
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.040259

ARTICLE

Security Test Case Prioritization through Ant Colony Optimization
Algorithm

Abdulaziz Attaallah1, Khalil al-Sulbi2, Areej Alasiry3, Mehrez Marzougui3, Mohd Waris Khan4,*,
Mohd Faizan4, Alka Agrawal5 and Dhirendra Pandey5

1Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah, 21589, Saudi Arabia
2Department of Computer Science, Al-Qunfudah Computer College, Umm Al-Qura University, Mecca, Saudi Arabia
3College of Computer Science, King Khalid University, Abha, 61421, Saudi Arabia
4Department of Computer Application, Integral University, Lucknow, Uttar Pradesh, 226026, India
5Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India

*Corresponding Author: Mohd Waris Khan. Email: waris.khan070@gmail.com

Received: 11 March 2023 Accepted: 31 July 2023 Published: 09 November 2023

ABSTRACT

Security testing is a critical concern for organizations worldwide due to the potential financial setbacks and damage
to reputation caused by insecure software systems. One of the challenges in software security testing is test case
prioritization, which aims to reduce redundancy in fault occurrences when executing test suites. By effectively
applying test case prioritization, both the time and cost required for developing secure software can be reduced.
This paper proposes a test case prioritization technique based on the Ant Colony Optimization (ACO) algorithm, a
metaheuristic approach. The performance of the ACO-based technique is evaluated using the Average Percentage
of Fault Detection (APFD) metric, comparing it with traditional techniques. It has been applied to a Mobile
Payment Wallet application to validate the proposed approach. The results demonstrate that the proposed technique
outperforms the traditional techniques in terms of the APFD metric. The ACO-based technique achieves an
APFD of approximately 76%, two percent higher than the second-best optimal ordering technique. These findings
suggest that metaheuristic-based prioritization techniques can effectively identify the best test cases, saving time
and improving software security overall.

KEYWORDS
Confidentiality; integrity; authentication; non-repudiation; resilience; authorization; Ant Colony Optimization
algorithm

1 Introduction

Software-based systems have made their way into every possible space of human society. From
mobile phone applications, households, transportation, businesses, banking, and power supply, to
space explorations, and other industries, software systems are now dominating modern society [1].

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.040259
https://www.techscience.com/doi/10.32604/csse.2023.040259
mailto:waris.khan070@gmail.com

3166 CSSE, 2023, vol.47, no.3

Though software applications have revolutionized human endeavours, it is important to investigate
whether these applications are secure and, if so, to what extent. Researchers and developers constantly
improvise upon existing development activities to make software systems better and more secure [2].

The software development lifecycle incorporates a major portion where changes are an inevitable
part of the development process. Hence, it becomes difficult to manage the security regression
test suites [3]. Testers have to run security regression testing whenever the changes are performed
in a software application. In cases of multiple applications, or if the entire project needs to be
automated, then security regression testing becomes a very complex, time-consuming and costly
expense. Optimization techniques are used to overcome the problems of exhaustive testing and save
time and cost incurred in the testing process. Optimizing security test cases can highlight security issues
as it prioritizes the faults so that the mitigation process can be run sequentially [4,5]. If optimization
of security testing is not done, then the testing process involving fault detection also becomes chaotic.
To mitigate a fault, the test should quickly find a fault or vulnerability. After identifying the faults, the
priority decides which fault/vulnerability should be tackled first [6,7]. This decreases the workload of
the developer team as it saves time on reworks, and since the prioritization has already been done, a
sequence has to be followed to mitigate the faults.

A thorough literature review in this context reveals that the ACO technique is rarely used to
optimise security test cases. Therefore, the present study employs ACO based algorithm for optimizing
security test case prioritization. Security regression testing can remove the redundant test cases
permanently to reduce the test cases. Test case optimization will give a quicker pass or fail result,
thus enhancing the quality of software structure as optimization increases the fault detection rate
more accurately [8]. This reduces the computational time and the cost needed to modify the software
application.

The ACO algorithm is used to prioritize security test cases concerning the Mobile Wallet Payment
application. The result of the ACO-based technique was then compared with the traditional techniques
and other state-of-the-art algorithms like Genetic Algorithm (GA) [9], Particle Swarm Optimization
(PSO) [10] and Ant Lion Optimization (ALO) [11].

The major contributions of this work are as follows: Firstly, we examined various published
standards, and subsequently, we presented a critical review. An ACO-based algorithm for selecting
security test case prioritization is proposed. Along with a comparison of the proposed method to other
techniques like reverse ordering, random ordering, Genetic Algorithm, Particle Swarm Optimization,
Ant Lion Optimization. The fault detection rate is used to evaluate the performance of the algorithm
presented in this paper.

Rest of the paper is organized into the following sections: In Section 2, an overview of the relevant
work that ACO has done on test cases is presented. Section 3 summarizes various security test case
optimization and prioritization techniques along with the complete workflow for selecting test cases,
and the ACO-based proposed approach is explained. Section 4 provides us with the implementation
of the proposed ACO algorithm on the Mobile Payment wallet. Test case sampling and analysis are
presented in Section 5. In Section 6, we discuss the results obtained at each iteration. Section 7 presents
the comparison between the traditional algorithm and another evolutionary algorithm. Section 8
shows the discussion, and finally, the conclusion is presented in Section 9.

CSSE, 2023, vol.47, no.3 3167

2 Related Works

Bo et al. elucidated the primary phase of the exploration process in Chimp Optimization Algo-
rithm (ChOA), where the integration of opposition-based learning (OBL) techniques takes precedence
to augment ChOA’s capability for thorough searches. By incorporating OBL, the traditional ChOA
overcomes stagnation issues and achieves a faster convergence rate. In this study, the researchers
employ the greedy selection technique to guide ChOA’s focus towards the promising search domain
within the search space [12].

Liu et al. addressed the ChOA convergence constraint in multimodal optimization problems in
this study, and the universal learning paradigm is offered as a solution to this problem. An innovative
method for dealing with limitations in real-world optimization issues is presented. The ULChOA
has undergone rigorous testing and evaluation across a diverse range of scenarios. Specifically, it has
been subjected to assessment on fifteen extensively employed multimodal numerical test functions,
ten challenging tests from the IEEE CEC06-2019 suite, and twelve real-world optimization problems
characterized by constraints in various engineering domains [13].

Demircioğlu et al. recommended regression testing using network packets. The authors con-
structed a proof-of-concept test automation tool and assessed it in finance. This technique uses actual
data packets in software testing, unlike previous research. The use of network packets contributes to an
improvement in the framework’s level of generalization. The research finds exceptional reuse capacity
and impacts a real-world business-critical system by minimizing effort and enhancing API regression
testing automation [14].

Jung et al. proposed a method that explores a collection of products that have s common block of
code when covered by the test case with common results followed by the removal of products form the
collection on which the test is applied. The assessment findings revealed that the complete selection
strategy and the approach of repeatedly using an RTS method for a single software system decreased
test executions by 59.3% and 40%, respectively [15].

Lou et al. undertook a rigorous survey to carefully evaluate test case prioritization works from six
aspects: algorithms, criteria, measurements, limitations, empirical investigations, and scenarios. The
authors described current work and test case prioritization trends for each of the six elements. They
also explored the existing challenges and limits in research on test case prioritizing [16].

Taghavi et al. used a unique GWO-based MA and two supplementary features, Individual
Best Memory (IBM) and Penalty Factor (PF), to train a Feed-forward Neural Network (FNN) to
classify Sonar and Radar datasets. FNN is supplemented by GWO-based Feature Selection (FS).
The University of California, Irvin (UCI) sonar and radar datasets were used to test the proposed
MA’s classification accuracy, local optima avoidance, and convergence speed without increasing
computational complexity. This framework works for atmospheric research and naval navigation
systems [17].

Bajaj et al. suggested an enhanced quantum-behaved particle swarm optimization technique for
regression testing. A fix-up procedure was used for combinatorial TCP perturbation; the dynamic
contraction-expansion coefficient speeds convergence. The data revealed that the fault coverage had
greater inclusiveness, test selection, and cost reduction percentages than statement coverage, but at the
expense of a large fault detection loss (around 7%) during the test case reduction [18].

Saju Sankar et al. [19] aimed to build optimum test cases in an automated manner using a modified
ACO technique that provides maximum coverage. The prediction model employed in this study assures
that the design of test inputs is more accurate. A comparison of related optimization techniques utilized

3168 CSSE, 2023, vol.47, no.3

in automated test case generation was also examined. The viable test cases are produced to cover all
transitions at least once.

Zhang et al. [20] introduced a solution based on an ACO algorithm and presented its two distinct
implementation processes: distance-based and index-based implementation. Firstly, the test cases
have been evaluated with a general indicator based on the requirements. Secondly, the concept of
attractiveness in the test case was proposed, and it was based on the definition of the distance between
test cases. The main design strategies were finally established, including the pheromone update strategy,
optimal update strategy, and a local mutation strategy.

Ning et al. [21] presented a paper on “Comparative study of Ant Colony Algorithms for Multi-
Objective Optimization” in which the authors explained the basic ACO process for solving MOPs. A
detailed classification of algorithms from different aspects was also presented in the analysis to reflect
the various algorithmic characteristics. The study also proposed the selection of MOACOs to solve
the problem.

Nayak et al. ’s [22] study entitled “Enhancing Efficiency of the Test Case Prioritization Technique
by Improving the Rate of Fault Detection” is based on improving the efficacy of the regression test
by organizing test cases to meet certain criteria. The paper also suggested one potential criterion, i.e.,
prioritization, to maximize the fault detection rate in the test suite. Focus was given to arranging test
cases in a specific order in which the higher priority test cases were made to operate earlier than the
lower test cases.

