-
lems with sensor data allowing more informed decision-making and measures using inconsiderable
human intervention. ML approaches are divided into unsupervised, and supervised models. Unsu-
pervised ML algorithms are further classified into clustering and association algorithms. Clustering
algorithms include K-means, hierarchical model, and mixture model. Whereas association algorithms
include apriori and frequent pattern (FP) growth. Supervised algorithms are further grouped into
regression and classification models [72]. Regression algorithms constitute logistic regression, linear
regression, decision trees (DT), and hierarchical neural networks. On the other hand, classification
algorithms constitute support vector machines (SVMs), Naïve Bayes, k-nearest neighbor (KNN), and
neural networks (NNs). After examining various studies, the prime characteristics, advantages, and
disadvantages of ML approaches are illustrated in Table 6.
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Table 6: Comparison of different machine learning approaches with their advantages and
disadvantages

ML technique Characteristics Advantages Disadvantages

K-means
• Determines K clusters built

on Euclidean distances
• Efficient and capable to

process large datasets
• Sometimes terminates a

local optimum
• Widely applied clustering

approach
• Cannot handle noisy or

categorical data

Hierarchical clustering
• A bottom-up method that
treats every single data point
as its cluster

• Easy to use • Slower in some cases
• Possess good visualization

capability
• Decisions cannot be

undone
• Merges two closest clusters

iteratively
• Do not require advanced

specification of the number
of clusters

• Not scalable and does
not perform well in
noise and outlier

Gaussian mixture models
• Models commonly
distributed clusters within a
dataset

• Extendable to multiple
dimensions

• Not scalable

• Performs well with
overlapping clusters

• Shows complications in
large dimensional data

• Assumes data has
multivariate Gaussian
distribution

Apriori algorithm
• A rule-based method

• Easy to understand and
implement

• Requires various
database scans

• Uses prior knowledge of
properties to identify the
most frequent item in a
dataset

• Applicable to large datasets • Computationally
expensive and tedious
at times

Logistic regression
• A simple algorithm

• Provides logistic probability
and confidence interval

• Sensitive to extreme
values

• Models a linear relationship
of inputs with a categorical
output

• Easy for interpretation • Unable to handle
missing values and
suffers multicollinearity

Linear regression
• A simple algorithm

• Works well with any kind of
data

• Requires certain
assumptions

• Models a linear relationship
of inputs with a continuous
output variable

• Provides good details about
the features

Decision tree • Makes decision rules on the
properties for generating
predictions

• Handles missing values
along with categorical and
numerical data

• Relatively less predictive
• Unable to work on

combinations of
features

• This may lead to
overfitting

• Requires manual
selection of the number
of trees

(Continued)
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Table 6 (continued)

ML technique Characteristics Advantages Disadvantages

• A single tree is extremely
interpretable

• Performs efficiently with
large datasets

• Powerful and accurate
• Can apply to regression and

classification
• An ensemble learning

approach

Random forests • Combines the results of
various DTs

• Performs well for both
linear and non-linear
problems

• May lead to overfitting
easily

Support vector machines
• A binary classifier

• More robust and classifies
unstructured and
semi-structured data

• Requires knowledge
regarding the kernel
employed

• Produces a linear
separating hyperplane for
classifying data instances

• Provides non-linear
solutions

• Shows good performance

Naïve Bayes
• Based on Bayes’ theorem • Simple

• Requires independent
assumption between
features

• Assumes that the existence
of a specific feature in a
class is not related to the
existence of any other
feature

• Performs well for small
datasets

k-nearest neighbor

• Widely used for image and
video recognition

• A nonparametric, robust,
and intuitive method

• Difficult to handle
mixed types of data and
interpret the outcomes

• Highly significant when the
label data is impossible to
obtain or highly expensive

• No cost in the learning
process

• Require high
computations for large
datasets

• Lack of explicit model
training

Neural networks
• A mathematical model

• Gives accurate prediction
and state-of-the-art results

• Susceptible to irrelevant
characteristics

• Applicable for both
classification and
regression problems

• Shows tolerance to
correlated inputs

• Requires a large number
of samples and refining
many parameters

• Works in the same fashion
as the human brain does

• Generates the predictive
power of multiple
combinations of inputs

• Slow to train and
computationally
expensive

CNN

• Feasible and optimized
networks with the
weight-sharing feature

• Have faster learning
• Require many training

data
• High computational

cost

(Continued)
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Table 6 (continued)

ML technique Characteristics Advantages Disadvantages

• Transforms 2D data into
3D data using convolution
filters

• Achieves high accuracy in
image recognition, feature
extraction, and
classification

• Easier for large-scale
network uses

Table Legend: Salient characteristics, advantages, and disadvantages of all ML techniques are discussed. ANN and CNN show more
advantages and fewer disadvantages.

