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ABSTRACT

Computational linguistics is the scientific and engineering discipline related to comprehending written and
spoken language from a computational perspective and building artefacts that effectively process and produce
language, either in bulk or in a dialogue setting. This paper develops a Chaotic Bird Swarm Optimization with
deep ensemble learning based Arabic poem classification and dictarization (CBSOEDL-APCD) technique. The
presented CBSOEDL-APCD technique involves the classification and dictarization of Arabic text into Arabic
poetries and prose. Primarily, the CBSOEDL-APCD technique carries out data pre-processing to convert it into
a useful format. Besides, the ensemble deep learning (EDL) model comprising deep belief network (DBN),
gated recurrent unit (GRU), and probabilistic neural network (PNN) are exploited. At last, the CBSO algorithm
is employed for the optimal hyperparameter tuning of the deep learning (DL) models to enhance the overall
classification performance. A wide range of experiments was performed to establish the enhanced outcomes of the
CBSOEDL-APCD technique. Comparative experimental analysis indicates the better outcomes of the CBSOEDL-
APCD technique over other recent approaches.
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1 Introduction

Poetry frames a huge body of literature from several renowned languages. Counties, even predating
literacy, utilized poetry as an interaction and communication means [1]. Arabic poetry is a thriving,
conventional literature which has an origin dating to prior the 6th century. Arab people will pay more
attention to their art and celebrates gifted poets. Arabic writers compose poems to explain ideas,
express emotions, give wisdom, pride and ridicule, motivate, flirt, record events, and praise and defame.
Traditional Arabic poetry contains 16 m that varies in rhythm and target purposes. Chanting a poem
articulately needs knowledge of the poem’s meter and acquiring a discretized version of its verses
(letters engraved with short vowels); diacritics were repeatedly not engraved in Arabic texts. The Arabic
language was not an exception in terms of poetry. Many findings regarding the early Islamic and pre-
Islamic Arabs were found via their poetry [2,3]. Arabs employed poetry to exhibit all detail of their
life. Poetry is so valuable to them that they bring 7 legendary poems on ‘Al Kaaba’ curtains, their
holiest location. It is even employed to collect on periodical festivals for reciting and promulgating
their poems [4,5]. The Arabic language was the 6th most spoken language across many counties.

Arabic script orientation will be from right to left [6]. It contains twenty-eight letters, which
include twenty-five consonants and three long vowels. Moreover, it involves certain special glyphs
named diacritics. The diacritics in Arabic are split into 4 categories respective to their functionalities
[7,8]. The initial category of diacritics involves a short vowel after every letter. The second category
attaches a constant letter at the word end [9]. The ‘Shadda’ diacritic formed the third category and
was employed for producing stressed letters. The 4th category was the diacritic ‘Sukun’, which can be
utilized for indicating vowel absence [10].

The majority of the solutions for the automatic identification of Poem classifiers depend on
Natural Language Processing (NLP) techniques [11]; there has recently been a leaning against using
pure machine learning (ML) approaches such as neural networks for that task [12,13]. NLP methods
contain the disadvantage of their complexity and, to a greater extent, rely on the language utilized in
the text. It offers a robust motivation to use other ML methods for classifier tasks [14]. Additionally,
the prevailing automatic techniques rely upon employing pre-trained vectors (e.g., Word2Vec, Glove)
as word embedding for better performance from the classifier method. That makes identifying hatred
content impracticable in cases where users deliberately obfuscate their offensive terminologies with
short slang words [15].

In [16], a Deep Belief Network (DBN) can be leveraged as a diacritizers for Arabic text. DBN
refers to one deep learning (DL) method that seems highly effective for several ML complexes.
The author assesses the usage of DBN as a classifier in automated Arabic text discretizations. The
DBN is well-trained to categorize every input letter with the respective diacritized versions separately.
Madhfar et al. [17] offered three deep learning (DL) techniques for recovering Arabic text diacritics
concerning this study in a text-to-speech synthesis mechanism utilizing DL. The primary method was a
baseline method for testing how a simple DL executes over the corpora. The next method was related
to an encoder-decoder structure that looks like this text-to-speech synthesis method having several
alterations to suit this issue. The latest method was related to the encoder share of the text-to-speech
method that attains exciting performance in diacritic error rate metrics and word error rates.