Sahoo et al. ’s [23] study on “Automated Test Case Generation and Optimization” emphasized
using an Evolutionary Algorithm to identify test cases with resources. The study also identified the
critical domain requirements. Evolutionary Algorithms such as Bee Colony Algorithm (BCA) have
gained superiority over other algorithms. This paper also explained the use of the Harmony Search
Algorithm (HSA), which is based on the enhancement process of music. Furthermore, the author
also explained the use of Particle Swarm Optimization (PSO), the intelligence-based meta-heuristic
algorithm.

Hridoy et al. ’s [24] study, “Regression Testing Based on Hamming Distance and Code Coverage”
introduced the latest method to prioritize test cases, which extends hamming distance-based prioriti-
zation with code coverage techniques. The proposed approach helps find past and current bugs in the
early regression testing process.

Muthusamy et al. [25] suggested that the method of regression tests be strengthened with priority
test cases to coordinate the degree of test case results. The analysis increases the fault rate when the test
suites cannot be completed. The authors in this paper have revisited the average Percentage of Faults
Detected (APFD) technique. The proposed algorithm proved to be more efficient and beneficial in
early fault detection goals.

In the study conducted by Pravin et al. [26], a novel approach of reordering test cases based on
time fault was proposed. The underlying premise of this research was to address situations where a
fault is detected in the source code, and subsequently, the code is stored in an open-source framework
such as Webkit. By reordering the test cases based on the timing of the fault, the researchers aimed
to enhance the efficiency of the fault detection and debugging process. This approach recognizes the
importance of capturing the temporal aspects of faults and leverages the open-source framework to
facilitate effective code management and collaboration among developers.

Table 1 summarizes the relevant research papers on security test case prioritization using the Ant
Colony Optimization algorithm. It highlights the key findings and approaches utilized in each study.

CSSE, 2023, vol.47, no.3 3169

Table 1: Existing approaches for test case prioritization

Author’s
name/year

The focus of the relevant work Summary of the contribution

Bo et al., 2023
[12]

Developing the chimp optimization
algorithm involved integrating a
weighted opposition-based
technique and a greedy search for
effective solutions to complex
multimodal engineering problems

This study presents the ChOA
algorithm, which combines greedy
search (GS) and opposition-based
learning (OBL) to enhance
exploration and exploitation in
solving real-world engineering
constrained problems. The
algorithm’s performance is
compared against CMA-ES,
SHADE, and cutting-edge methods.
Also compared are ordinary ChOA
and the best benchmark OBL-based
algorithms, such as OBL-GWO,
OBL-SSA, and OBL-CSA, which
won the CEC competition.

Liu et al., 2022
[13]

Optimizing constraint engineering
challenges with robust universal
learning chimp optimization shows
its ability to solve complexity

The ULChOA, a version of the
ChOA, used a revolutionary
learning mechanism to update
future chimp placements using all
prior best knowledge about other
chimps. Keeping chimp variation
prevented early convergence. Fifteen
multimodal functions, 10 IEEE
CEC06-2019 suit tests, and 12
limited real-world optimization
difficulties rated the ULChOA’s
performance.

Demircioğlu
et al., 2022 [14]

API message-driven regression
testing framework

In this work, the technique
facilitates test case reuse and
provides 100% automation in
client-server API regression testing.
This automation optimizes testing
accuracy, especially for key systems
requiring a 100% passing score for
release.

(Continued)

3170 CSSE, 2023, vol.47, no.3

Table 1 (continued)

Author’s
name/year

The focus of the relevant work Summary of the contribution

Jung
et al., 2020 [15]

Efficient regression testing of
software product lines with reduced
redundant executions

This article proposes a strategy to
reduce duplicate SPL regression test
runs. This approach avoids
irrelevant test runs by choosing
products in phases without
repeating comparable tests.

Lou
et al., 2019 [16]

A survey on regression test case
prioritization

The author analyzed the current test
case prioritizing techniques and
suggested future options. The
authors discussed test case
prioritization concerns, challenges,
and future prospects based on these
findings.

Taghavi
et al., 2019 [17]

Classification of sonar and radar
datasets using a grey wolf optimizer
with customizable best memory and
penalty factor

This study presents a
GWO-enhanced MA for FNN
classification training. FSphase
reduces time and improves
categorization. Current research FS
employs MA. IPG outperformed
IG, PG, GWO, and AGPSO in
experiments. FS improves
classification accuracy with fewer
features. Finally, the technology may
help ships and submarines prevent
mishaps, and scientists track
ionosphere erosion.

Bajaj
et al., 2022 [18]

Enhanced quantum-behaved
Particle Swarm Optimization for
prioritizing, selecting, and reducing
test cases

In this paper, both fault analysis and
statement coverage is performed on
the algorithm to evaluate its
robustness. The suggested technique
outperforms the genetic algorithm,
bat algorithm, grey wolf
optimization, particle swarm
optimization and its variants for
prioritizing test cases.

Sarkar
et al., 2020 [19]

Using an ACO algorithm for
automated software test case
generation

This paper’s prediction model
improves test input design.
Automated test case creation
optimization strategies were
compared, which also helps cut
down on testing time.

(Continued)

CSSE, 2023, vol.47, no.3 3171

Table 1 (continued)

Author’s
name/year

The focus of the relevant work Summary of the contribution

Zhang et al., 2019
[20]

Prioritizing test cases using the ACO
algorithm

In this work, the findings of the
experiments indicate that the
approach has a strong capacity for
global optimization and that its
overall impact is superior to that of
the particle swarm optimization
algorithm, the genetic algorithm,
and random testing.

Ning et al., 2018
[21]

Multi-objective optimization using
Ant Colony Optimization
algorithms: A comparative analysis

In this article, the author describes
the multi-objective ant method,
which was used to find that the
number of optimization objectives
increases as the complexity of the
problem increases. As a result,
making use of the operational
information to guide the process of
multi-objective Ant Colony
Optimization will be an efficient
method to raise the ant colony’s
performance even further.

Nayak et al., 2017
[22]

Enhancing efficiency of the test case
prioritization technique by
improving the rate of fault detection

This study is compared to other
ways using APFD values. The
suggested approach has a superior
fault identification rate than similar
prioritization strategies. Analysis of
the planned work suggests
maximum faults will be discovered
in less time.

Sahoo et al., 2016
[23]

Analyzing methods for optimizing
and generating test cases
automatically

This research analyses the function
of Artificial Bee Colony, particle
swarm optimization, and harmony
search in producing random test
data and optimizing it. It discusses
how random test cases are produced
and how to optimize a problem.

(Continued)

3172 CSSE, 2023, vol.47, no.3

Table 1 (continued)

Author’s
name/year

The focus of the relevant work Summary of the contribution

Hridoy et al., 2015
[24]

Utilizing hamming distance and
source code coverage for regression
testing

This article proposes a novel
method for ranking test cases that
combines hamming distance and
code coverage methodologies. This
approach can detect historical
problems early and new bugs
without changing the priority suite.

Muthusamy
et al., 2014 [25]

The efficiency of regression-based
prioritization methods for test cases

The authors suggest prioritizing test
cases for better regression testing. It
improves defect identification when
test suites cannot finish. This study
revisits the APFD approach. The
suggested technique improved early
failure detection.

Pravin et al., 2013
[26]

Effective test case selection and
prioritization in regression testing

In this paper, the fault detection
approach is presented to rank test
cases based on their efficiency in
finding flaws in the test suite. The
fault detection technique decreases
test case selection while prioritizing
the test suite.

From the above literature survey, it can be seen that the majority of Test Case Prioritization
(TCP) approaches have used Evolutionary Algorithm and attempted to enhance a test suite’s rate of
fault recognition. The study literature review shows a relative study of the old and new techniques
of optimization. Moreover, various methods to measure the depth of fault detection during the
testing process have also been researched. The approaches discussed in the literature survey show
interrelationships among criteria and sub-criteria to identify stronger sets of criteria and sub-criteria
so as to focus on their prioritization to deliver better and more accurate results. To identify and uncover
faults/bugs at a faster rate, the Average metric Percentage of Faults Detected (APFD) has been utilized.

3 Security Test Case Optimization

The ever-evolving complexities and extensibilities of software applications have had an impending
impact on the security structure and corresponding security testing activities. This phenomenon has
posed a unique challenge for the developers and researchers who are now devising newer techniques for
the security testing of software applications. The issue of recurrent failures during fault identification
within the test suites of various modules can be resolved by effectively employing the security testing
optimization process. This will help save time and cost in the development process of a software
application. Moreover, it will also prevent the rework of a specific development activity [27,28]. While
researchers have applied the ACO technique to various sub-systems and domains within software

CSSE, 2023, vol.47, no.3 3173

development, its application within the realm of security testing remains untapped. Therefore, after
a thorough study, the use of the ACO technique is considered in this proposed article to resolve the
problems related to the optimization of security testing of a software application.

3.1 Catalog of Optimized Test Case Prioritization Techniques

The objective of locating faults within security regression testing can be done by prioritizing
test cases. Test case prioritization primarily orders test cases and eliminates methods that may
not be effective for traditional regression testing. We considered and studied various prioritization
techniques, which are as follows [4].

3.1.1 No Ordering (No)

The empirical analysis undertaken for this study is based on different prioritization techniques.
The first of the methods is simply based on skipping any technique for prioritization, i.e., using test
cases as it is without any treatment.

3.1.2 Random Ordering (Rmo)

In the random ordering technique, we randomly pick a test case order from the test suite for the
empirical study.

3.1.3 Reverse Ordering (Reo)

It refers to the techniques of No ordering or Unordered.

3.1.4 Optimal Ordering (Oto)

From a test case, an optimal ordering of the test case can be obtained that may help maximize
the fault detection rate of the test suite. Various optimizing algorithms, including evolutionary and
bio-inspired algorithms, can be used for this task.

