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ABSTRACT

Computational intelligence (CI) is a group of nature-simulated computational models and processes for addressing
difficult real-life problems. The CI is useful in the UAV domain as it produces efficient, precise, and rapid solutions.
Besides, unmanned aerial vehicles (UAV) developed a hot research topic in the smart city environment. Despite
the benefits of UAVs, security remains a major challenging issue. In addition, deep learning (DL) enabled image
classification is useful for several applications such as land cover classification, smart buildings, etc. This paper
proposes novel meta-heuristics with a deep learning-driven secure UAV image classification (MDLS-UAVIC)
model in a smart city environment. The major purpose of the MDLS-UAVIC algorithm is to securely encrypt the
images and classify them into distinct class labels. The proposed MDLS-UAVIC model follows a two-stage process:
encryption and image classification. The encryption technique for image encryption effectively encrypts the UAV
images. Next, the image classification process involves an Xception-based deep convolutional neural network for the
feature extraction process. Finally, shuffled shepherd optimization (SSO) with a recurrent neural network (RNN)
model is applied for UAV image classification, showing the novelty of the work. The experimental validation of
the MDLS-UAVIC approach is tested utilizing a benchmark dataset, and the outcomes are examined in various
measures. It achieved a high accuracy of 98%.
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1 Introduction

The concept of a smart city has become a prominent research field worldwide. The number
of stationary sensors and the amount of data gathered by a surveillance camera and other devices
placed in a smart city are massive. Using a mobile platform to replace them might decrease resource
and energy costs [1]. The smart city paradigm directly connects the telecommunication industry to
sustainable economic growth and better living standards with advanced techniques such as unmanned
aerial vehicles (UAVs). Over the last few years, the advancement of UAVs has gained considerable
attention due to essential characteristics like the ability to establish line of sight (LOS) links with
the user, mobility, and easy deployment [2]. Generally, UAVs are categorized into fixed-wing and
rotary-wing UAVs. All kinds of UAV are adapted to a particular kind of application. For instance,
fixed-wing UAV is best suited for the type of mission whereby stationarity is not needed, for example,
military applications, namely surveillance and attack. But rotary-wing UAV has increasingly complex
aerodynamics [3]. Also, they can remain stationary at a specified location, but they cannot implement
long-range missions [4]. Affordability and ease of use are two major elements for the extensive usage of
UAVs in military and civilian applications [5]. Images taken through UAVs are utilized for geographical
information system databases, data collection for agricultural mapping, land use, automatic decision-
making, urban planning, environmental monitoring and assessment, and land cover detection [6].
Because of the quality of UAV images at present, abstracting reliable characteristics for forming data
collection is less of a problem. Illustration of these features island cover characteristics (spectral and
geometrical) from hyperspectral data and Light Detection and Ranging (LiDAR) [7]. In addition, the
amalgamation of various sources (passive or active sensors) or multimodal data (data with distinct
features) is suggested for improving land cover categorisation.

Over the past few years, the arrival of deep learning (DL) methods has provided strong and
brilliant techniques for enhancing the mapping of the earth’s surface [8]. DL is an artificial neural
network (ANN) technique of deeper combinations and numerous hidden layers accountable for
maximizing and returning superior learning models over a general ANN. A splendid volume of
revision materials exists in the scientific chronicles describing DL-related methods, common usage,
and its historical evolution, along with that briefing functions and networks [9]. In recent years as
computer processing and labeled instances (i.e., samples) are highly more accessible, the outcomes of
deep neural networks (DNNS5s) raise in image-processing applications. DNN has been implemented in
data-driven approaches successfully. But more should be covered under this to understand its efficiency
and restrictions [10]. From this point of view, various studies on the application of DL in remote
sensing have been advanced in general as well as in specific contexts to describe its significance in a
better way.

There are some restrictions that can be associated with the use of computational intelligence
techniques for secure unmanned aerial vehicle (UAV) image classification in a smart city environment:

- Limited availability of UAVs: UAVs may not be readily available or accessible in all smart city
environments, which can limit the effectiveness and feasibility of implementing a UAV image
classification system.