Fadel et al. [18] provided numerous DL approaches for the automated discretization of Arabic
text. This technique was constructed utilizing 2 key techniques, viz. embeddings, recurrent neural
network (RNN) and Feed-Forward Neural Network (FFNN), and has numerous improvements
like Conditional Random Field (CRF), Block-Normalized Gradient (BNG), and 100-hot encoding.
The techniques were tested on the only easily accessible benchmark data, and the outcomes exhibit
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that these techniques are either on par or better with others, even those demanding human-crafted
language-dependent postprocessing stages dissimilar to ours. In [19], the long short term memory
(LSTM) method was employed to investigate the efficacy of neural network (NN) in Arabic NLP. The
method was explicitly practical for recognizing part-of-speech (POS) tags for morphemes and Arabic
words taken from the Quranic Arabic Corpus (QAC) data. QAC becomes a renowned gold standard
dataset organized by authors from Leeds varsity. In [20], the researchers employed a Gated Recurrent
Unit (GRU) and recurrent neural network (RNN), applying a simple gating system to improve Arabic
discretization processes. Assessment of GRU for discretization can be executed compared to the
exiting outcomes acquired with LSTM, an influential RNN structure receiving the familiar fallouts
in discretization.

This paper develops a Chaotic Bird Swarm Optimization with deep ensemble learning based Ara-
bic poem classification and dictarization (CBSOEDL-APCD) technique. The presented CBSOEDL-
APCD technique involves the classification and dictarization of Arabic text into Arabic poetries
and prose. Primarily, the CBSOEDL-APCD technique carries out data pre-processing to convert
it into a useful format. Besides, the EDL model comprising deep belief network (DBN), gated
recurrent unit (GRU), and probabilistic neural network (PNN) are exploited. At last, the CBSO
algorithm is employed for the optimal hyperparameter tuning of the DL models to enhance the overall
classification performance. A wide range of experiments were performed to demonstrate the enhanced
outcomes of the CBSOEDL-APCD technique.

The rest of the paper is organized as follows. Section 2 introduces the proposed model, and
Section 3 offers the performance validation. Lastly, Section 4 concludes the study.

2 Design of CBSOEDL-APCD Technique

In this study, a new CBSOEDL-APCD algorithm was introduced for classifying and dictarization
of Arabic text into Arabic poetries and prose. The presented CBSOEDL-APCD technique includes
data pre-processing, fusion process, and parameter optimization. It can clean social media posts during
data pre-processing to remove unwanted symbols and noise. Fig. 1 showcases the overall process of
the CBSOEDL-APCD approach. This step aims to maximize the count of words whose embedded
was defined in the pre-trained word embedded technique.

The steps followed to clean the Arabic comments are as follows:

• Eliminating the stop words with a list of stop words including MSA and Dialect Arabic,
i.e., ( like), ( this), and) until).

• Normalize the words and eliminate unwanted punctuation marks and symbols.
• Eliminating elongation and utilizing a single event in its place.

Concerning step 2, as the word embedded method does not comprise representation for emoticons,
it can be established a mapping amongst known emoticons to their equivalent emojis. This approach
cannot fail the sentiment stated by individuals’ emoticons. Emojis were tokenized by assigning spaces
among them; all the emojis are looked upon individually from the word-embedded method, which
supports that once a set of emojis, without spaces between, perform in a comment, this integration
may not have an equivalent word embedded.

2.1 Process Involved in EDL Model

This study’s EDL model encompasses DBN, GRU, and PNN models. A fusion of three models
helps in accomplishing enhanced Arabic poetry classification performance.
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Figure 1: Overall process of CBSOEDL-APCD approach

2.1.1 DBN Model

DBNs can learn several layers of nonlinear features in unlabeled information. The high-order
feature learned with the upper layer is extracting the hidden unit from the lower layer that is
recognized with trained Restricted Boltzmann Machines (RBMs) from a greedy layer-wise approach
by Contrastive Divergence technique and stacking them all over each other [21]. A generative DBN
was capable of performing image in-painting and reconstruction.