3.2 Ant Colony Optimization (ACO)

ACO was proposed by Dorigo et al. in 1996 [8]. It was developed on the idea of the behaviour
of ants. Ants travel long distances in search of food, leaving behind a trail of pheromone deposits
in their path. The other ants follow the same path, mainly the path where the pheromone deposit is
more than the other paths, thus reinforcing the pheromone deposits in their way. Moreover, ants tend
to select the shortest route from the food source to home because the pheromone deposits dissipate
after some time. Hence, ants need to decide the shortest possible path [29,30]. Ultimately, other ants
which follow the same path also cover the shortest route. ACO method has been used for many
optimization problems related to test data generation, multi-objective resource allocation, travelling
salesman problems, vehicle routing, etc. [31,32].

However, this method has not been used in the case of security testing of a software application
for optimizing the faults during the testing process. The purpose of using ACO based algorithm in
this proposed research work is simply to derive the shortest possible approach to cover more and more
faults and vulnerabilities in comparatively lesser attempts of test cases. This will help in optimizing
the test case suit as it will eliminate the extra time consumed in the traditional testing techniques of
software security. Figs. 1 and 2 illustrate the selection process for test cases and the functional diagram
for the ACO algorithm.

3174 CSSE, 2023, vol.47, no.3

Figure 1: Flowchart for the selection of test cases

3.2.1 Assumptions for ACO-Based Algorithm

The terms used in ACO-based algorithms for optimizing the security test cases are described in
Table 2.

Table 2: Description of ACO-based algorithm

Term Description

T = {t1, t2, . . . , t49} Original test suite
CTC = {CTC1, CTC2, . . . , CTC7} Combined test cases
F = { Flt-1, Flt-2, . . . , Flt-10} Faults identified
MAX_TIME The maximum time period after which the execution of

the algorithm terminates. (set to 84 min)
An_1 to An_7 Ants (Search agents)
WTi Weight of the ith edge
K Pheromone evaporation rate (set to 10%)

Each of the CTCs may cover some or all the faults from F. The minimum execution time of each
ant is added to the current execution time after every iteration. The algorithm terminates once the
current execution time exceeds MAX_TIME. The weight WTi of an edge represents the amount of
pheromone deposited on the edge. The rate of pheromone deposition is assumed to be 100% for each

CSSE, 2023, vol.47, no.3 3175

ant. The pheromone evaporation rate is assumed to be k%, which means that after the deposition of
every iteration, the pheromone is reduced by k% of WTi.

Yes

Yes

No

No

YesNo

Start

Initialize Parameter Generate Random Ants

Start Ant Visit with initial CTC

Find Faults Covered by initial CTC

Find Faults Covered

CALL SELECT TEST CASE ()

Do all faults covered

Update pheromone values for the
minimum Ant visit execution time

Update current execution time

Do all Ants' Visits
complete

If CURRTIME>=MAX

TIME

Stop

START NEXT
ITERATION

Get the Optimal path

Figure 2: Flowchart of ACO-based proposed approach

3.2.2 Selection of Test Cases

The flowchart in Fig. 1 shows the process of selecting the test cases. Initially, when all the edges
have zero pheromones deposited, a random edge is selected. Otherwise, an edge with a maximum
pheromone value is selected. If there are multiple edges with maximum pheromone value, then an
edge is selected which was previously not selected.

3.2.3 Functional Diagram for the Proposed ACO Algorithm

The proposed ACO-based algorithm, as shown in Fig. 2, is implemented step by step as follows:

Step 1: Initialize parameters and create an ant colony.

Step 2: Position an ant at the initial CTC.

Step 3: Identify faults explored by the first CTC.

3176 CSSE, 2023, vol.47, no.3

Step 4: Choose a test case from SELECT_TEST_CASE and document covered faults.

Step 5: Repeat step 4 until each fault is explored.

Step 6: Deploy the next ant when all faults are covered, repeating until each ant completes a cycle.

Step 7: Adjust pheromone levels for the ant with the shortest run time.

Step 8: Keep track of the current execution time.

Step 9: If the MAX_TIME is greater than the present run time, repeat steps 2 to 8 for the next
iteration.

Step 10: If the current run time surpass the MAX_TIME, obtain the optimal path and end the
algorithm.

4 Case Study: Mobile Payment Wallet

Mobile payment wallets are now widespread, utilizing various communication technologies like
Magnetic Secure Transmission (MST), Near Field Communication (NFC), Quick Recognition Code
(QR), Bluetooth Low Energy (BLE), SMS, and the Internet to transmit payment data to merchant
Point of Sale (POS) systems. The Mobile Payment Wallet case study is a mobile app comprising seven
modules: Sign In (M1), Profile Update (M2), Bill Payments & Recharges, Add money, mPIN Change,
Funds Transfer, and Transaction Details as shown in Fig. 3.

Bill Payments &
Recharges

Electricity Bill

Credit Card Bill

Water Tax

Gas

Mobile Recharge

DTH Recharge

Add Money

Debit Card

Net Banking

Request from Contact

Funds Transfer

To Bank Account

To Contact

To Mobile

Transaction History

Last 10 txn

Last Month txn

Custom Range

Sign In

4 digitmPIN

Via OTP

mPIN Change

Via OTP

Profile Update

Address Update

Bank Account Update

Aadhaar Seeding

Figure 3: Diagrammatic illustration of the wallet application for mobile payments

In the Sign In module (M1), the users are required to input their login credentials, specifically
consisting of a unique username and a confidential four-digit mPIN. These credentials serve as the
key to access the application. In the subsequent module, Profile Update (M2), authenticated users
possess the privilege to modify their account details. This includes updating personal information like
addresses, bank accounts, and integrating Aadhaar details, among others. Notably, this information
holds significant importance and is restricted from alteration or access by any unauthorized users,
ensuring the security and integrity of the user’s account.

In the third module (M3), the users can spend the added money from their online wallet to settle
utility bills of credit card, electricity, house tax, etc. In case of a low wallet balance, the user can add
money to the wallet through the fourth module (M4). This can be done either through the use of a

CSSE, 2023, vol.47, no.3 3177

debit/credit card or by net banking, or by request from a contact. The way in which these payments
are processed is not altered through mobile payments by card merchant networks; they are based on
traditional card-based payment systems in general.

In the fifth module (M5), the user can change the four-digit mPIN. The request for change is
validated via an OTP (One Time Password) sent to the registered mobile number of the user, which will
authenticate the transaction. In the sixth module (M6), the funds can be transferred to a specific bank
account, to a contact or to a mobile number attached to the user’s profile. Module seven (M7) furnishes
comprehensive information pertaining to online transactions. This encompassing data encompasses
details of the last ten transactions, an overview of transactions from the previous month, or the
specifics of transactions for a user-defined period, as explicitly specified by the user.

5 Test Case Sampling and Analysis

Software security test cases encompass a collection of scenarios, as illustrated in Fig. 4, comprising
both typical use cases and alternate cases. These meticulously constructed test cases serve the purpose
of investigating potential system faults, conducting thorough analyses of various security threats and
breaches that a software system may encounter, evaluating the reliability and dependability of the
software in diverse environments, and assessing the system’s resilience to faults.

Figure 4: A diagram depicting the use cases within the mobile payment wallet system

In order to comprehensively assess the behaviour of software systems under alternate test case
scenarios, the tester must meticulously examine and account for all potential vulnerabilities that pose
security challenges to the software system. This rigorous analysis aims to identify any weak links or
vulnerabilities within the software’s structure.

To analyse the behaviour of the software systems in alternate paradigm, the tester should take
all the enervations that compromise the system security. For the present study, seven test cases have

3178 CSSE, 2023, vol.47, no.3

been developed for each of the seven modules with respect to security attributes. Consequently, a
comprehensive set of 49 test cases was developed. Table 3 presents a catalog of 10 potential faults
that could manifest during the application’s utilization, specifically concerning the seven vital security
attributes: authentication, authorization, confidentiality, availability, integrity, non-repudiation, and
resilience. The normal flow of use cases has been shown in Fig. 4, and the alternate flow of use cases
is explained in their respective modules.

Table 3: Description of the faults

Faults Description

Flt-1 RNG (Random Number Generation) failure
Flt-2 Network error
Flt-3 Segmentation fault
Flt-4 File/data not found
Flt-5 Data loss
Flt-6 Infinite loop
Flt-7 Communication error
Flt-8 Configuration error
Flt-9 Service fault
Flt-10 Coupling fault

5.1 Module-1: Sign In

This module serves as the user’s gateway for accessing the system. It conducts user authentication
by verifying login credentials, specifically the username and mPIN. In the event of incorrect credentials,
the module triggers an error notification. Additionally, this module provides a platform for studying
the alternate use case scenario of SignIn, encompassing test cases 1 to 7. In test case-1, if the system
attempts to retrieve data from an incorrect memory segment, it results in the generation of Flt-3. Test
case-2 presents multiple potential scenarios. Firstly, an incorrect mPIN entry or a mismatch with the
associated file triggers Flt-2 and Flt-4. Secondly, poor connectivity conditions can lead to Flt-7, while
unavailability of the service prompts Flt-9. During the initial application startup phase, any erroneous
user-entered parameters result in the detection of a configuration error, specifically flagged as Flt-8

in test case-3. In test case-4, the occurrence of network interruptions or failures in file retrieval can
potentially result in multiple faults, including Flt-2, Flt-4, and Flt-9. Subsequently, following a successful
application startup, test case-5 focuses on the transition of information to the next module. Any
breakdown in this transfer process may lead to the emergence of Flt-10. Moving on to test case-6, the
inability of a user to authenticate their digital signature with the server gives rise to Flt-1, causing a
communication gap and consequently triggering Flt-7. Finally, test case-7 encompasses two potential
scenarios. Firstly, the application may encounter startup issues denoted by Flt-8, or it may experience
a halt marked by Flt-6. Table 4 provides an overview of the specific faults covered by each test case.