- Cost: The cost of acquiring and maintaining UAVs and associated equipment can be pro-
hibitive for some cities and organizations, especially for those with limited budgets.

- Limited battery life and range: UAVs have limited battery life and range, which can restrict the
amount of time they can be used for image classification and the distance they can travel to
collect data.
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- Technical expertise: Implementing a UAV image classification system requires technical exper-
tise in areas such as machine learning, computer vision, and UAV operation. This expertise
may not be available or accessible to all organizations.

- Public perception: The use of UAVs in a smart city environment may be perceived as intrusive or
invasive by members of the public, which can lead to opposition and negative public sentiment.

- Weather conditions: Adverse weather conditions such as strong winds, heavy rain, and low
visibility can restrict the use of UAVs, limiting the reliability and effectiveness of image
classification systems.

- Regulatory challenges: The use of UAVs is subject to regulatory challenges, including airspace
regulations, licensing requirements, and data privacy laws. Compliance with these regulations
can be time-consuming and complex.

This study designs a novel metaheuristic with a deep learning-driven certain UAV image classi-
fication (MDLS-UAVIC) model in a smart city environment. The proposed MDLS-UAVIC model
uses the signcryption technique to encrypt UAV images effectively. Next, the image classification
process involves an Xception-based deep convolutional neural network for the feature extraction
process. Finally, shuffled shepherd optimization with a recurrent neural network model is applied
for UAV image classification. The experimental validation of the MDLS-UAVIC approach was tested
employing a benchmark dataset, and the outcomes are examined in various measures.

2 Related Works

This section offers a brief review of existing UAV-based image classifier approaches. Raj [11]
employed the blockchain method to gather healthcare information from the user and save them on
a nearby server is presented. The UAV communicates with body sensor hives (BSH) via a low power
secured method. This technique can be recognized by a token where the UAV establishes relationships
with the BSH. Shibli et al. [12] introduced an Al drone-based encrypted ML of image classifier with
a pertained CNN and image encrypt-decrypt using XOR-Secret-Key block cipher cryptology and
singular value decomposition (SVD). Firstly, a pre-trained convolution neural network (CNN) is
widely employed for extracting and classifying image features exploiting ML training tool features.

The researchers in [13] focused on the structure of the share creation (SC) system using the social
spider optimization based ECC method named SC-SSOECC for a secured image communication
system in UAV. Initially, the presented method separates the color bands (RGB) for all the images.
Next, the generation of the SC system occurs for all the images, making it difficult for the hacker
to retrieve the original images. Mardiyanto et al. [14] proposed an analogue video communication
security for UAVs using assembling arbitrary image pieces using the Linear Feedback Shift Register
approach and image encryption technique with Pseudo Random Number Generator. The LFSR is a
seed that acts as a key to the randomization pattern from the image processed by software and taken
by the camera on Raspberry Pi.

Abualsauod [15] classified and analyzed the study on the UAV IoT framework and recognized
the solution to the problem associated with the security comprising privacy of the framework. In
this study, an optimal solution for different reliability and security problems in UAV-assisted IoT
applications is presented that uses the combination of different techniques merging blockchain-based
techniques. Punithavathi et al. [16] introduced an optimum dense convolution network (DenseNet)
using a BiLSTM-based image classifier method named optimum DenseNet (ODN)-Bi-LSTM for
UAV-based ad-hoc network. Kumar et al. [1 7] projected a secure privacy-preserving framework (SP2F)
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for intelligent agriculture UAV technique. The presented architecture contains a DL-based anomaly
detection technique and a two-level privacy system.

3 The Proposed Model

This study establishes a novel MDLS-UAVIC algorithm to securely encrypt the images and classify
them into distinct class labels in the smart city environment. The MDLS-UAVIC model encompasses
a series of processes: signcyrption, Xception-based feature extraction, RNN classification, and SSO-
based hyperparameter optimization. Fig. 1 illustrates the overall MDLS-UAVIC technique.