Assume it takes an N-layer DBN whereas the visible input vector was x and the lth layer of a
hidden vector can be hl (l = 1, 2, . . . , N); afterwards, the joint probability distribution for DBN takes
the subsequent procedure

P
(
x, h1, . . . , hN

) =
(∏N−1

l=1
P

(
hl−1|hl

))
P

(
hN−1, hN

)
(1)

whereas x � ho, P
(
hN−1, hN

)
refers to joint distribution determined as top RBM, and

∏N−1

l=1 P(hl−1|hl)

implies the distribution of directed sigmoid belief network under.

And the conditional probability is

P(hl−1|hl) = sigm
(
bl + hlW l

)
P

(
hl|hl−1

) = sigm
(

cl + hl−1W lT
)

P
(
hN−1, hN

) = 1∑
hN−1,hN e−E(hN−1,hN)

e−E(hN−1,hN)
(2)

In which E
(
hN−1, hN

)
denotes the energy function of RBM on the top, for instance,

E
(
hN−1, hN

) = −hN−1W NT
hNT − hN−1bNT − hNcNT

and W l refers to the weighted matrix, bl and cl stand for the visible and hidden bias vectors for lth

RBM correspondingly (l = 1, 2, . . . , N).

It can be complex to perform Gibbs sampling by conditional distribution P (.) in Eq. (2) as it
cannot be factorized. Thus, it can generally utilize the nearby posteriors represented by Q (.) for
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sampling and model inference, viz., distribution of lth RBM can be denoted by Q
(
hl−1, hl

)
in the pre-

training phase and Q(hl|hl−1) was utilized for performing bottom-up inferences. It is noticeable only
the posterior Q(hN|hN−1) is the same as true probability P(hN|hN−1) for top RBM, but the residual of
Q (.) is every estimate.

Algorithm 1: (Pre-training) a DBN from the layer-wise manner

Input: Training data h0 = x; initializing θ l = (
W l, bl, cl

) = 0, l = 1, 2, . . . , N; rate of learning ∈; .
Output: A DBN with N layers.
for l = 1 to N, do

training l the RBM with data hl−1 by CD approach;
develop the well-learned parameters W , bl and cl;
sample hl ∼ Q(hl|hl−1; θ l) = P(hl|hl−1; θ l) by Eq. (2);

end for.

2.1.2 GRU Model

In recent times, GRU, a family of RNNs, was introduced for handling exploding or vanishing
gradient problems. GRU is a modest and robust alternating for LSTM networks [22]. Like the LSTM
model, GRU is intended for adoptively updating or resetting the memory contents with zj and RJ reset
and update gates like input and forget gates of LSTM: In contrast to LSTM, GRU has only 2 gates
and doesn’t have memory cells. The GRU activation hj

t at time t is the linear interruption of candidate
activation h̃ and preceding activation hj

t−1.

To evaluate the state hj
t of jth GRU at the t time step, we employ the following formula:

hj
t = (

1 − zj
t

)
hj

t−1 + zj
th̃t (3)

In Eq. (3), h̃j
t and hj

t−1 correspond to the original candidate and preceding memory contents. zj
t

signifies the update gate, which permits the module to determine the quantity of the preceding dataset
(from the preceding time step) conveyed to the upcoming and the quantity of original memory content
to be included.

To evaluate the update gate zt for the t time step, we employ the preceding hidden state ht−1 and
the existing input text as follows:

zt = σ (Wzxt + Uzht−1) (4)

The new memory content h̃j
t is evaluated by using Eq. (5):

h̃t = tanh (Wxt + rt � Uht−1) (5)

Now � represents the Hadamard product, and rt signifies the reset gates that are utilized for
determining the quantity of dataset be forgotten from the initial state and then apply the following
equation for computation:

rt = σ (Wrxt + Urht−1) (6)

GRU is fast than LSTM in training because GRU has a simple structure using lesser parameters
and thus employs lesser memory. Fig. 2 depicts the infrastructure of the GRU approach.
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Figure 2: Structure of GRU

2.1.3 PNN Model

Consider an input vector x ∈ R
n belongs to the predetermined class g = 1, 2, . . ., G. Here, the

probability of vector x belonging to the class g equals pg, the cost related to categorizing the vector
into class g and that the probability density function: y1 (x), y2 (x), . . ., y (x) for each class is known
[23]. Next, based on the Bayes theorem, if g �= h, the vector x was categorized into the class g when
pgcgyg (x) > phchyh (x). Generally, pg = ph and cg = ch; therefore, one could infer that when yg (x) >

yh (x), then the vector x belongs to the class g.