Artificial neural networks (ANNs) are helpful for both classification and regression problems [73].
Moreover, deep ANNs are also called deep learning (DL) or deep neural networks (DNNs) which are
tools for image processing, plant monitoring, and disease identification. DL technique is an automated
model under ML techniques. DL is capable of performing the segmentation of leaves in plant images
and then estimating the segmented area. DL possesses multiple processing layers for learning complex
data different from the existing and traditional neural networks [74]. The best feasible and optimized
neural networks especially for plant monitoring and disease identification are convolutional neural
networks (CNNs). Widely used CNN architectures for disease classification are GoogleNet, AlexNet,
VGGNet, EfficientNet, ResNet, DenseNet, and MobileNet.

Some researchers designed custom network architectures for handling low light, occlusion, and
other environmental issues in real-world scenarios. For example, a series of TasselNet and RapeNet
are developed as deep regression models for counting plants. Some recently introduced deep learning
models show advantages over the above-mentioned architectures such as CenterNet, a vision trans-
former (ViT) model, a mobile 3D convolutional vision transformer network (MDvT), YOLOv7, etc.
The CenterNet framework identifies and characterizes the affected areas by employing its heat maps
and one-stage recognition algorithm. On the other hand, the transformer-based model also known
as vision transformer (ViT) is very competitive with conventional CNNs for image classification and
is capable to learn global features of images therefore they are gradually replacing CNNs. Similarly,
MDvT has an improved generalization ability due to its layered hierarchy for combining multi-scale
information. Another state-of-the-art model is YOLOv7 which also provides a more resilient, robust,
and quicker network architecture for feature integration, higher label assignment, efficient model
training, and improved performance in object recognition. Nowadays, these DL-based object detection
algorithms are broadly applied to determining the precise location and class of different plant diseases
[75,76].

The performance of ML and DL techniques is evaluated by various metrics such as accuracy,
recall, F1-score, precision, confusion matrix, specificity, precision-recall (PC) curve, and receiver
operating characteristics (ROC) curve. The prediction accuracy of ML techniques depends upon the
quality of data, representation of a model, and input target variable correlations [77]. However, when
multiple feature variables such as geometric, spectral, and textural features of an image are similar, then
ideal segmentation and classification become difficult. This results in feature redundancy leading to
an increase in training process complexity and a reduction in the accuracy and generalization ability
of the algorithm. Hence, optimizers are added to modify the learning rate and weights of learning
techniques and minimize the total loss and improve the accuracy. Various optimizers are gradient
descent (GD), stochastic gradient descent (SDG), Mini-batch gradient descent, momentum-based
gradient descent, Nesterov accelerated gradient (NAG), Adagrad, RMSProp, and Adam. Different
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studies have applied different optimization techniques. Such a GA algorithm and an estimation
of scale-2 (ESP2) are introduced to optimize the segmentation or classification parameters of ML
techniques [9]. Findings reveal that approaches with integrated optimization schemes achieve better
results in terms of accuracy. In the same study, Mask R-CNN is also optimized with a graphics
processor (GPU) that also accelerates its recognition speed.

Ranger optimizer is used to update the weights for the fastai DL framework [54]. AdamW
optimizer is applied to train U-Net and DeepLab V3+ whereas SGD is used to train SegNet [55]. Adam
and SGD optimizers are integrated with faster R-CNN, RetinaNet, SSD, CenterNet, and EfficientNet
[66]. All models perform better with SGD whereas CenterNet performs better with Adam. SGD
and momentum are applied to optimize the network parameters of MFC-CNN [68]. The model
training is accelerated with the negligence of local optimization. Similarly, Adam is also applied to
optimize MDvT [70]. The sum of squares (SOS) and the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithms are applied to stabilize convergence and speed up ANN [77]. Adam is applied for optimizing
attention-based recurrent convolutional neural networks (ARCNN) [78]. Comparative analysis shows
that DL shows higher recognition efficiency than ML techniques, thus they are more significant for
real-time applications.