Input: Training Dataset
| UCM Dataset |

—| Data Collection — Process Involved

| AID Dataset |

L |

[ Encryption Process ] [FeatureExtmtIon] [ Classification ] [Parameter'funing]

Shuffied Shepherd
Optimization

Performance Evaluation

|Precision H Recall H Fl-score || F2-score || MSE H PSNR || MCC |

Figure 1: Working process of MDLS-UAVIC technique

3.1 Image Encryption Module

At the primary level, the proposed MDLS-UAVIC approach uses encryption techniques to
encrypt the UAV images effectively. The security system is a public key encryption technique using
a digital signature that might increase availability, confidentiality, integrity, authenticity, and nonre-
pudiation [18]. A single session key is used again for encryption to obtain an effective presentation for
name encryption compared to the encryption technique. The encryption technique has three phases:
encryption, des encryption, and key generation. A signature provides authenticity, and encryption
provides confidentiality simultaneously. It includes encryption, des encryption, generation of keys,
and parameter initialization phase. Initially, the signature-based security analysis assigns certain
parameters, namely large prime numbers for sender and receiver keys, key generation, and hash values.
The initial parameter is Sr,, Su,, Rr,, and Ru;.

e Signcryption Phase
(1) This encryption technique transfers the information to the receiver after security analysis; at
this point, motion vectors, hash, and one-key hash value-based encryption data are considered.
The transformation of plain data to ciphered data can be defined as follows. Firstly, the sender
transmits the data with a proper value 4 ranging from [1... PF —1I].
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(i1) Evaluate hash values of the sender applied by the receiver Ru, and 4. The output O_H, of
the hash value is 128-bit. The mathematical expression of the hash value has been given in the
following:

O_H, = HASH (Ruj * mod PN). (1)

iii) The resultant value of 128 bits is divided into 2 bits of sixty-four bits, as O_H,1 and O_H,2.
iv) The sender encrypts the data for encryption £ and O_H,1. The cipher information C; is
defined in the following:

C,= EO_H,1 (info). (2)

v) Next, the O_H,2 value is employed efficiently from the one-key hash function K_H, to hash
the information that results in a 128-bit hash as follows:

F =K H,2 (info). 3)
vi) Lastly, the encryption of the information is evaluated, and the cipher data are given in the
following:

S = A/(F+A0_Hol)mnd PF 4)

vii) From the calculation, three different values, F and C;, are transmitted to the sender as well
as the receiver.

e Unsigncryption Phase
i) In the receiver end, the decryption method, that is, the unsigncryption technique, is imple-
mented afterwards after receiving the encrypted information, that is, F and C;. The receiver is
capable of decrypting the subsequent steps.
i1) The receiver keys Su, and Sr, with encryption data are transformed to 128-bit output
decrypted data.

O_H, = HASH ((Ru; % i) % Srymod PN) . (5)

iii) The inverse operation of encryption can be executed; that is, 128-bit data is separated into
sixty-four bits of 2 key pairs.

O_H,1 and O_H,2. (6)

iv) The receiver uses the output key O_H,1 for decrypting the cipher data C;, and then the
decrypted data is described by = DO_H,1 (C)).
v) After completing the abovementioned process, valid data had attained as:

K_H,0_H,2 (info) = F. (7

vi) If it is equal, the message is considered a verified message; otherwise, it is invalid.

3.2 Image Classification Module

For the image classification process, the MDLS-UAVIC approach comprises feature extraction,
classification, and parameter optimization. The working process of each module is elaborated in the
following sections.
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3.2.1 Feature Extraction

The Xception approach is used in this work to develop a helpful feature vector group. Xception
[19] represents “extreme inception”. Xception was proposed in 2016. The Xception module is thirty-
six layers deep, except for the fully connected (FC) layer at the end. Different from inceptionV3,
the Xception parcel input record as a compacted lump also map the spatial connection for all the
channels separately, and a 1 x 1 depthwise convolutional layer is implemented for catching cross
channel relationship. This work introduces a pre-trained Xception method (trained on ImageNet data).
Then, the module is fine-tuned on UAV images. During Fine-tuning, Xception gives an input image
of 224 x 224 x 3 that goes with shortcuts and a depthwise separable layer.