In real-time data classification problems, dataset distribution is generally unknown, and a
calculation of probability density function yg (x) should be defined. It is accomplished by the Parzen
methodology, where the probability density function for more than one parameter is formulated by
using Eq. (7):

y (x) = 1
l

∑l

i=1
Wi(x, xi) (7)

Now, Wi (x, xi) = σ −1
1 . . . σ −1

n F
(
σ −1

1 (xi1 − x1) , . . . , σ −1
n (xin − xn)

)
, F (.) represents the weighting

function that should be properly chosen [19], l indicates the input pattern count, and σ1, . . ., σn denotes
standard deviation related to the mean of n parameters x1, . . ., xn. Generally, the Gaussian function is
a collective decision for weighting.

Eq. (7) describes the architecture and the process of PNN. Then, assume a Gaussian function as
an activation for the probability density function and consider that this function can be evaluated for
class g as follows:

yg (x) = 1
lg(2π)n/2(det�g)1/2

∑lg

i=1
exp

(
−1

2

(
xg,i − x

)T
�−1

g

(
xg,i − x

))
(8)

In Eq. (8), �g = diag
(
σ 2

g,1, . . . , σ 2
g,n

)
refers to the covariance matrix, LG denotes the example

count of class g, σg,j denotes the smoothing variable related to a j-th parameter and g-th e classes,
and xg, i indicates the i-th training vectors (i = 1, . . . , LG) from the g class. The equation given in (8)
offers g = 1, . . ., G summation neuron of PNN architecture. The components of the previous layer,
the pattern neuron, feed the component to the sum evaluated through every example of g-th e class.
Then, LG hidden neuron constitutes the input for g-th e summation neuron. At last, the output layer
defines output for vector x according to Bayes’s decision rule.

G∗ (x) = arg max
g

{
yg (x)

}
(9)
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In Eq. (9), G∗ (x) signifies the expected class for pattern x. Therefore, the pattern layer needs l =
l1 + . . . + lG nodes.

Here, a single smoothing variable for every class and attribute is employed. The selection of

variation of σ choice imposes, based on Eq. (8), the predictability of saving a G × n matrixes of σ

‘

s.
Therefore, the g-th summation neuron produces to decision layer of the output signal (8), however,
with σg,j as an intrinsic variable. Thus, the smoothing variable is evaluated for the j-th parameter of
every g class. This technique allows for highlighting the similarity of vectors belonging to a similar
class. The conjugate gradient methodology defines the value of σ .

2.2 Hyperparameter Optimization

For optimal hyperparameter tuning of the DL models, the CBSO algorithm is exploited in
this work. The BSO algorithm is a robust optimization procedure with the features of the simplest
technique, better expandability, etc. Deliberate N virtual birds fly and forage for food [24]. Supposing
xt

i (i ∈ [1, 2, · · · , N]) expresses the position of an ith bird at t. The bird behaviour is defined below:

1. Foraging behaviour can be defined by Eq. (10):

xt+1
i,j j = xt

i,j +
(
pi,j − xt

i,j

) × C × rand (0, 1) + (
gi,j − xt

i,j

) × S × rand (0, 1) (10)

2. Vigilance behaviour can be defined by Eq. (11):

xt+1
i,j = xt

i,j + A1

(
meanj − xt

i,j

) × rand (0, 1) + A2

(
pi,j − xt

i,j

) × rand (−1, 1) (11)

which A1 and A2 are arithmetically defined below:

A1 = a1 × exp
(

− pFiti

sumFit + ε
× N

)

A2 = a2 × exp

((
pFiti − pFitk∣∣pFitk

− pFiti

∣∣ + ε

)
× N × pFitk

sumFit + ε

)

a1 and a2 denote constants in [0, 2]. ε refers to a small constant.
3. Flight behaviour is defined below:

xt+1
i,j = xt

i,j + randn (0, 1) × xt
i,j (12)

xt+1
i,j = xt

i,j +
(
xt

k,j − xt
i,j

) × FL × randn (0, 1) (13)

Now, FL lies within [0, 2]. The chaotic method has a sensitive property to primary conditions.
The chaotic signal produced using the determinist system has the superiority of genus-randomness.
The curve is defined using the primary values and chaos mapping parameter. In the CBSO algorithm,
logistic mapping is widely applied. The Logistic chaotic scheme has complicated dynamic behavior
and is defined below:

λi+1 = μ × λi × (1 − λi) (14)

λ ∈ [0, 1], i = 0, 1, 2, · · · , μ is in [1,4]. The study suggested that μ is near 4 and λ near the average
distribution within [0, 1]. While the scheme is chaotic if μ is 4. The early population is a noteworthy
fragment in the intelligent optimization approach that impacts the convergence speed and the final
solution quality. Here, Logistic chaotic mapping is applied for population initialization that exploits
the solution space to improve the model’s accuracy.
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3 Results and Discussion

In this section, the Arabic poetry classification outcomes of the CBSOEDL-APCD model are
tested using an Arabic poetry dataset comprising 34000 samples under 17 class labels, as depicted in
Table 1.

Table 1: Dataset details

Class Description No. of instances

1 Tawil 2000
2 Kamil 2000
3 Basit 2000
4 Khafif 2000
5 Wafer 2000
6 Rajaz 2000
7 Ramal 2000
8 Mutaqarib 2000
9 Sari 2000
10 Munsarih 2000
11 Mujtathth 2000
12 Madrid 2000
13 Hazaj 2000
14 Mutadarik 2000
15 Muqtadab 2000
16 Mudari 2000
17 Prose 2000

Total number of instances 34000

Fig. 3 reports the confusion matrix generated by the CBSOEDL-APCD model on the entire
dataset. The figure indicated that the CBSOEDL-APCD model had recognized 1887 samples into
class 1, 1928 samples into class 2, 1911 samples into class 3, 1885 samples into class 4, 1917 samples
into class 5, 1893 samples into class 6, 1911 samples into class 7, and so on.

A detailed poetry classification outcome of the CBSOEDL-APCD model under the entire dataset
is represented in Table 2 and Fig. 4. The results reported that the CBSOEDL-APCD model had
enhanced outcomes under all class labels. For instance, the CBSOEDL-APCD model has identified
class 1 samples with an accuy of 99.39%, sensy of 94.35%, specy of 99.71%, F−score of 94.82%, and AUC score

of 97.03%. Also, the CBSOEDL-APCD algorithm has identified class 2 samples with accuy of 99.59%,
sensy of 96.40%, specy of 99.78%, Fscore of 96.47%, and AUC score of 98.09%. In addition, the CBSOEDL-
APCD algorithm has identified class 3 samples with accuy of 99.48%, sensy of 95.55%, specy of 99.73%,
F−score of 95.60%, and AUC score of 97.64%. Then, the CBSOEDL-APCD technique identified class 4
samples with an accuy of 99.39%, sensy of 94.25%, specy of 99.71%, Fscore of 94.80%, and AUC score of
96.98%.
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Figure 3: Confusion matrix of CBSOEDL-APCD approach under the entire dataset

Table 2: Result analysis of the CBSOEDL-APCD approach with distinct measures under the entire
dataset

Entire dataset

Labels Accuracy Sensitivity Specificity F-Score AUC Score

1 99.39 94.35 99.71 94.82 97.03
2 99.59 96.40 99.78 96.47 98.09
3 99.48 95.55 99.73 95.60 97.64
4 99.39 94.25 99.71 94.80 96.98
5 99.42 95.85 99.64 95.11 97.75
6 99.41 94.65 99.71 94.98 97.18
7 99.49 95.55 99.73 95.62 97.64
8 99.59 96.35 99.80 96.54 98.07
9 99.39 94.45 99.70 94.78 97.07
10 99.56 97.25 99.71 96.33 98.48
11 99.49 95.90 99.72 95.68 97.81
12 99.48 96.00 99.70 95.62 97.85
13 99.47 95.25 99.73 95.46 97.49
14 99.47 94.65 99.77 95.44 97.21
15 99.46 95.20 99.73 95.44 97.47
16 99.58 97.20 99.72 96.43 98.46
17 99.51 96.15 99.72 95.84 97.93

Average 99.48 95.59 99.72 95.59 97.66
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Figure 4: Average analysis of the CBSOEDL-APCD approach under the entire dataset

Fig. 5 portrays the confusion matrix generated by the CBSOEDL-APCD algorithm on 70% of
training (TR) data. The figure represented the CBSOEDL-APCD approach has recognized 1272
samples into class 1, 1341 samples into class 2, 1336 samples into class 3, 1346 samples into class
4, 1306 samples into class 5, 1324 samples into class 6, 1392 samples into class 7, and so on.