5.3 Applications of UAV Swarms for Brassica Plants

The execution of UAV swarms for Brassica plants is elaborated on in this section. The exten-
sively considered applications are monitoring for yield estimation, heath, water stress, irrigation
management, nutrition disorders, disease detection and pest management, and fertilizer and pesticide
spraying. Table 7 explores different studies that employ multiple UAVs for monitoring Brassica plants.

5.3.1 Brassica Growth Monitoring for Yield Estimation

Plants do not necessarily grow evenly throughout the fields. Production of Brassica varies from
one place to another place in the fields. Several biotic and abiotic factors such as pests, water, soil,
and others are responsible for these growth differences. Swarms can assess health, yield, and growth
rates more easily than manual scouting or deploying a single UAV. Another study combined U-
Net with ViT to form TransUNet for incorporating many layers in feature extraction for broccoli
detection and characterization [79]. A point cloud transformer (PCT) network is also introduced for
estimating broccoli heads. The applied framework shows a good balance between speed and accuracy
with robustness against different environmental conditions.

5.3.2 Brassica Health Monitoring

Stress symptoms in Brassica can be observed in the infrared range far before their appearance in
the visible range that can be observed through the naked eye. UAV swarms can easily capture these
symptoms using the proposed multispectral sensor. Moreover, these images are less affected by low
light and cloud cover. The multispectral sensor utilizes detailed information such as leaf thickness,
chlorophyll levels, foreign contaminants, and others [80]. This enables Brassica health monitoring and
management easier for the farmers at different growth stages.

5.3.3 Water Stress Monitoring and Irrigation Management of Brassica

Reduced availability of water for soil moisture causes water stress in Brassica plants. Different
methods are adopted for monitoring water stress and irrigation management. However, these methods
use proximal sensors for frequent observation of fields, which are expensive, time-consuming, and
tedious. Using swarm UAV remote sensing accurate data can be captured that provides spatial
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variability of Brassica and field soil. Plant pixels in these obtained spatial resolution images must be
separated from the background using DL classifiers. However, images must be captured carefully for
the estimation of water stress in Brassica plants. Besides monitoring the flow of water in irrigation
channels, UAV swarms are capable of sprinkling nutrients and water in Brassica farms in shorter
timescales. For precise distribution of water, all the UAVs are attached with proper nozzles. Moreover,
a swarm of UAVs conducts the sprinkle to handle the drought effects in Brassica fields [81].

5.3.4 Monitoring of Nutrition Disorders in Brassica

Nutrition disorders in plants can be determined by visually observing Brassica plant color,
laboratory analysis of leaves, and other specific methods. Nevertheless, all these methods are time-
consuming and do not provide an accurate estimation of nutritional issues. A swarm of UAVs is capable
of providing ground sample distances (GSD) of Brassica with fewer operation issues as compared to
single UAVs. Moreover, multispectral imaging delivers meaningful indices and features of these plants.
In many cases, multispectral imaging provided better GSD at higher altitudes because of two reasons.
First, Leaf Area Index (LAI) is more effectively integrated into low-resolution images. Secondly, blur
is more intense if images are captured close to the Brassica plants. Along with this DL algorithms
provide accurate nutrition status in these plants [82].

Table 7: Exploration of different studies that employ multi-UAVs imagery for Brassica plants

Reference Crop Sensor Classifier Objective Opportunities

[78]
Chinese cabbage,
leaf mustard, and
other crops

RGB ARCNN Vegetable mapping

• Allows
accurate
mapping

• Performs
better than
other
classical ML
classifiers

[79] Broccoli
RGB with LiDAR
point cloud data

TransUNet and
PCT

Volume estimation
and canopy
mapping

• Shows a good
balance
between
speed and
accuracy

• Shows
robustness
against envi-
ronmental
conditions

[82] Oilseed rape Multispectral Multiple linear
regression models

Monitoring of
nitrogen status

• Gives
accurate
estimation

[83] Cabbage and white
radish

RGB Multiple linear
regression models

Growth status
modeling and
testing

• Allows
quantifying
spatial and
temporal
variability in
biophysical
properties

(Continued)
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Table 7 (continued)
Reference Crop Sensor Classifier Objective Opportunities