3.2.2 Image Classification Using RNN Model

For the image classification procedure, the derived features are passed into the RNN approach,
which assigns proper class labels. RNN is extensively utilized for analyzing sequence datasets, namely
machine translation and speech recognition, considering that sequential dataset x = (x;, x5, - -+, X7),
whereas x,, ¢t € {1,2, ---, T} denotes the data at r—th time step. While using RNN to HSI
classifications, x, corresponds to the spectral values at 7—#k band. In RNN, the output of the hidden
state at time ¢ can be expressed as follows [20]:

h, =@ (Wyx, + Wih,_, + b,) ®)

whereas b, represents a bias vector, ¢ denotes a non-linear activation function, namely hyperbolic
tangent or logistic sigmoid functions, W, and W, denote the weight matrix from the existing input to
hidden layers and preceding hidden layers to existing hidden layers, /,_, indicates the output of hidden
state at the prior time, correspondingly. We observed from the formula that the context relationship
in the time domain would e created using a recurrent connection. Usually, /i, captures maximum time
data for the sequential dataset. For classifier tasks, 4 is frequently fed into the output layer, in addition
to the possibility that a softmax function derives the sequence belonging to i—t/ class. This process is
expressed in the following:

OT = WohhT + bo
eHiOT+l7,~
S porih €)
Zj: | %o
Now W, denotes the weight matrixes from hidden to output layers, b, indicates a bias vector, 6 and
b represent variables of softmax function, C signifies the class count to differentiate. The succeeding
loss function is given as follows:

I =
L= Inlog G)+(1 -y log (1 -7 (10)

Here, N indicates the number of trained instances, y; and y; corresponding to the predicted and
true labels of the i—th trained instance.

P(F=ilo, b) =

3.2.3 Hyperparameter Optimization

Finally, the SSO technique has been employed to adjust the RNN model’s hyperparameters
properly. SSO technique is a multi-community (MC) population-based metaheuristic algorithm that
imitates the nature of a shepherd. The steps included in the SSO approach are shown in [21]. Initially,
the SSO approach starts by arbitrarily creating members of the community (MOC) in the search space
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as follows:
MOC; = MOC,;, + rand x (MOC,,, — MOC,,) ;
i=1,2, ...,mandj=1,2, ..., n (11)

Here, rand indicates arbitrary number lies within [0, 1]; MOC,;, and MOC,,, correspondingly
signify lower and upper limits; m denotes community amount, and » indicates the number of members.
With this regard, it is considered that the total amount of members of the community can be obtained
using the following equation:

nMC=mxn (12)

In the shuffling method, the m member of the community is selected based on its objective function
and arranged randomly in the first column of the MC matrix as the first members of the community.
Next, generate the second column of MC; the m member is chosen corresponding to the preceding
step and arranged randomly in the column. The process is implemented in # time separately until the
MC matrix is generated as:

_MOCL] MOCI,Z A MOC]J c MOCL,,_
MOCZJ MOCZ,Z R MOCZJ- A MOCZ,n
MC = MOC,, MOC, --- MOC, --- MOC, (13)
_MOCm,l MOCm,2 e MOCm,/ e MOCm,n_

A step size of motion for each community member can be estimated based on the 2 vectors. It is
expressed in the following:

stepsise;; = stepsizezlv.Orse + stepsizeff”eri =1,2,...,mandj=1,2, ....n (14)

Worse
ij

stepsisezlv.Orse = a x rand, x (MOC,,, — MOC,)) (15)
stepsise;, " = B x rand, x (MOC,, — MOC,)) (16)

. B .
whereas stepse!”™ and stepsise;;  are defined as follows:

Now, rand, and rand, characterize arbitrary vectors; MOC,,, (chosen sheep) and MOC, ,(chosen
horse) denote optimum and worse member-based objective function values associated with
MOC,; (shepherd). It is worth declaring that the primary member of i community (MOCU) does

not take a member better than itself. Hence, stepsiseff"er is equal to zero. On the other hand, MOC,,
does not have a member worse than itself because of the last member of i-#4 community. Therefore,
stepsise;,"™ is equal to zero. Moreover, o and B indicate factors that manage the exploitation and
exploration stage. It is defined as follows:

iteration
A=) — 0y X, = —— 17
’ ‘ Max iteration a7

13 = 180 + (IBmax - 180) Xt (18)
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According to the previous step, the novel position of MOC;; can be estimated as follows. Later,
the position of MOC;; is upgraded, or else the objective old function value can be given as:

newMOC;; = MOC;; + stepsize;; (19)

The optimisation process would be terminated when the predetermined iteration number is
reached, or the ending conditions are accomplished. Otherwise, it returns to step 2 for the new
iteration. The SSO method progresses a fitness function (FF) for attaining effective classification
efficiency. It resolves the positive integer for representing the best performance of the candidate
solution.

fitness (x;) = Classifier Error Rate (x;)
_ number of misclassified samples

% 100 (20)

Total number of samples

Algorithm 1: Pseudocode of SSO algorithm

Begin

1. Initialization of the problem and determine the parameter.

2. Arbitrarily estimate the group of elements.

3. Category the group elements from the ascending order dependent upon the objective function.
4. Generate the sorted subset was dependent upon 2 stages.

1) Create the step size matrix.

i) Create a novel group of elements.

5. Evaluate the novel group of elements.

6. Execute the replacement approach amongst the novel and upgrade the group of elements.
7. Report the optimum element.

End

4 Experimental Validation

The performance validation of the MDLS-UAVIC approach is tested utilizing a benchmark
dataset, namely UCM dataset (http://weegee.vision.ucmerced.edu/datasets/landuse.html) and the AID
dataset (https://captain-whu.github.io/A1D/). The results are investigated under two aspects such as
security and image classification. A few sample images are displayed in Fig. 2.

Table 1 provides a qualitative result analysis of the MDLS-UAVIC model on distinct sample test
images. The outcomes showed that the MDLS-UAVIC approach has achieved an effective encryption
process with maximal values of PSNR and CC under all images. At the same time, the MDLS-UAVIC
approach has resulted in lower values of MSE under the very image.

Table 2 illustrates a detailed MSE and PSNR inspection of the MDLS-UAVIC model with existing
models under distinct sample images [22]. Fig. 3 reports a comparative MSE assessment of the MDLS-
UAVIC approach with recent algorithms under dissimilar images. The figure depicted that the MDLS-
UAVIC algorithm has obtained enhanced performance with lower values of MSE. For instance,
with sample image 1, the MDLS-UAVIC system has provided a minimal MSE of 0.047, whereas
the AIUAV, CSO, and GWO processes have obtained increased MSE of 0.060, 0.189, and 0.288,
correspondingly. Also, with sample image 3, the MDLS-UAVIC approach provided the least MSE
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of 0.035, but the ATUAYV, CSO, and GWO approach obtained maximum MSE of 0.049, 0.206, and
0.237, correspondingly. In addition, with sample image 5, the MDLS-UAVIC algorithm has provided
a lesser MSE of 0.108, but the AIUAYV, CSO, and GWO methods have gained higher MSE of 0.135,

0.183, and 0.234, correspondingly.

Figure 2: Sample UAVs images

Table 1: Visualization of proposed MDLS-UAVIC methodology on sample images

Input images Encrypted images Decrypted images MSE PSNR CC
0.047 61.410 99.910
0.059 60.422 99.990

(Continued)
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Table 1 (continued)
Input images Encrypted images Decrypted images MSE PSNR CC

0.035 62.690 99.910
0.105 57.919 99.920
0.108 57.797 99.930

Table 2: MSE and PSNR analysis of MDLS-UAVIC technique with various sample images
Sample MDLS-UAVIC ATUAV model CSO algorithm GWO algorithm
ages MSE PSNR MSE PSNR  MSE  PSNR  MSE  PSNR