CSSE, 2023, vol.47, no.3 3179

Table 4: Sample test cases for each security attribute and associated faults identified in module-1

Security attribute/fault-specific test cases Flt-1 Flt-2 Flt-3 Flt-4 Flt-5 Flt-6 Flt-7 Flt-8 Flt-9 Flt-10

TC-1 (Authorization) _ _ X _ _ _ _ _ _ _
TC-2 (Authentication) _ X _ X _ _ X _ X _
TC-3 (Confidentiality) _ _ _ _ _ _ _ X _ _
TC-4 (Availability) _ X _ X _ _ _ _ X _
TC-5 (Integrity) _ _ _ _ _ _ _ _ _ X
TC-6 (Non-repudiation) X _ _ _ _ _ X _ _ _
TC-7 (Resilience) _ _ _ _ _ _ _ X _ _

5.2 Module-2: mPIN Change

This module is used by the users for changing their 4-digit mPIN in case of a suspected leak of
mPIN or upon the expiry of the validity period. The user will initiate this request to the application
server. The application server will authenticate it via OTP and old mPIN. Another scenario of mPIN
change includes test cases 8 to 14 can be studied in this module (Table 5).

Table 5: Sample test cases for each security attribute and associated faults identified in module-2

Security attribute/fault-specific test cases Flt-1 Flt-2 Flt-3 Flt-4 Flt-5 Flt-6 Flt-7 Flt-8 Flt-9 Flt-10

TC-8 X _ _ _ _ _ _ _ _ _
TC-9 _ X _ _ _ _ _ _ X _
TC-10 _ _ _ _ _ _ _ _ _ _
TC-11 _ X _ X _ _ _ _ X _
TC-12 _ _ _ _ _ X _ _ _ _
TC-13 X _ _ _ _ _ X _ _ _
TC-14 _ _ _ _ _ X _ _ _ _

In test case-8, the authorization may be affected by a corrupt digital signature because of Flt-1. In
test case-9, the authentication may fail due to Flt-2, which consequently leads to Flt-9. In this module,
no fault was observed, which can affect test case-10. For test case-11, a break in the network or in file
read could lead to Flt-2, Flt-4 and Flt-9. As in test case-7, the system may halt due to Flt-6 in test case-12.
Test case-13 is similar to test case-6. Finally, in this module, the request may fail due to Flt-6 in test
case-14. Table 5 shows the faults covered by each test case.

5.3 Module-3: Profile Update

This module allows users to update personal details and linked bank account details. It allows
users to update KYC details like Aadhaar linking. This module facilitates the examination of an
alternative use case scenario specifically focused on profile updates. This scenario includes 15–21 test
scenarios that give significant insights and analyses. In test case-15, an authorization may fail due to a
mismatch of the digital signatures because of Flt-1. In test case-16, a user may not be able to complete the
transactions because of Flt-2 leading to Flt-9. For test case-17, due to Flt-7, the user session may expire

3180 CSSE, 2023, vol.47, no.3

after no response from the user’s side. Flt-2 and Flt-4 will affect the availability of the system in test
case-18. Aadhaar linking could be failed to Flt-6, or there may be some issues in linking with another
module due to Flt-10 in test case-19. Test case-20 consists of Flt-7 due to no response from the user’s side.
Finally, at the last stage of this module, when the system reads external data, the user segment Flt-3 will
occur in test case-21. Table 6 shows the faults coverage of the test cases.

Table 6: Sample test cases for each security attribute and associated faults identified in module-3

Security attribute/fault-specific test cases Flt-1 Flt-2 Flt-3 Flt-4 Flt-5 Flt-6 Flt-7 Flt-8 Flt-9 Flt-10

TC-15 X _ _ _ _ _ _ _ _ _
TC-16 _ X _ _ _ _ _ _ X _
TC-17 _ _ _ _ _ _ X _ _ _
TC-18 _ X _ X _ _ _ _ _ _
TC-19 _ _ _ _ _ X _ _ _ X
TC-20 _ _ _ _ _ _ X _ _ _
TC-21 _ _ X _ _ _ _ _ _ _

5.4 Module-4: Bill Payments & Recharges

This module is used for the payment of online bills like water tax, credit card bills, electricity bills,
etc. The same module also allows users to pay bills for online shopping and prepaid/postpaid recharges.
The users can pay these bills either by debit card and CVV or Internet Banking or via wallet balance.
The user is required to enter the correct mPINin order to perform the transaction. The transaction
will be declined if the user enters the wrong mPIN. The alternate use case scenario of bill payments &
recharges that includes test cases-22 to 28 can be studied in this module (Table 7).

Table 7: Sample test cases for each security attribute and associated faults identified in module-4

Security attribute/fault-specific test cases Flt-1 Flt-2 Flt-3 Flt-4 Flt-5 Flt-6 Flt-7 Flt-8 Flt-9 Flt-10

TC-22 X _ _ _ _ _ _ _ _ _
TC-23 _ X _ _ _ _ _ _ X _
TC-24 _ _ _ _ X _ _ _ _ _
TC-25 _ X _ X _ _ _ _ X _
TC-26 _ _ X _ _ _ _ _ _ X
TC-27 _ _ _ _ _ _ X _ _ _
TC-28 _ _ _ _ _ _ _ _ _ _

Test case-22 recognized that Flt-1 might hinder the authorization if a unique key is not generated.
In test case-23, poor network connectivity will result in Flt-2 and Flt-9. In test case-24, a loophole in the
system may result in Flt-5. Flt-2, Flt-4 and Flt-9 will occur in test case-25 if the user is denied service. In test
case-26, Flt-3 and Flt-10 are raised due to a mismatch in file read and information passing between two
modules, respectively. In test case-27, the transaction gets cancelled if the user cannot verify himself
due to Flt-7. No fault will occur for test case-28. Table 7 shows the faults coverage of the test cases.

CSSE, 2023, vol.47, no.3 3181

5.5 Module-5: Add Money

This module is used to top up or add money to the wallet. The user may either add money via
debit card or Internet Banking, or the user may also request money from a contact. The alternate use
case scenario of adding money that includes test cases-29 to 35 can be studied in this module. All the
test cases from test case-29 to 35 are similar to test case-22 to test case-28 in Module 4, respectively.
Table 8 shows the faults covered by each test case.

Table 8: Sample test cases for each security attribute and associated faults identified in module-5

Security attribute/fault-specific test cases Flt-1 Flt-2 Flt-3 Flt-4 Flt-5 Flt-6 Flt-7 Flt-8 Flt-9 Flt-10

TC-29 X _ _ _ _ _ _ _ _ _
TC-30 _ X _ _ _ _ _ _ X _
TC-31 _ _ _ _ X _ _ _ _ _
TC-32 _ X _ X _ _ _ _ X _
TC-33 _ _ X _ _ _ _ _ _ X
TC-34 _ _ _ _ _ _ X _ _ _
TC-35 _ _ _ _ _ _ _ _ _ _

5.6 Module-6: Funds Transfer

This module is used to initiate funds transfers to bank accounts, contacts or mobile. The user
will enter the amount, beneficiary detail and mPIN to complete the transaction. The alternate use
case scenario of funds transfer that includes test cases-36 to 42 can be studied in this module. In test
case-36, an incorrect key due to Flt-1 will halt the authorization process. In test case-37, Flt-2 and Flt-9 will
occur because of poor connectivity. In test case-38, the beneficiary may not be verified due to Flt-1, and
in test case-39, the beneficiary details cannot be retrieved due to Flt-2, Flt-4 or Flt-9. In test case-40, bad
file read, or miscommunication between modules will happen due to Flt-3 and Flt-10, respectively. Flt-1

will occur as a result of an incorrect account number, and Flt-7 may occur due to loss of information
during transfer in test case-41. Finally, in test case-42, no-fault will occur. Table 9 shows the faults
coverage of the test cases.

Table 9: Sample test cases for each security attribute and associated faults identified in module-6

Security attribute/fault-specific test cases Flt-1 Flt-2 Flt-3 Flt-4 Flt-5 Flt-6 Flt-7 Flt-8 Flt-9 Flt-10

TC-36 X _ _ _ _ _ _ _ _ _
TC-37 _ X _ _ _ _ _ _ X _
TC-38 X _ _ _ _ _ _ _ _ _
TC-39 _ X _ X _ _ _ _ X _
TC-40 _ _ X _ _ _ _ _ _ X
TC-41 X _ _ _ _ _ X _ _ _
TC-42 _ _ _ _ _ _ _ _ _ _

3182 CSSE, 2023, vol.47, no.3

5.7 Module-7: Transaction History

This module is used to get the transaction details that are completed through the wallet. The
alternate use case scenario of transaction history that includes test cases-43 to 49 can be studied in this
module. In test case-43, Flt-3 may occur due to improper reading. In test case-44, the poor or congested
network connection may cause Flt-2 and Flt-9. In test case-45, Flt-7 may occur due to connection loss.
The transaction detail may not be found because of bad connectivity, thus leading to Flt-2 and Flt-9.
Consequently, Flt-4 may also occur in test case-46. If the user has specified an invalid range, then Flt-6

may occur in test case-47. In test case-48, again, the network failure may result in Flt-7. The Flt-3 may
occur during test case-49 because of miscommunication between modules. Table 10 shows the faults
coverage of the test cases.

Table 10: Sample test cases for each security attribute and associated faults identified in module-7

Security attribute/fault-specific test cases Flt-1 Flt-2 Flt-3 Flt-4 Flt-5 Flt-6 Flt-7 Flt-8 Flt-9 Flt-10

TC-43 _ _ X _ _ _ _ _ _ _
TC-44 _ X _ _ _ _ _ _ X _
TC-45 _ _ _ _ _ _ X _ _ _
TC-46 _ X _ X _ _ _ _ X _
TC-47 _ _ _ _ _ X _ _ _ _
TC-48 _ _ _ _ _ _ X _ _ _
TC-49 _ _ X _ _ _ _ _ _ _

The outcomes of all the test cases are checked for any redundancy that may have crept in the final
result. The combined set of sample test cases is designed with respect to each security attribute, as
shown in Table 11. These test cases aim to address the identified faults while considering the execution
time associated with each test case.