[84] Cabbage, Brassica
chinensis,
rapeseed, and
other crops

Hyperspectral CNNCRF Crop identification
and monitoring

• Gives
efficient and
effective crop
classification

[85]
Broccoli and
lettuce

RGB
Fusion-based
algorithm

Weed detection
and control

• Detects with
high
accuracy

• Segments
plants from
the
background
efficiently

[86] Kale and basil
Hyperspectral and
VNIR

ANN, EL, and
SVM

Monitoring
nutrition disorders

• Provides
precise and
fast estimates
of CD con-
centration

• ANN
outperforms

[87] Oilseed rape RGB and
multispectral

K-means based on
CIE L∗a∗b∗ space

Yield estimation • Efficiently
estimates the
flower
number

Table Legend: All the analyzed research papers selected different Brassica crops. The widely applied UAV-based sensor is RGB however
different classification methods were adopted for different objectives. Here, TransUNet is a combination of U-Net and ViT, PCT is a point
cloud transformer, CNNCRF is a deep convolutional neural network with the conditional random field model, ML-MSM is a machine
language-Mutual Subspace Method, and SURF is Speeded-Up Robust Features. VNIR is visible/near-infrared, ANN is an artificial neural
network, EL is ensemble learning, SVM is a support vector machine, the CD is cadmium, and K-means based on CIE L∗a∗b∗ space is the
K-means method based on Commission Internationale de l’Éclairage. UAV imagery proved to be significant in all the research.

5.3.5 Disease Detection and Pest Management of Brassica

For pest detection, images must be clear enough to offer accurate disease detection, severity
estimation, and environmental stress separation. However, the swarm of UAVs also requires sig-
nificant spectral channels for detecting symptoms appropriately. For pest management of Brassica
plants, a combination of spectral and textural data or a combination of different sensors provides
promising results [88]. For site-specific operations of Brassica plants, swarm-captured images depend
on temporal, spatial, and spectral resolutions. UAV swarms fly at lower altitudes to achieve higher
spatial resolution for higher accuracy. Additionally, the swarm allows a more efficient distribution of
pesticides than a single UAV. Swarms can detect hidden pests as well as spray pesticides in appropriate
locations. Moreover, a swarm of UAVs is capable of releasing beneficial insects, parasites, and predators
over crops for pest management.

5.3.6 Fertilizer and Pesticide Spraying

Maintaining the quality as well as production quantity of Brassica plants requires the application
of fertilizers and pesticides. UAV swarms create high-resolution field maps of Brassica plants and
then spray appropriate quantities of fertilizers and pesticides. Moreover, swarms evenly cover the
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areas as compared to deploying a single UAV that provides site-specific management of Brassica.
Additionally, spraying through UAVs reduces the application of fertilizers and pesticides by 15%–20%
and quickens the application procedure much faster than traditional procedures. This procedure will
reduce the environmental effects of using pesticides and reduce the quantity of chemicals penetrating
groundwater. Moreover, farmers using swarms are also less exposed to chemicals as compared to
manual spraying [16].

Table 8 shows why the UAV swarm is significant for various tasks related to Brassica plants. The
most important features of UAV swarms show opportunities for their applications. These features
include being less expensive, highly accurate, and efficient, saving time, providing better data, and
assisting in troubleshooting problems. This table evaluates all the members of a swarm who work
together to perform different tasks that enhance production, avoid, and save not only the crops but
also the environment.

Table 8: Significance of using UAV swarms for different applications for Brassica plants

Applications for Brassica plants Why UAV Swarm?

Growth monitoring for yield estimation

• Allows monitoring all around the year
• Monitoring takes less time and incurs lower

costs.
• Monitors plants at elevated or unreachable

areas
• Counts plants, evaluates spacing issues, and

estimates growth rates and production

Health monitoring

• Enables farmers to stay ahead of problems
• Provides complete details of plants
• Allows spotting the biomass and health

changes in plants
• Assesses health in less time

Water stress monitoring and irrigation management

• Applies optimal amount of water in the
required areas at optimal timings

• Identifies locations that require additional
water

• Enhances water distribution to achieve
uniform maturity and plant quality

Monitoring of nutrition disorder

• Monitors levels of minerals, non-mineral
elements, and pH balance.

• Helps to maintain the appropriate level of
nitrogen

• Detects nutrition deficiencies and refines
fertilization

Disease detection and pest management

• Detects the diseases, pests, and weeds at an
initial stage

• Identifies diseases even when symptoms have
not appeared

(Continued)
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Table 8 (continued)

Applications for Brassica plants Why UAV Swarm?

• Allows accurate detection, management, and
treatment of diseases and pests

Pest and fertilizer spraying

• Provides information on soil fertility
• Reduces the chances of herbicide resistance.
• Allows a targeted application
• Reduces the budget by limiting the spraying

quantity
• Avoids crop damage and soil compaction

Table Legend: Applications of UAV swarm for different tasks related to Brassica plants are evaluated. These applications are growth
monitoring for yield estimation, health monitoring, water stress monitoring and irrigation management, nutrition disorder monitoring,
disease detection and pest management, and pest and fertilizer sparing for Brassica plants. All the reasons show the effectiveness of using a
UAV swarm.