Figure 5: Confusion matrix of CBSOEDL-APCD approach under 70% of TR data

A brief poetry classification outcome of the CBSOEDL-APCD approach under 70% of training
(TR) is represented in Table 3 and Fig. 6. The results reported that the CBSOEDL-APCD algorithm
had exhibited enhanced outcomes under all class labels. For example, the CBSOEDL-APCD approach
has identified class 1 samples with an accuy of 99.43%, sensy of 94.15%, specy of 99.75%, F−score of
94.96%, and an AUC score of 96.95%. Further, the CBSOEDL-APCD technique has identified class 2
samples with accuy of 99.60%, sensy of 96.41%, specy of 99.79%, Fscore of 96.54%, and AUC score of 98.10%.
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Additionally, the CBSOEDL-APCD approach has identified class 3 samples with an accuy of 99.51%,
sensy of 95.84%, specy of 99.74%, Fscore of 95.84%, and AUC score of 97.79%. Then, the CBSOEDL-APCD
algorithm identified class 4 samples with an accuy of 99.39%, sensy of 94.52%, specy of 99.71%, Fscore of
94.92%, and AUC score of 97.11%.

Table 3: Result analysis of CBSOEDL-APCD approach with distinct measures under 70% of TR data

Training phase (70%)

Labels Accuracy Sensitivity Specificity F-Score AUC Score

1 99.43 94.15 99.75 94.96 96.95
2 99.60 96.41 99.79 96.54 98.10
3 99.51 95.84 99.74 95.84 97.79
4 99.39 94.52 99.71 94.92 97.11
5 99.38 94.84 99.66 94.67 97.25
6 99.41 94.71 99.70 94.94 97.20
7 99.49 96.00 99.71 95.80 97.86
8 99.61 96.78 99.79 96.72 98.28
9 99.44 94.99 99.72 95.29 97.35
10 99.57 97.20 99.71 96.33 98.46
11 99.45 95.72 99.69 95.38 97.70
12 99.52 96.07 99.74 95.94 97.91
13 99.44 94.91 99.72 95.21 97.32
14 99.47 94.79 99.76 95.38 97.27
15 99.44 95.27 99.70 95.33 97.49

16 99.61 97.49 99.75 96.73 98.62
17 99.52 96.18 99.72 95.87 97.95

Average 99.49 95.64 99.73 95.64 97.68

Figure 6: Average analysis of CBSOEDL-APCD approach under 70% of TR data
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Fig. 7 presents the confusion matrix generated by the CBSOEDL-APCD algorithm on 30% of
testing (TS) data. The figure denoted the CBSOEDL-APCD approach has recognized 615 samples
into class 1, 587 samples into class 2, 575 samples into class 3, 539 samples into class 4, 611 samples
into class 5, 569 samples into class 6, 519 samples into class 7, and so on.

Figure 7: Confusion matrix of CBSOEDL-APCD approach under 30% of TS data

A brief poetry classification outcome of the CBSOEDL-APCD approach under 30% of TS is
depicted in Table 4 and Fig. 8. The results reported that the CBSOEDL-APCD approach had outper-
formed enhanced outcomes under all class labels. For example, the CBSOEDL-APCD technique has
identified class 1 samples with an accuy of 99.30%, sensy of 94.76%, specy of 99.81%, Fscore of 94.54%,
and AUC score of 97.19%. Additionally, the CBSOEDL-APCD approach has identified class 2 samples
with accuy of 99.56%, sensy of 96.39%, specy of 99.76%, Fscore of 96.31%, an AUC score of 98.07%. The
CBSOEDL-APCD technique has also identified class 3 samples with accuy of 99.41%, sensy of 94.88%,
specy of 99.70%, F−score of 95.04%, and AUC score of 97.29%. Then, the CBSOEDL-APCD approach
identified class 4 samples with accuy of 99.38%, sensy of 93.58%, specy of 99.73%, Fscore of 94.48%, and
AUC score of 96.65%.