Table 11: Combined test cases addressing security attributes, identified faults, and runtime

S.
No.

Combined test cases Total number of faults
covered during security
test

Respective module in
which faults are found

Total execution
time per unit

1 CTC1 (Authorization) Flt-1, Flt-3 Mi,i = 1, 2, . . . ,7 7
2 CTC2 (Authentication) Flt-2, Flt-4, Flt-7, Flt-9 Mi,i = 1, 2, . . . , 7 4
3 CTC3 (Confidentiality) Flt-1, Flt-5, Flt-7, Flt-8 Mi,i = 1, 3, 4, 5, 6, 7 5
4 CTC4 (Availability) Flt-2, Flt-4, Flt-9 Mi,i = 1, 2, . . . , 7 4
5 CTC5 (Integrity) Flt-3, Flt-6, Flt-10 Mi,i = 1, 2, . . . , 7 4
6 CTC6 (Non-repudiation) Flt-1, Flt-7 Mi,i = 1, 2, . . . , 7 5
7 CTC7 (Resilience) Flt-3, Flt-6, Flt-8 Mi,i = 1, 2, 3, 7 4

Where “CTC” refers to Combined test cases, “Flt” signifies Faults, and M1, M2, . . . , M7 represent
individual modules.

The organization’s paramount objective is to ascertain the optimal prioritization sequence
for achieving comprehensive fault coverage. To address the challenges that have arisen during the

CSSE, 2023, vol.47, no.3 3183

optimization of test cases, we have initiated the application of the ACO technique. Previous studies
done in this context have cited that early termination of testing could result in effective fault detection
with reordered test suite [3,33]. In the current section, the execution of the algorithm with time-based
prioritization is presented.

The security regression test suite, referred to as CTC, comprises a total of seven combined test
cases, denoted as {CTC1, CTC2, CTC3, CTC4, CTC5, CTC6, CTC7}, each associated with specific
execution times detailed in Table 9. During the execution of these combined test cases, the following
fault-detection outcomes were observed: CTC1 identified two faults, namely {Flt-1, Flt-3}, within a time
frame of seven minutes. CTC2 detected four faults, specifically {Flt-2, Flt-4, Flt-7, Flt-9}, in just four
minutes. CTC3 revealed four faults, denoted as {Flt-1, Flt-5, Flt-7, Flt-8}, within a five-minute duration.
Both CTC4 and CTC5 uncovered three faults each within four minutes, identifying {Flt-2, Flt-4, Flt-9}
and {Flt-3, Flt-6, Flt-10}, respectively. CTC6 successfully pinpointed two faults, {Flt-1, Flt-7}, in five minutes.
Lastly, CTC7 identified three faults, namely {Flt-3, Flt-6, Flt-8}, in just four minutes. These findings
provide valuable insights into the fault-detection capabilities and execution times associated with each
of the combined test cases within the CTC test suite.

The combined test suite is derived by consolidating all seven test case scenarios while eliminating
redundancy. The challenge at hand pertains to the selection and prioritization of security test cases
for optimal fault coverage. This selection process revolves around maximizing the fault-detection
capability of the test cases drawn from the set ‘T’, which represents the entire Test Suite comprising
‘n’ combined test cases. The objective is to identify a subset ‘S’ containing ‘m’ test cases (where ‘m’
is less than ‘n’) that are carefully chosen and optimized to achieve the desired testing objectives. The
problem can be depicted as an undirected graph G (V, E), where V refers to the set of vertices, and E
refers to the set of edges in the graph. ‘WTi’ is the weight of ‘ith’ edge. It describes the pheromone trail
deposited on edge ei ε E, which indicates the fault coverage ‘Flti’ on the selected path under the time
limit, ‘MAX_TIME’. The edges are initialized with the zero value.

6 Results

The sequence of the ACO-based algorithm’s execution is demonstrated across iterations in
Tables 12 to 19. To ensure controlled termination, a maximum time limit of 84 min is set, beyond
which the algorithm concludes the iteration and terminates. During each of the four iterations, every
ant selects a random path initially. As soon as the fault coverage criteria are fulfilled along the chosen
path, the ant halts its search. Ultimately, all the ants aim to identify the most favorable path that allows
them to cover the distance within the minimum total time. This strategic approach aids in attaining
the optimal path that effectively covers all the faults. The output of the ACO-based algorithm in the
initial pass is presented in Table 12, displaying the faults covered by each ant and the time taken
for the coverage. Additionally, Table 13 shows the adjacency matrix of the graph representing the
path covered by each ant. Moving to the second iteration, Table 14 exhibits the output of the ACO-
based algorithm, while the corresponding adjacency matrix is shown in Table 15. Similarly, for the
third iteration, Table 16 showcases the algorithm’s output, and the corresponding adjacency matrix is
presented in Table 17. Finally, in the fourth iteration, Table 18 displays the output of the ACO-based
algorithm, and Table 19 shows the corresponding adjacency matrix.

3184 CSSE, 2023, vol.47, no.3
T

ab
le

12
:

E
xe

cu
ti

on
of

al
go

ri
th

m
(1

st
it

er
at

io
n)

A
C

O
A

n -
1

A
n -

2
A

n -
3

A
n -

4
A

n -
5

A
n -

6
A

n -
7

F
ir

st
It

er
at

io
n

O
bs

er
va

ti
on

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
C

T
C

1
7

1,
3

C
T

C
2

4
2,

4,
7,

9
C

T
C

3
5

1,
5,

7,
8

C
T

C
4

4
2,

4,
9

C
T

C
5

4
3,

6,
10

C
T

C
6

5
1,

7
C

T
C

7
4

3,
6,

8
C

T
C

5
4

3,
6,

10
C

T
C

6
5

1,
7

C
T

C
4

4
2,

4,
9

C
T

C
1

7
1,

3
C

T
C

7
4

3,
6,

8
C

T
C

1
7

1,
3

C
T

C
2

4
2,

4,
7,

9
C

T
C

2
4

2,
4,

7,
9

C
T

C
4

4
2,

4,
9

C
T

C
5

4
3,

6,
10

C
T

C
3

5
1,

5,
7,

8
C

T
C

1
7

1,
3

C
T

C
5

4
3,

6,
10

C
T

C
6

5
1,

7
C

T
C

3
5

1,
5,

7,
8

C
T

C
1

7
1,

3
C

T
C

2
4

2,
4,

7,
9

C
T

C
6

5
1,

7
C

T
C

3
5

1,
5,

7,
8

C
T

C
1

7
1,

3
C

T
C

5
4

3,
6,

10
C

T
C

7
4

3,
6,

8
C

T
C

3
5

1,
5,

7,
8

C
T

C
2

4
2,

4,
7,

9
C

T
C

5
4

3,
6,

10
C

T
C

7
4

3,
6,

8
C

T
C

6
5

1,
7

C
T

C
2

4
2,

4,
7,

9
C

T
C

4
4

2,
4,

9
C

T
C

3
5

1,
5,

7,
8

C
T

C
5

4
3,

6,
10

C
T

C
3

5
1,

5,
7,

8
To

ta
l

ex
ec

ut
io

n
ti

m
e

(u
ni

ts
)

20
33

13
33

29
25

33

N
ot

e:
W

he
re

P
C

:P
at

h
C

ov
er

ed
,E

T
:E

xe
cu

ti
on

T
im

e,
F

lt
.C

:F
au

lt
s

C
ov

er
ed

.

T
ab

le
13

:
A

dj
ac

en
cy

m
at

ri
x

of
ph

er
om

on
e

de
po

si
te

d
af

te
r

fi
rs

t
it

er
at

io
n

A
n -

1
A

n -
2

A
n -

3
A

n -
4

A
n -

5
A

n -
6

A
n -

7

A
n -

1
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
A

n -
2

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

A
n -

3
0.

0
0.

0
0.

0
0.

9
0.

0
0.

0
0.

0
A

n -
4

0.
0

0.
0

0.
0

0.
0

0.
9

0.
0

0.
0

A
n -

5
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
A

n -
6

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

A
n -

7
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0

CSSE, 2023, vol.47, no.3 3185
T

ab
le

14
:

E
xe

cu
ti

on
of

al
go

ri
th

m
(2

nd
it

er
at

io
n)

A
C

O
A

n -
1

A
n -

2
A

n -
3

A
n -

4
A

n -
5

A
n -

6
A

n -
7

Se
co

nd
It

er
at

io
n

O
bs

er
va

ti
on

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
C

T
C

1
7

1,
3

C
T

C
2

4
2,

4,
7,

9
C

T
C

3
5

1,
5,

7,
8

C
T

C
4

4
2,

4,
9

C
T

C
5

4
3,

6,
10

C
T

C
6

5
1,

7
C

T
C

7
4

3,
6,

8
C

T
C

3
5

1,
5,

7,
8

C
T

C
3

5
1,

5,
7,

8
C

T
C

5
4

3,
6,

10
C

T
C

5
4

3,
6,

10
C

T
C

3
5

1,
5,

7,
8

C
T

C
3

5
1,

5,
7,

8
C

T
C

6
5

1,
7

C
T

C
5

4
3,

6,
10

C
T

C
5

4
3,

6,
10

C
T

C
1

7
1,

3
C

T
C

1
7

1,
3

C
T

C
7

4
3,

6,
8

C
T

C
1

7
1,

3
C

T
C

5
4

3,
6,

10
C

T
C

4
4

2,
4,

9
C

T
C

7
4

3,
6,

8
C

T
C

3
5

1,
5,

7,
8

C
T

C
2

4
2,

4,
7,

9
C

T
C

4
4

2,
4,

9
C

T
C

1
7

1,
3

C
T

C
6

5
1,

7
C

T
C

7
4

3,
6,

8
C

T
C

4
4

2,
4,

9
C

T
C

4
4

2,
4,

9
C

T
C

5
4

3,
6,

10
C

T
C

3
5

1,
5,

7,
8

To
ta

l
ex

ec
ut

io
n

ti
m

e
(u

ni
ts

)

20
13

29
20

17
29

29

T
ab

le
15

:
A

dj
ac

en
cy

m
at

ri
x

of
ph

er
om

on
e

de
po

si
te

d
af

te
r

th
e

se
co

nd
it

er
at

io
n

A
n -

1
A

n -
2

A
n -

3
A

n -
4

A
n -

5
A

n -
6

A
n -

7

A
n -

1
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
A

n -
2

0.
0

0.
0

0.
9

0.
0

0.
0

0.
0

0.
0

A
n -

3
0.