6 Challenges of UAV Swarm-Based Applications with Future Considerations

UAV swarms are inexpensive, effective, and persuasive for monitoring and disease detection in
plants [89]. Although this study shows considerable benefits of using them for Brassica plants, their
usage is slow due to some technical and deployment issues as shown in Fig. 7. These issues hinder the
performance of UAV swarms and require future considerations. Some of these issues are discussed in
this section.

Figure 7: Prime challenges of UAV swarm-based applications are technical issues and deployment
issues
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6.1 Technical Issues

6.1.1 Limitations of Energy

The major constraint in swarm application is the restricted capacity of the onboard battery of all
UAVs [90]. This limits the flying time and autonomy. Significant research is essential for designing
improved battery endurance or rechargeable battery or introducing the concept of energy harvesting
from the environment. The lying time of the swarms can also be increased by considering the scheduling
and trade-off between all the UAVs of the swarm.

6.1.2 Collaboration and Coordination Issues

Another issue is collaboration and coordination among UAVs of a swarm [50]. Collaboration
and coordination depend upon wireless communication networks. Moreover, decision-making and
collision avoidance during field monitoring depend on the flow of information. Although cloud
robotic systems (CRS) overcome this challenge and facilitate access to several kinds of shared data
and resources. However, the Internet of Everything (IoE) must be considered for collecting, storing,
and analyzing massive data generated by UAVs.

6.1.3 Unequal Data Generation

UAVs in a swarm generate massive and unequal data [91]. This leads to the under-utilization of
computational resources. Therefore, data generated by different swarm members at a similar time is
cross-checked and validated.

6.1.4 Limitations of Camera

Each UAV in a swarm is equipped with lightweight digital cameras. These cameras may suffer
from vignetting, images obtained through these cameras may have brighter central parts and darker
edges. Therefore, these images require geometric, radiometric, and atmospheric calibrations. These
calibrations can improve the quality of images and remove underexposed, overexposed, and blur effects
from the images. As for monitoring and disease detection purposes, these camera limitations must be
addressed appropriately [92].

6.1.5 Issues of Privacy, Safety, and Security of UAV Swarm

Issues of privacy are directly linked with localization. All the UAVs in a swarm pinpoint their
location for path planning and safe landing. Global positioning system (GPS) signals are essential
for navigation that becomes challenging in the inaccuracy or absence of GPS signals. Moreover, the
exact location of the swarm users must be kept confidential to avoid hackers’ attacks. Cyberattacks
and cybersecurity are still challenging issues for UAV swarms. Countermeasures and timely strategies
are required to overcome these threats. Countermeasures for the identification of UAVs in a swarm to
check whether the UAVs are legitimate or not are also needed [93].

6.2 Deployment Issues

6.2.1 Limitations of Deployment Infrastructure

Deployment infrastructure must include power, computing resources, and networking for Swarm
applications [94]. Most rural areas do not offer all these requirements. Advanced scientific and
engineering solutions must be the research focus to overcome rural infrastructure issues.
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6.2.2 Environmental Challenges

Besides infrastructure, operational environments have adverse effects on long-term swarm deploy-
ment. Temperature, wind, and lightning all contribute to long-term deployment challenges and loss.
Temperatures are usually high in fields that usually result in malfunction because of failure from UAVs,
edge equipment, and networking hardware. This failure includes battery malfunctions, equipment
overheating, network errors, and communication errors between multiple UAVs. Wind affects the
flight time and power especially when it is blown against the direction of UAVs. For capturing clear
images, UAVs, and farms both need to be stabilized. Therefore, UAVs must wait which exceeds time
and increases battery drain. Lightning also has negative effects on the quality of images generated by
UAVs. In low light or shadows, it is difficult to discern holes in leaves which leads to mispredictions [95].

For avoiding unnecessary energy consumption and mission failures, weather-aware models must
be considered. Additionally, UAV swarms must be deployed with ample shade for equipment to avoid
sun exposure. They must not be deployed in extreme temperatures. UAV swarms are required to fly
in sustained winds and calm weather for conserving battery and maximizing mission lengths. Lastly,
swarms must be deployed when the sun is high to mitigate the lightning effects.