Sample 1 0.047 61.410 0.060 60.371 0.189 55.373 0.288 53.538
Sample 2 0.059 60.422 0.080 59.089 0.176 55.666 0.232 54.472
Sample 3 0.035 62.690 0.049 61.273 0.206 54.994 0.237 54.391
Sample 4 0.105 57.919 0.130 56.981 0.215 54.815 0.262 53.956
Sample 5 0.108 57.797 0.135 56.827 0.183 55.509 0.234 54.439

A detailed PSNR examination of the MDLS-UAVIC model with current models is provided in
Fig. 4. The experimental values specified that the MDLS-UAVIC system had improved PSNR values
under every sample image. For sample, with sample image 1, the MDLS-UAVIC model has increased
PSNR by 61.410 dB, whereas the ATUAV, CSO, and GWO algorithms have provided reduced PSNR
of 60.371, 55.373, and 53.538 dB, respectively. Meanwhile, with sample image 3, the MDLS-UAVIC
technique has accessible increased PSNR of 62.690dB. In contrast, the AIUAV, CSO, and GWO
algorithms have provided lesser PSNR of 61.273, 54.994, and 54.391 dB, correspondingly. Eventually,
with sample image 5, the MDLS-UAVIC method has enhanced SNR of 57.797dB, whereas the
ATUAY, CSO, and GWO approaches have provided reduced PSNR of 56.827, 55.509, and 54.439 dB.
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Figure 3: MSE analysis of MDLS-UAVIC approach with distinct sample images
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Figure 4: PSNR analysis of MDLS-UAVIC approach with distinct sample images

A detailed CC examination of the MDLS-UAVIC approach with current algorithms is provided in
Table 3 and Fig. 5. The experimental values show that the MDLS-UAVIC system has gained enhanced
CC values under every sample image. For instance, with sample image 1, the MDLS-UAVIC technique
has obtainable increased CC of 99.910, whereas the AIUAYV, CSO, and GWO techniques have provided
lower CC of 99.700, 99.470, and 99.240, respectively. In the meantime, with sample image 3, the
MDLS-UAVIC model has existing increased CC of 99.910, whereas the ATUAV, CSO, and GWO
algorithms have provided reduced CC of 99.710, 99.460, and 99.210, respectively. At last, with sample
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image 5, the MDLS-UAVIC model has obtainable maximal CC of 99.930, whereas the ATUAV, CSO,
and GWO techniques have provided lower CC of 99.650, 99.360, and 99.160, correspondingly.

Table 3: Correlation coefficient (CC) analysis of MDLS-UAVIC system with various sample images

Sample images MDLS-UAVIC ATUAV model CSO algorithm GWO algorithm
Sample 1 99.910 99.700 99.470 99.240
Sample 2 99.990 99.740 99.500 99.220
Sample 3 99.910 99.710 99.460 99.250
Sample 4 99.920 99.650 99.450 99.210
Sample 5 99.930 99.650 99.360 99.160
100.2
! MDLS-UAVIC mmm CSO Algorithm
I AIVAV Model GWO Algorithm
100.0 - _
99.8

Correlation Coefficient (CC)

n

Sample 1

Sample 2 Sample 3
Sample Images

Sample 4 Sample 5

Figure 5: CC analysis of MDLS-UAVIC technique with distinct sample images

Table 4 and Fig. 6 define a comparative CT assessment of the MDLS-UAVIC approach with
recent models under distinct images. The figure depicted that the MDLS-UAVIC process has gained
enhanced performance with lower values of CT. With sample image 1, the MDLS-UAVIC technique
has provided minimal CT of 1.154 s, whereas the AIUAYV, CSO, and GWO algorithms have obtained
increased CT of 1.449, 2.056, and 2.379s, correspondingly. Likewise, with sample image 3, the
MDLS-UAVIC technique has provided the least CT of 1.411 s, whereas the AIUAV, CSO, and GWO
algorithms have obtained maximum CT of 1.802, 2.160 and 2.213 s, respectively. Additionally, with
sample image 5, the MDLS-UAVIC model has provided minimal CT of 1.166s, whereas the AIUAYV,
CSO, and GWO algorithms have obtained higher CT of 1.682, 1.873, and 2.125 s, correspondingly.
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Table 4: Computation time analysis of MDLS-UAVIC technique with various sample images