0
0.

0
0.

0
0.

81
0.

9
0.

0
0.

0
A

n -
4

0.
0

0.
0

0.
0

0.
0

0.
81

0.
0

0.
0

A
n -

5
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
A

n -
6

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

A
n -

7
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0

3186 CSSE, 2023, vol.47, no.3
T

ab
le

16
:

E
xe

cu
ti

on
of

al
go

ri
th

m
(3

rd
it

er
at

io
n)

A
C

O
A

n -
1

A
n -

2
A

n -
3

A
n -

4
A

n -
5

A
n -

6
A

n -
7

T
hi

rd
It

er
at

io
n

O
bs

er
va

ti
on

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
C

T
C

1
7

1,
3

C
T

C
2

4
2,

4,
7,

9
C

T
C

3
5

1,
5,

7,
8

C
T

C
4

4
2,

4,
9

C
T

C
5

4
3,

6,
10

C
T

C
6

5
1,

7
C

T
C

7
4

3,
6,

8
C

T
C

6
5

1,
7

C
T

C
4

4
2,

4,
9

C
T

C
6

5
1,

7
C

T
C

6
5

1,
7

C
T

C
1

7
1,

3
C

T
C

1
7

1,
3

C
T

C
5

4
3,

6,
10

C
T

C
4

4
2,

4,
9

C
T

C
7

4
3,

6,
8

C
T

C
1

7
1,

3
C

T
C

2
4

2,
4,

7,
9

C
T

C
3

5
1,

5,
7,

8
C

T
C

4
4

2,
4,

9
C

T
C

4
4

2,
4,

9
C

T
C

5
4

3,
6,

10
C

T
C

3
5

1,
5,

7,
8

C
T

C
4

4
2,

4,
9

C
T

C
3

5
1,

5,
7,

8
C

T
C

6
5

1,
7

C
T

C
2

4
2,

4,
7,

9
C

T
C

3
5

1,
5,

7,
8

C
T

C
3

5
1,

5,
7,

8
C

T
C

1
7

1,
3

C
T

C
7

4
3,

6,
8

C
T

C
7

4
3,

6,
8

C
T

C
7

4
3,

6,
8

C
T

C
5

4
3,

6,
10

C
T

C
6

5
1,

7
C

T
C

5
4

3,
6,

10
C

T
C

1
7

1,
3

C
T

C
2

4
2,

4,
7,

9
C

T
C

5
5

1,
5,

7,
8

C
T

C
5

4
3,

6,
10

C
T

C
5

4
3,

6,
10

To
ta

l
ex

ec
ut

io
n

ti
m

e
(u

ni
ts

)

25
33

29
33

29
29

17

T
ab

le
17

:
A

dj
ac

en
cy

m
at

ri
x

of
ph

er
om

on
e

de
po

si
te

d
af

te
r

th
e

th
ir

d
it

er
at

io
n

A
n -

1
A

n -
2

A
n -

3
A

n -
4

A
n -

5
A

n -
6

A
n -

7

A
n -

1
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
A

n -
2

0.
0

0.
0

0.
81

0.
0

0.
0

0.
0

0.
0

A
n -

3
0.

0
0.

0
0.

0
0.

72
9

0.
81

0.
0

0.
0

A
n -

4
0.

0
0.

0
0.

9
0.

0
0.

72
9

0.
0

0.
0

A
n -

5
0.

0
0.

0
0.

0
0.

9
0.

0
0.

0
0.

0
A

n -
6

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

A
n -

7
0.

0
0.

0
0.

0
0.

0
0.

9
0.

0
0.

0

CSSE, 2023, vol.47, no.3 3187
T

ab
le

18
:

E
xe

cu
ti

on
of

al
go

ri
th

m
(4

th
it

er
at

io
n)

A
C

O
A

n -
1

A
n -

2
A

n -
3

A
n -

4
A

n -
5

A
n -

6
A

n -
7

F
ou

rt
h

It
er

at
io

n
O

bs
er

va
ti

on
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

P
C

E
T

F
lt

.C
P

C
E

T
F

lt
.C

C
T

C
1

7
1,

3
C

T
C

2
4

2,
4,

7,
9

C
T

C
3

5
1,

5,
7,

8
C

T
C

4
4

2,
4,

9
C

T
C

5
4

3,
6,

10
C

T
C

6
5

1,
7

C
T

C
7

4
3,

6,
8

C
T

C
5

4
3,

6,
10

C
T

C
5

4
3,

6,
10

C
T

C
7

4
3,

6,
8

C
T

C
6

5
1,

7
C

T
C

1
7

1,
3

C
T

C
4

4
2,

4,
9

C
T

C
1

7
1,

3
C

T
C

4
4

2,
4,

9
C

T
C

1
7

1,
3

C
T

C
6

5
1,

7
C

T
C

2
4

2,
4,

7,
9

C
T

C
2

4
2,

4,
7,

9
C

T
C

7
4

3,
6,

8
C

T
C

5
4

3,
6,

10
C

T
C

7
4

3,
6,

8
C

T
C

3
5

1,
5,

7,
8

C
T

C
2

4
2,

4,
7,

9
C

T
C

1
7

1,
3

C
T

C
4

4
2,

4,
9

C
T

C
1

7
1,

3
C

T
C

3
5

1,
5,

7,
8

C
T

C
2

4
2,

4,
7,

9
C

T
C

1
7

1,
3

C
T

C
3

5
1,

5,
7,

8
C

T
C

7
4

3,
6,

8
C

T
C

5
4

3,
6,

10
C

T
C

2
4

2,
4,

7,
9

C
T

C
6

5
1,

7
C

T
C

4
4

2,
4,

9
C

T
C

7
4

3,
6,

8
C

T
C

3
5

1,
5,

7,
8

C
T

C
2

4
2,

4,
7,

9
C

T
C

3
5

1,
5,

7,
8

C
T

C
5

4
3,

6,
10

C
T

C
5

4
3,

6,
10

C
T

C
3

5
1,

5,
7,

8
To

ta
l

ex
ec

ut
io

n
ti

m
e

(u
ni

ts
)

33
20

33
33

28
33

24

T
ab

le
19

:
A

dj
ac

en
cy

m
at

ri
x

of
ph

er
om

on
e

de
po

si
te

d
af

te
r

th
e

fo
ur

th
it

er
at

io
n

A
n -

1
A

n -
2

A
n -

3
A

n -
4

A
n -

5
A

n -
6

A
n -

7

A
n -

1
0.

0
0.

0
0.

9
0.

0
0.

0
0.

0
0.

0
A

n -
2

0.
0

0.
0

0.
72

9
0.

0
0.

9
0.

0
0.

0
A

n -
3

0.
0

0.
0

0.
0

0.
65

61
0.

72
9

0.
0

0.
0

A
n -

4
0.

0
0.

0
0.

81
0.

0
0.

65
61

0.
0

0.
0

A
n -

5
0.

9
0.

0
0.

0
0.

81
0.

0
0.

0
0.

0
A

n -
6

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

A
n -

7
0.

0
0.

0
0.

0
0.

0
0.

81
0.

0
0.

0

3188 CSSE, 2023, vol.47, no.3

7 Comparison

The proposed framework, founded upon the ACO technique, has been subjected to a rigorous
comparative analysis against well-established traditional methods, which include No ordering, Reverse
ordering, Random ordering, and Optimal ordering of the combined test cases. The results of this
comparative evaluation are presented in Table 20.

Table 20: Ordering of test cases through different techniques

S. No. No Reo Rmo Oto ACO

1 CTC1 CTC7 CTC5 CTC2 CTC2
2 CTC2 CTC6 CTC7 CTC3 CTC5
3 CTC3 CTC5 CTC2 CTC5 CTC1
4 CTC4 CTC4 CTC3 CTC7 CTC3
5 CTC5 CTC3 CTC4 CTC4 CTC7
6 CTC6 CTC2 CTC1 CTC6 CTC4
7 CTC7 CTC1 CTC6 CTC1 CTC6

The Average Percentage of Fault Detected (APFD), developed by Elbaum, quantifies the test
suite’s fault detection rate per percentage of test suite execution [34,35]. The goal of validation is to
find the defect as quickly as possible via the optimal and shortest path, and this can be accomplished
by applying optimised prioritisation criteria to the test suite. The APFD measure is used to compute
and compare the outcomes of different approaches, as given in Eq. (1).

APFD = 1 −
(

(Tf 1 + Tf 2 + + Tfm)

(mn)

)
+ (1/2n) (1)

where ‘n’ represents the total number of test cases, and ‘m’ denotes the number of faults under
consideration. The variables (Tf1, ..., Tfm) denote the positions of the initial test case ‘T’ in the
sequence that manifest the identified faults.

Given: Total number of Combined Test Cases (CTC) = 7;

Total number of faults (Flt) = 10

CTC Flti denotes the position of the first test in CTC that exposes fault Flti

APFD metric for No ordering is given below:

CTC1 CTC2 CTC3 CTC4 CTC5 CTC6 CTC7

APFD = 1 − {(1 + 2 + 1 + 2 + 3 + 5 + 2 + 3 + 2 + 5)/(7 ∗ 10)} + {1/(2 ∗ 7)}
= 1 − {26/70} + {1/14}
= 1 − {0.37142857142} + {0.07142857142}
= 1 − {0.371} + {0.071}
= 1.071 − 0.371

= 0.700

Therefore, the results obtained through APFD metric for No ordering (in percentage) = 70%.