7 Discussion

This section discusses the major findings of this review paper. All the observed findings are stated
point-by-point.

• Extensive details on the kinds of Brassica plants are discussed among which the widely studied
ones are rapeseed, Chinese cabbage, cabbage, and broccoli.

• Clubroot, Blackleg, Stem Rot, Turnip Mosaic Virus, Blackrot, Downy Mildew, Fusarium Wilt,
and Alternaria Leaf Spot are the core diseases explained. Several factors that cause these
diseases are unfavorable weather conditions, poor quality fertilizers and irrigation facilities,
unfair water distribution, exhaustion of the soil, and many others.

• The traditional disease detection methods are complex, time-consuming, require high cost and
experts, and do not validate for real-time applications. Analysis of several studies highlights that
UAV swarms are effective for data collection as they are easily available and budget-friendly and
solve the VI problems of Brassica plants.

• Swarms of UAVs can provide sufficient information and observations more efficiently than
single UAVs or fixed-point field experiments run by different agricultural institutions.

• UAVs require remote sensing cameras and sensors such as RGB, multispectral, hyperspectral,
infrared thermography, and fluorescence imaging. Comparative analysis of different studies
shows that RGB, hyperspectral, and multispectral imaging are more significant and widely
employed by researchers.

• It is observed that multiple image processing steps provide evasive interpretation of images
required for monitoring, non-destructive assessment of plant status, and evaluation of valuable
information about developmental stages and growth rates.

• ML is a cutting-edge technology that can be applied for classification and object detection in
UAV-generated images. All ML techniques possess certain advantages and disadvantages.

• Integration of optimizers enhances the parameters and improves the training and recognition
ability of ML models. These ML techniques are selected according to the targeted crop type,
the data size, and the application.

• The current CNN architectures are widely employed by researchers as they classify plant images
more efficiently than ML techniques. However, these CNN models require large memory and
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powerful GPUs. Therefore, these models based on several trainable layers are not considered
the best choice for real-time applications.

• With the recent advancements, lightweight models are suggested such as the different versions of
YOLO and ViT models that show superiority in terms of accuracy and computational efficiency
over CNNs. Moreover, these algorithms detect diseases and pests, monitor plants, make the
optimal decision regarding agrochemical inputs, and determine the best time for harvesting,
and managing nutrients and water.

• Limitations of energy, collaboration and coordination issues, unequal data generation, camera
limitations, and issues of privacy, safety, and security are the prime technical issues that
restrict the UAV swarm application. Moreover, limitations of deployment infrastructure and
environmental challenges also require future considerations.

8 Conclusion

In the current era, the agriculture sector plays a key role in the economy for the development of
a country. The population growth of the country as well as the economy can face huge losses if the
plants are not monitored properly or if the diseases harm them. The main purpose of this review paper
is to promote effective monitoring and early disease diagnosis of Brassica plants using UAV swarms.
To provide a comprehensive study, this paper covers the maximum research domains for Brassica
plants. Various kinds of Brassica plants are evaluated, many fungal, viral, and bacterial diseases
are discussed, and different disease detection methods are explained. UAV swarm approach, various
remote sensing cameras and sensors, and image analysis techniques are elaborated. Classical to state-
of-the-art machine learning approaches are detailed along with their advantages and disadvantages.
It is observed that researchers have applied standalone AI techniques as well as hybrid AI techniques,
however, the hybrid techniques show better performances. Therefore, based on these findings we may
conclude that AI-based UAV swarms are advantageous for monitoring growth, health, water stress,
and nutrition disorders, management of irrigation and pest, detection of diseases, and spraying of
fertilizers and pesticides on Brassica plants. Certain technical and deployment challenges that hinder
UAV swarm applications along with future considerations are also explored. A comparative analysis
with existing review papers is also conducted that shows the significance of this review paper.

9 Future Work

This paper suggests that more integration efforts are required related to swarm, remote sensors,
and classification models. The discussed shortcomings of UAV swam-based applications must be
considered not only to optimize their applications but also for a sustainable economy and food security.
Additionally, we recommend the RGB cameras as budget-friendly cameras and hyperspectral imaging
for future field analysis. More improved learning models are needed to assess the quality of plants and
detect diseases with mild symptoms or no determined shape of lesions. The limitation of this review
paper is that the focus is on only optical cameras and sensors, and Brassica plants. In our future work,
we will focus on other sensors such as soil moisture sensors and other plants. Furthermore, we will
propose an improved DL model and a sensor for disease identification with high accuracy.
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