Sample images MDLS-UAVIC ATUAV model CSO algorithm GWO algorithm
Sample 1 1.154 1.449 2.056 2.379
Sample 2 1.126 1.578 1.642 2.063
Sample 3 1.411 1.802 2.160 2.213
Sample 4 0.995 1.471 2.226 2.387
Sample 5 1.166 1.682 1.873 2.125
~— MDLS-UAVIC —4— CSO Algorithm
205 —— AIUAV Model —@- GWO Algorithm
2.50
g 2.25
°
E 2.00
(=
5
£ 1751
H
£ 1.50
S
1.25
1.00
Sample 1 S ,I le 2 Sami:le 3 Sami:lle 4 Sample 5

Sample Images

Figure 6: CT analysis of MDLS-UAVIC technique with distinct sample images

Table 5 provides detailed classification results of the MDLS-UAVIC model on the UCM multi-
label dataset [23]. Fig. 7 provides a brief prec, and reca, examination of the MDLS-UAVIC model
with existing models on the test UCM multi-label dataset. The figure indicated that the Conv. NN,
CNN-ANN, and CNN-Bil.STM models have provided worse performance with lower values of prec,
and recq,. Besides, the CNN-RNN, GNN-SGAT, and GNN-MLIGAT models have reached slightly
increased values of prec, and reca;. Though the optimal SqueezeNet model has resulted in reasonable
prec, and reca; of 91.72% and 92.92%, the MDLS-UAVIC model has accomplished maximum prec,
and reca, values of 92.81% and 94.28%, respectively.

Table 5: Comparative analysis of MDLS-UAVIC technique with recent algorithms on UCM multi-
label dataset

Methods Precision  Recall F1-Score F2-Score
Conv. NN 79.91 83.20 80.56 79.36
CNN-ANN 77.90 83.97 80.30 80.69

(Continued)
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Table 5 (continued)

Methods Precision  Recall F1-Score F2-Score
CNN-Bil.STM 79.87 84.13 80.52 81.18
CNN-RNN 87.79 86.32 84.99 86.96
GNN-SGAT 87.04 87.56 87.44 86.16
GNN-MLIGAT 87.36 89.75 85.88 88.13
Optimal SqueezeNet 91.72 92.92 94.60 93.41
MDLS-UAVIC 92.81 94.28 95.93 94.32
B Conv.NN B GNN-SGAT
100.0 1 CNN-ANN === GNN-MLIGAT
mmm CNN-Bil.STM mmm Optimal SquezzeNet
CNN-RNN == MDLS-UAVIC
95.0
g 90.0
s
85.0 -
80.0
75.0 -

Precision Recall

Figure 7: Prec, and reca, analysis of MDLS-UAVIC technique on UCM multi-label dataset

Fig. 8 demonstrates a brief F1,,,, and F2,.,. analysis of the MDLS-UAVIC approach with existing
models on the test UCM multi-label dataset. The figure indicated that the Conv. NN, CNN-ANN,
and CNN-Bil.STM models have provided worse performance with lower values of F1,,.,. and F2,.,.
In addition, the CNN-RNN, GNN-SGAT, and GNN-MLIGAT models have attained somewhat
increased values of F1,,, and F2,.,.. But, the optimal SqueezeNet model has resulted in reasonable
Fl,.,.and F2,,. of 94.60% and 93.41%, the MDLS-UAVIC model has accomplished maximal F1,,,,.
and F2,.,, values of 95.93% and 94.32%, correspondingly.