APFD metric for Reverse ordering is given below:

CSSE, 2023, vol.47, no.3 3189

CTC7 CTC6 CTC5 CTC4 CTC3 CTC2 CTC1

APFD = 1 − {(2 + 4 + 1 + 4 + 5 + 1 + 2 + 1 + 4 + 3)/(7 ∗ 10)} + {1/(2 ∗ 7)}
= 1 − {27/70} + {1/14}
= 1 − {0.38571428571} + {0.07142857142}
= 1 − {0.386} + {0.071}
= 1.071 − 0.386

= 0.685

Therefore, the results obtained through the APFD metric of Reverse ordering (in percentage) =
68.5%.

APFD metric for Random ordering is given below:

CTC5 CTC7 CTC2 CTC3 CTC4 CTC1 CTC6

APFD = 1 − {(6 + 3 + 6 + 3 + 4 + 1 + 3 + 4 + 3 + 1)/(7 ∗ 10)} + {1/(2 ∗ 7)}
= 1 − {34/70} + {1/14}
= 1 − {0.48571428571} + {0.07142857142}
= 1 − {0.486} + {0.071}
= 1.071 − 0.486

= 0.585

Therefore, the results obtained through the APFD metric of Random ordering (in percentage) =
58.5%.

APFD metric for Optimal ordering is given below:

CTC2 CTC3 CTC5 CTC7 CTC4 CTC6 CTC1

APFD = 1 − {(7 + 1 + 2 + 1 + 2 + 3 + 1 + 2 + 1 + 3)/(7 ∗ 10)} + {1/(2 ∗ 7)}
= 1 − {23/70} + {1/14}
= 1 − {0.32857142857} + {0.07142857142}
= 1 − {0.329} + {0.071}
= 1.071 − 0.329

= 0.742

Therefore, the results obtained through the APFD metric of Optimal ordering (in percentage) =
74.2%.

APFD metric for ACO-based ordering is as given below:

CTC2 CTC3 CTC5 CTC7 CTC4 CTC6 CTC1

APFD = 1 − {(3 + 1 + 3 + 1 + 4 + 2 + 1 + 4 + 1 + 2)/(7 ∗ 10)} + {1/(2 ∗ 7)}
= 1 − {22/70} + {1/14}
= 1 − {0.31428571428} + {0.07142857142}
= 1 − {0.314} + {0.071}
= 1.071 − 0.314

3190 CSSE, 2023, vol.47, no.3

= 0.757

Therefore, the results obtained through the APFD metric of ACO based ordering (in percentage)
= 75.7%. Finally, the outcomes from these techniques are presented in Table 21.

Table 21: Results of test case optimization employing various traditional techniques

No Reo Rmo Oto ACO

APFD metric
results

0.700 0.685 0.585 0.742 0.757
70.00% 68.50% 58.50% 74.20% 75.70%

Now, the proposed approach with the other state-of-the-art optimization algorithm for priori-
tization of security test cases: Ant Lion Optimization (ALO), Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) are compared. The values of parameters for ALO, GA and PSO are given
in Table 22. The combined test case ordering obtained from the state-of-the-art algorithm and the
proposed ACO algorithm is shown in Table 23. The APFD score for the ordering obtained using GA,
PSO and GLA algorithms are given in Table 24.

Table 22: Parameter values of the state-of-the-art algorithm

Parameter Value

Mutation rate r in ALO Min = 0 and Max = 0.9
Crossover ratio in GA 0.9
Mutation ratio in GA 0.1
Selection mechanism in GA Roulette wheel
Inertia w in PSO [0.9, 0.6]
Acceleration constants in PSO [2, 2]

Table 23: Ordering of test cases through state-of-the-art algorithm

S. No. ALO GA PSO ACO

1 CTC4 CTC3 CTC2 CTC2
2 CTC1 CTC4 CTC3 CTC5
3 CTC7 CTC7 CTC5 CTC1
4 CTC5 CTC1 CTC7 CTC3
5 CTC2 CTC2 CTC4 CTC7
6 CTC6 CTC6 CTC6 CTC4
7 CTC3 CTC5 CTC1 CTC6

CSSE, 2023, vol.47, no.3 3191

Table 24: Results of test case optimization through state-of-the-art evolutionary techniques

ALO ordering GA ordering PSO ordering ACO based ordering

APFD metric
results

0.642 0.685 0.742 0.757
64.20% 68.50% 74.20% 75.70%

APFD metric for ALO ordering is given below: CTC4 CTC1 CTC7 CTC5 CTC2 CTC6 CTC3

APFD= 1 – {(2+1+2+1+7+4+5+3+1+4)/(7 ∗ 10)} + {1/(2 ∗ 7)} = 1 – {30/70} + {1/14}
= 1 – {0.429} + {0.071}
=0.642

Therefore, the results obtained through the APFD metric of ALO ordering (in percentage) =
64.2%.

APFD metric for GA ordering is given below: CTC3 CTC4 CTC7 CTC1 CTC2 CTC6 CTC5

APFD= 1 – {(1+2+3+2+1+7+1+1+2+7)/(7 ∗ 10)} + {1/(2 ∗ 7)} = 1 – {27/70} + {1/14}
= 1 – {0.386} + {0.071}
=0.685

Therefore, the results obtained through the APFD metric of ALO ordering (in percentage) =
68.5%.

APFD metric for PSO ordering is given below:

CTC2 CTC3 CTC5 CTC7 CTC4 CTC6 CTC1

APFD = 1 – {(7+1+2+1+2+3+1+2+1+3)/(7 ∗ 10)} + {1/(2 ∗ 7)}
= 1 – {23/70} + {1/14}
= 1 – {0.32857142857} + {0.07142857142}
= 1 – {0.329} + {0.071}
= 1.071 – 0.329

=0.742

Therefore, the results obtained through the APFD metric of PSO ordering (in percentage) =
74.2%.

The value obtained from APFD metrics shows that the ACO-based algorithm outperforms the
other state-of-the-art optimization algorithm. Table 25 shows their total results improvements. APFD
measures reveal that ACO-based ordering outperforms all others. The above comparisons and APFD
metric results suggest that the ACO technique is optimal for early defect detection. As a result, the
ACO method is clearly superior to other methods.

Since the ACO technique provides the best possible order, we used this methodology for before-
hand fault detection in security test suites and further mitigates the issues. The ACO-based algorithm
gives an edge to the proposed testing techniques over traditional techniques as it is more result-oriented
and less time-consuming. This will ultimately cut down the development cost of the application system.
Hence, by applying the ACO-based algorithm, the security attributes, according to their weightage, are
used to detect faults and provide the shortest path to mitigate those faults.

3192 CSSE, 2023, vol.47, no.3

Table 25: Comparing ACO based ordering with other approaches

ACO-based ordering vs. others Improvements Percentage

ACO vs. No 0.757–0.700 0.057 8.14%
ACO vs. Reo 0.757–0.685 0.072 10.51%
ACO vs. Rmo 0.757–0.585 0.172 29.40%
ACO vs. Oto 0.757–0.728 0.029 3.9%
ACO vs. ALO 0.757–0.642 0.115 17.91%
ACO vs. GA 0.757–0.685 0.072 10.51%
ACO vs. PSO 0.757–0.742 0.015 2.02%

8 Discussion

The demand for security test case optimization for developing secure software is increasing day by
day. Besides, the presence of vulnerabilities not only wreaks financial losses and causes time delays but
can also be a threat to life. Modern software systems should ensure the reliability and security of the
operation whenever they are employed. Improvised software security is the key differentiator between
the products in the present-day environment of digitally enabled services. In a competitive marketplace,
the significance of providing a secure end product is not an advantage but more of a necessity for the
success of the organization. While there is uniform consensus among researchers and industry persons
for the high need for secure software, the question of how, when and where the security should be
measured is far from settled issues. The present study employed the ACO algorithm for prioritizing
the security test cases. The ACO algorithm has been used in several existing studies for solving the
problem of optimization with good performance [36–38]. Here, in our work, the ACO algorithm has
outperformed the conventional techniques of ordering the test cases with significant improvement
in terms of APFD metric. The ACO based has nearly 30% improvement over the random ordering
technique. Moreover, the ACO has also produced better results than other evolutionary algorithms
like GA, ALO and PSO. Since the graph generated by the test cases may dynamically change, contrary
to the GA, the ACO algorithm can effectively handle such changes to produce better results. Moreover,
the positive feedback among the ants involved helps in finding the optimal solutions. By using ACO,
the fault detection of the security test cases may reduce the overall test cases. This would further help
in reducing the computational cost. Thus, ACO based technique could be beneficial during regression
testing where new test cases need to be generated continuously during the maintenance phase of the
software.

9 Conclusion

Security experts are consistently working on inventive mechanisms to develop software systems
with enhanced levels of security that meet the users’ requirements. Software testing is a vital contributor
to determining the efficacy of the systems. Testing procedures need to be realizable as well as
efficacious. In this league, the present study undertook a novel experiment of evaluating the test cases
impact on application security through an Ant Colony Optimization algorithm from the perspective
of design. The APFD for the order obtained using the proposed ACO-based technique was better than
the results obtained on order from other traditional and state-of-the-art optimization algorithms. The
ACO-based ordering generated considerable improvement as per the APFD metric. The generated

CSSE, 2023, vol.47, no.3 3193

ordering can be utilized to detect security faults before they cause any serious problems in the working
of the software. The conclusive results of the present study will be an emphatic contribution in the
domain of security test case optimization. In the future, we will attempt to reduce fault detection
loss to near zero and validate the algorithm in real-world applications. We will employ the improved
ACO algorithm proposed in the literature, as well as the testing procedure. With the use of ACO,
developers have the ability to establish the prioritizing of security test cases and utilize the approach
as the foundation upon which to see the probable outcomes and impacts. In addition, it would be
interesting to investigate the possibility of using other metrics, such as ANOVA and ANCOVA, in
place of APFD in the approaches used to prioritize test cases.