Table 4: Result analysis of CBSOEDL-APCD approach with distinct measures under 30% of TS data

Testing phase (30%)
Labels Accuracy Sensitivity Specificity F-Score AUC Score

1 99.30 94.76 99.61 94.54 97.19
2 99.56 96.39 99.76 96.31 98.07
3 99.41 94.88 99.70 95.04 97.29
4 99.38 93.58 99.73 94.48 96.65

(Continued)
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Table 4 (continued)
Testing phase (30%)

Labels Accuracy Sensitivity Specificity F-Score AUC Score

5 99.51 98.07 99.60 96.07 98.84
6 99.42 94.52 99.73 95.07 97.12
7 99.48 94.36 99.77 95.14 97.07
8 99.57 95.26 99.82 96.11 97.54
9 99.26 93.15 99.64 93.55 96.39
10 99.56 97.37 99.70 96.34 98.53
11 99.58 96.33 99.78 96.41 98.05
12 99.39 95.83 99.61 94.88 97.72
13 99.53 96.04 99.75 96.04 97.89
14 99.45 94.36 99.79 95.56 97.07
15 99.53 95.03 99.79 95.71 97.41
16 99.49 96.53 99.68 95.74 98.11
17 99.49 96.08 99.71 95.77 97.89

Average 99.47 95.44 99.72 95.46 97.58

Figure 8: Average analysis of CBSOEDL-APCD approach under 30% of TS data

The training accuracy (TRA) and validation accuracy (VLA) gained by the CBSOEDL-APCD
method on the test dataset is shown in Fig. 9. The experimental outcome represented the CBSOEDL-
APCD algorithm has attained maximum values of TRA and VLA. In Particular, the VLA is greater
than TRA.

The training loss (TRL) and validation loss (VLL) gained by the CBSOEDL-APCD algorithm
on the test dataset were exhibited in Fig. 10. The experimental outcome indicates the CBSOEDL-
APCD approach has accomplished least values of TRL and VLL. Seemingly, the VLL is lesser than
TRL. A clear precision-recall analysis of the CBSOEDL-APCD methodology on the test dataset is
given in Fig. 11. The figure specified that the CBSOEDL-APCD algorithm has resulted in enhanced
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values of precision-recall values under all classes. A detailed ROC analysis of the CBSOEDL-APCD
technique on the test dataset is portrayed in Fig. 12. The results implicit that the CBSOEDL-APCD
algorithm has outperformed its ability to categorise distinct classes on the test dataset. For assuring
the enhancements of the CBSOEDL-APCD model, a comparative accuy examination is made in
Table 5 [25]. The experimental values indicated that the expert system and bidirectional long short
term memory (BiLSTM) models had reduced accuy of 96.43% and 96.27%, respectively.

Figure 9: TRA and VLA analysis of the CBSOEDL-APCD approach

Figure 10: TRL and VLL analysis of the CBSOEDL-APCD approach
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Figure 11: Precision-recall analysis of the CBSOEDL-APCD approach

Figure 12: ROC analysis of the CBSOEDL-APCD approach

Table 5: Comparative analysis of the CBSOEDL-APCD approach with recent algorithms

Methods Accuracy

CBSOEDL-APCD 99.48
Expert system 96.43

(Continued)
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Table 5 (continued)
Methods Accuracy

Context-free grammar 97.59
Rule-based algorithm 98.38
BiGRU 97.14
BiLSTM 96.27

Next, the bidirectional gated recurrent unit (BiGRU) and Context free grammar models have
obtained slightly enhanced accuy of 97.14% and 97.59%, respectively. However, the CBSOEDL-APCD
model has showcased a higher accuy of 99.48%. These values reassured that the CBSOEDL-APCD
model had obtained effectual SA outcomes.

4 Conclusion

This study introduced a new CBSOEDL-APCD algorithm for classifying and dictarization of
Arabic text into Arabic poetries and prose. Primarily, the CBSOEDL-APCD technique carries out data
pre-processing to convert it into a useful format. Besides, the EDL model encompasses DBN, GRU,
and PNN models. At last, the CBSO algorithm is employed for the optimal hyperparameter tuning of
the DL models to enhance the overall classification performance. An extensive range of experiments
was performed to demonstrate the enhanced outcomes of the CBSOEDL-APCD technique. A wide-
ranging experimental analysis indicates the better outcomes of the CBSOEDL-APCD approach over
other recent ones. Thus, the CBSOEDL-APCD technique can be employed to classify Arabic poems.
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