Table 6 provides detailed classification results of the MDLS-UAVIC system on the AID multi-
label dataset. The results indicated that the Conv. NN, CNN-ANN, and CNN-Bil.STM models have
provided worse performance with lower values of prec, and reca;. Also, the CNN-RNN, GNN-SGAT,
and GNN-MLIGAT models have reached slightly increased values of prec, and reca,. The optimal
SqueezeNet model has resulted in reasonable prec, and reca; of 93.10% and 94.63%, the MDLS-UAVIC
model has accomplished maximum prec, and reca, values of 94.46% and 95.82%, respectively. Next,
the optimal SqueezeNet model has resulted in reasonable F1,,.,. and F2,,, of 92.14% and 93.24%, and
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the MDLS-UAVIC model has accomplished maximum F1,,,, and F2,,, values of 93.66% and 94.32%,
respectively.

mmm Conv.NN Emm GNN-SGAT
CNN-ANN mmm GNN-MLIGAT
100.0 - mmm CNN-Bil.STM mmm Optimal SquezzeNet
CNN-RNN mmm MDLS-UAVIC
95.0 4
g
2 90.0
2
s
85.0 1
80.0
75.0 -

F1-Score F2-Score

Figure 8: F1,.,. and F2,,, analysis of MDLS-UAVIC technique on UCM multi-label dataset

Table 6: Comparative analysis of MDLS-UAVIC technique with recent algorithms on AID multi-label
dataset

Methods Precision  Recall F1-Score F2-Score
Conv. NN 87.20 87.38 86.63 85.30
CNN-ANN 85.58 88.36 84.75 86.86
CNN-Bil.STM 87.78 88.10 85.83 87.53
CNN-RNN 89.73 90.15 88.83 89.60
GNN-SGAT 89.94 90.64 88.00 89.44
GNN-MLIGAT 90.97 90.31 87.92 88.83
Optimal SqueezeNet 93.10 94.63 92.14 93.24
MDLS-UAVIC 94.46 95.82 93.66 94.32

After detecting the results and discussion, it has been concluded that the MDLS-UAVIC approach
has accomplished maximum classification performance over the other models.

5 Conclusion

In this study, a novel MDLS-UAVIC approach was established to securely encrypt the images and
classify them into distinct class labels in the smart city environment. The proposed MDLS-UAVIC
model follows a two-stage process: encryption and image classification. For image encryption, the
signcryption technique effectively encrypts the UAV images. Next, the image classification process
involves an Xception-based deep convolutional neural network for the feature extraction process.
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Finally, SSO with a recurrent neural network (RNN) model is exploited for UAV image classification.
The experimental validation of the MDLS-UAVIC approach was tested utilizing a benchmark dataset,
and the outcomes are examined in various measures. The comparative analysis ensured the effective
performance of the MDLS-UAVIC approach on recent methodologies. In the future, an ensemble of
DL-based classification methods can be designed to accomplish maximum performance.

Some limitations that can be associated with the use of computational intelligence techniques for
secure unmanned aerial vehicle (UAV) image classification in a smart city environment:

- Dependence on training data: Computational intelligence techniques, such as deep learning
algorithms, require a large amount of labeled training data to achieve high accuracy in
image classification. However, collecting and labeling such data can be time-consuming and
expensive, especially for a specific smart city environment.

- Sensitivity to environmental factors: UAV image classification can be affected by various
environmental factors, such as lighting conditions, weather, and camera quality. These factors
can impact the quality of the captured images, which in turn affects the accuracy of the
classification results.

- Security concerns: The use of UAVs in a smart city environment raises security concerns, as
these vehicles can be vulnerable to cyberattacks and can potentially be used for malicious
purposes. While the paper may address security concerns, it is important to consider the
potential limitations of the proposed approach in mitigating such risks.

- Integration with existing systems: In a smart city environment, UAV image classification
systems need to be integrated with other existing systems, such as surveillance cameras and
emergency response systems. The integration process can be challenging, as different systems
may have different data formats and communication protocols.

- Regulatory and ethical considerations: The use of UAVs in a smart city environment may be
subject to regulatory and ethical considerations, such as privacy concerns and compliance
with local laws and regulations. These considerations need to be taken into account when
implementing a UAV image classification system.
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