Acknowledgement: The authors extend their appreciation to the Deanship of Scientific Research at
King Khalid University for funding this work through Large Group Research Project.

Funding Statement: The authors extend their appreciation to the Deanship of Scientific Research at
King Khalid University for funding this work through Large Group Research Project under Grant
Number RGP2/249/44.

Author Contributions: Study conception and design: A. Attaallah, K. al-Sulbi, M. W. Khan, M. Faizan,
D. Pandey; data collection: A. Alasiry, M. Marzougui, M. W. Khan, A. Agrawal, D. Pandey; analysis
and interpretation of results: A. Attaallah, K. al-Sulbi, M. W. Khan, A. Agrawal, D. Pandey; draft
manuscript preparation: A. Attaallah, K. al-Sulbi, A. Alasiry, M. Marzougui, M. W. Khan, M.
Faizan, A. Agrawal, D. Pandey. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: The authors confirm that the data supporting the findings of this
study are available within the article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] R. A. Khan, “From threat to security indexing: A casual chain,” Computer Fraud and Security, vol. 5, no.

5, pp. 9–12, 2009.
[2] L. Zhou, L. Tang and Z. Zhang, “Extracting and ranking product features in consumer reviews based on

evidence theory,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, pp. 9973–9983, 2022.
[3] U. Waheed, “Security regression testing framework for web application development,” MS Thesis, Depart-

ment of Informatics, University of Oslo, Norway, 2014. [Online]. Available: https://www.duo.uio.no/
handle/10852/43442 (accessed on 02/02/2023)

[4] Y. Singh, A. Kaur and B. Suri, “Test case prioritization using ant colony optimization,” ACM SIGSOFT
Software Engineering Notes, vol. 35, no. 4, pp. 1–7, 2010.

[5] A. Agrawal, M. Alenezi, S. A. Khan, R. Kumar and R. A. Khan, “Multi-level fuzzy system for usable-
security assessment,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 3,
pp. 657–665, 2022.

[6] Z. Zhang, J. Guo, H. Zhang, L. Zhou and M. Wang, “Product selection based on sentiment analysis of
online reviews: An intuitionistic fuzzy TODIM method,” Complex & Intelligent Systems, vol. 8, pp. 3349–
3362, 2022.

[7] K. Ayari, S. Bouktif and G. Antoniol, “Automatic mutation test input data generation via ant colony,” in
Proc. of the 9th Annual Conf. on Genetic and Evolutionary Computation, New York, USA, pp. 1074–1081,
2007.

https://www.duo.uio.no/handle/10852/43442
https://www.duo.uio.no/handle/10852/43442

3194 CSSE, 2023, vol.47, no.3

[8] M. Dorigo, V. Maniezzo and A. Colorni, “Ant system: Optimization by a colony of cooperating agents,”
IEEE Transaction on Systems, Man and Cybernetics, vol. 26, no. 5, pp. 29–41, 1996.

[9] J. H. Holand, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73, 1992.
[10] E. Emary, H. M. Zawbaa and A. E. Hassanien, “Binary ant lion approaches for feature selection,”

Neurocomputing, vol. 213, pp. 54–65, 2016.
[11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of ICNN’95—Int. Conf. on Neural

Networks, Perth, WA, Australia, vol. 4, pp. 1942–1948, 1995.
[12] Q. Y. Bo, W. Cheng and M. Khishe, “Evolving chimp optimization algorithm by weighted opposition-based

technique and greedy search for multimodal engineering problems,” Applied Soft Computing, vol. 132, pp.
109869, 2023.

[13] L. Liu, M. Khishe, M. Mohammadi and A. H. Mohammed, “Optimization of constraint engineering
problems using robust universal learning chimp optimization,” Advanced Engineering Informatics, vol. 53,
pp. 101636, 2022.

[14] E. D. Demircioğlu and O. Kalipsiz, “API message-driven regression testing framework,” Electronics, vol.
11, no. 17, pp. 1–16, 2022.

[15] P. Jung, S. Kang and J. Lee, “Efficient regression testing of software product lines by reducing redundant
test executions,” Applied Sciences, vol. 10, no. 23, pp. 1–21, 2020.

[16] Y. Lou, J. Chen, L. Zhang and D. Hao, “A survey on regression test case prioritization,” Advances in
Computers, Elsevier, vol. 113, pp. 1–46, 2019.

[17] M. Taghavi and M. Khishe, “A modified grey wolf optimizer by individual best memory and penalty factor
for sonar and radar dataset classification,” Journal of Marine Science University of Imam Khomeini, vol.
15, pp. 122–132, 2019.

[18] A. Bajaj, A. Abraham, S. Ratnoo and L. A. Gabralla, “Test case prioritization, selection, and reduction
using improved quantum-behaved particle swarm optimization,” Sensors, vol. 22, no. 12, pp. 1–22, 2022.

[19] S. Saju Sankar and S. S. Vinod Chandra, “An ant colony optimization algorithm based automated
generation of software test cases,” in Advances in Swarm Intelligence: 11th Int. Conf., ICSI 2020, Belgrade,
Serbia, Cham, Springer, vol. 12145, pp. 231–239, 2020.

[20] W. Zhang, Y. Qi, X. Zhang, B. Wei, M. Zhang et al., “On test case prioritization using ant colony
optimization algorithm,” in 21st Int. Conf. on High-Performance Computing and Communications, IEEE
17th Int. Conf. on Smart City, IEEE 5th Int. Conf. on Data Science and Systems, Zhangjiajie, China, pp.
2767–2773, 2019.

[21] J. Ning, C. Zhang, P. Sun and Y. Feng, “Comparative study of ant colony algorithms for multi-objective
optimization,” Information, vol. 10, no. 1, pp. 1–19, 2018.

[22] S. Nayak, C. Kumar and S. Tripathi, “Enhancing efficiency of the test case prioritization technique by
improving the rate of fault detection,” Arabian Journal for Science and Engineering, vol. 42, no. 8, pp. 3307–
3323, 2017.

[23] R. K. Sahoo, D. Ojha, D. P. Mohapatra and M. R. Patra, “Automated test case generation and optimization:
A comparative review,” International Journal of Information Technology and Computer Science, vol. 8, no.
5, pp. 19–32, 2016.

[24] S. A. A. Hridoy, F. Ahmed and M. S. Hossain, “Regression testing based on hamming distance and code
coverage,” International Journal of Computer Applications, vol. 120, no. 14, pp. 1–5, 2015.

[25] T. Muthusamy and K. Seetharaman, “Effectiveness of test case prioritization techniques based on regres-
sion testing,” International Journal of Software Engineering & Applications, vol. 5, no. 6, pp. 113–123, 2014.

[26] A. Pravin and S. Srinivasan, “Effective test case selection and prioritization in regression testing,” Journal
of Computer Science, vol. 9, no. 5, pp. 654–659, 2013.

[27] G. Rothermel, R. J. Untch and C. Chu, “Prioritizing test cases for regression testing,” IEEE Transaction on
Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[28] T. L. Graves, M. J. Harrold, M. J. Kim, A. Porter and G. Rothermel, “An empirical study of regression test
selection techniques,” ACM Transaction Software Engineering and Methodology, vol. 10, no. 2, pp. 145–159,
2001.

CSSE, 2023, vol.47, no.3 3195

[29] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D. thesis, Politecnico di Milano, Milano,
1992.

[30] M. Dorigo and S. Krzysztof, “An Introduction to ant colony optimization,” in Proc. of Approximation
Algorithms and Metaheuristics, pp. 1–19, Bruxelles, Belgium: Chapman and Hall/CRC, 2006.

[31] L. Li, S. Ju and Y. Zhang, “Improved ant colony optimization for the travelling salesman problem,” in Int.
Conf. on Intelligent Computation Technology and Automation, Changsha, China, IEEE, pp. 76–80, 2008.

[32] C. A. Silva and T. A. Runkler, “Ant colony optimization for dynamic traveling salesman problems,” in
ARCS 2004–Organic and Pervasive Computing, Munich, Germany, pp. 259–266, 2009.

[33] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer and R. S. Robert, “Time-aware test suite prioritization,”
in ISSTA’06: Proc. of Int. Symp. of Software Testing and Analysis, Portland, USA, pp. 1–12, 2006.

[34] S. Elbaum, A. G. Malishevsky and G. Rothermel, “Prioritizing test cases for regression testing,” in
ISSTA’00: Proc. of ACM SIGSOFT Int. Symp. of Software Testing and Analysis, Portland, USA, pp. 102–
112, 2000.

[35] S. Elbaum, G. Rothermel, S. Kanduri and A. G. Malishevsky, “Selecting a cost-effective test case prioriti-
zation technique,” Software Quality Journal, vol. 12, no. 3, pp. 185–210, 2004.

[36] A. Vescan, C. M. Pintea and P. C. Pop, “Test case prioritization—ANT algorithm with faults severity,”
Logic Journal of the IGPL, vol. 30, no. 2, pp. 277–288, 2022.

[37] G. Shaheamlung and K. Rote, “A comprehensive review for test case prioritization in software engineering,”
in 2020 Int. Conf. on Intelligent Engineering and Management, IEEE, pp. 331–336, 2020.

[38] A. Vescan, C. M. Pinteaand and P. C. Pop, “Solving the test case prioritization problem with secure features
using ant colony system,” in 12th Int. Conf. on Computational Intelligence in Security for Information
Systems (CISIS 2019) and 10th Int. Conf. on European Transnational Education (ICEUTE 2019), Cham,
Springer, pp. 67–76, 2019.

	Security Test Case Prioritization through Ant Colony Optimization Algorithm
	1 Introduction
	2 Related Works
	3 Security Test Case Optimization
	4 Case Study: Mobile Payment Wallet
	5 Test Case Sampling and Analysis
	6 Results
	7 Comparison
	8 Discussion
	9 Conclusion
	References

