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ABSTRACT

Medical image analysis is an active research topic, with thousands of studies published in the past few years.
Transfer learning (TL) including convolutional neural networks (CNNs) focused to enhance efficiency on an
innovative task using the knowledge of the same tasks learnt in advance. It has played a major role in medical
image analysis since it solves the data scarcity issue along with that it saves hardware resources and time. This
study develops an Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis
System (ETSOTL-MIAS). The goal of the ETSOTL-MIAS technique lies in the identification and classification of
diseases through medical imaging. The ETSOTL-MIAS technique involves the Chan Vese segmentation technique
to identify the affected regions in the medical image. For feature extraction purposes, the ETSOTL-MIAS technique
designs a modified DarkNet-53 model. To avoid the manual hyperparameter adjustment process, the ETSOTL-
MIAS technique exploits the ETSO algorithm, showing the novelty of the work. Finally, the classification of medical
images takes place by random forest (RF) classifier. The performance validation of the ETSOTL-MIAS technique
is tested on a benchmark medical image database. The extensive experimental analysis showed the promising
performance of the ETSOTL-MIAS technique under different measures.
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1 Introduction

Medical imaging is a significant diagnostic tool for many diseases. In 1895, roentgen found that
x-rays can non-invasively look into the human body and x-ray radiography is the first diagnostic image
modality soon after [1]. Thereafter, several imaging modalities are developed, with magnetic resonance
imaging (MRI), computed tomography, positron emission tomography and ultrasound among the
typically utilized, and increasingly complicated imaging process formulated [2,3]. Image information
had a main role in making decisions at numerous phases in the process of patient care, which includes
staging, detection, treatment response assessment, surgeries, monitoring of disease recurrence, and
characterization in addition to guiding radiation therapy and interventional process [4]. The images
for a given victim case rise drastically from some 2D images to hundreds with 3D images and thousands
with 4D imaging. There will be a rise in the number of image datasets to be interpreted by applying
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multi-modality imaging [5–7]. The increasing workload finds it tough for physicians and radiologists
to preserve workflow efficiency when using all the available imaging data for enhancing patient care
and accuracy [8–10]. With the advancements in computational techniques and machine learning (ML)
in recent years, the need of formulating computerized techniques for assisting radiologists in diagnosis
and image analysis was recognized as a significant area of research and studies in medical imaging [11].

Transfer learning (TL) is an application of artificial intelligence that depends on pretrained
learning that offers enrichment in the rate of diagnosis and accuracy using medical imaging [12].
There were robust market demands and public engrossment that pushes the rapid production of these
diagnostic products [13]. The techniques of TL render structure for using formerly obtained knowledge
to solve new but related problems a lot more effectively and promptly through AI. The TL techniques
have the feature of fine-tuning the method based on the formerly trained dataset, permitting them to
alter their provided input layers. This feature made them powerful tools to catalogue and detects the
pattern of diseases. Moreover, the exposed features do not process by medical experts, but to some
extent by the series they have trained from the inputted dataset [14]. Contrary to this, DL techniques
have reached significant and amazing deviations to medical engineering, with their discoveries in the
domain of pattern recognition, image captioning and computer vision [15].

Gaur et al. [16] examined a practical solution for detecting COVID19 in chest X-rays (CXR) but
typical individuals in normal and compressed by Viral Pneumonia using DCNN. During this case,
3 pre-trained CNN techniques (InceptionV3, EfficientNetB0, and VGG16) can be estimated with
transfer learning (TL). The rationale to select these particular methods is their balancing of accurate-
ness and efficacy with several parameters appropriate to the mobile application. Chouhan et al. [17]
purposed of this analysis is for simplifying the pneumonia recognition procedure for experts and
novices. The authors propose a new DL structure for the recognition of pneumonia utilizing the model
of TL. In this manner, the feature in images can be extracted utilizing distinct NN algorithms pre-
trained on ImageNet that are provided as to classification to predictive.

Arora et al. [18] purposed for identifying COVID19 with DL approaches utilizing lung CT-
SCAN image. For enhancing lung CT scan efficacy, a super-residual dense NN is executed. To mark
COVID19 as positive/negative to enhance CT scans, current pre-training approaches like ResNet50,
XceptionNet, MobileNet, VGG16, InceptionV3, and DenseNet are utilized. Ali et al. [19] examined
a DCNN technique dependent upon the DL algorithm for the correct classifier betwixt malignant
and benign skin lesions. During the pre-processed, the authors initially execute a filter or kernel for
removing noise and artefacts; secondarily, normalise the input images and extract features which use
to accurate classifier; and at last, data augmentation enhances the count of images which enhances the
rate of classifier accuracy.

Al-Rakhami et al. [20] introduced an integrated structure of CNN and recurrent neural network
(RNN) for diagnosing COVID19 in CXR. The deep transfer approaches utilized in this experiment are
InceptionV3, VGG19, Inception-ResNetV2 and DenseNet121. CNN has been utilized for extracting
difficult features in instances and classifying them utilizing RNN. The VGG19-RNN infrastructure
attained an optimum performance betwixt every network concerning accuracy. Lastly, the Gradient-
weighted Class Activation Mapping (Grad-CAM) has been utilized for visualizing class-specific
regions of images that are responsible for decision-making. The purpose of the analysis is to evaluate
the efficiency of recent CNN infrastructures presented in recent times for medicinal image classifiers
(Apostolopoulos et al. [21]). Especially, the process named TL with executed. With TL, the recognition
of several abnormalities from smaller medicinal image databases is the reachable target, frequently
yielding remarkable outcomes.
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This study develops an Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled
Medical Image Analysis System (ETSOTL-MIAS). The ETSOTL-MIAS technique involves the
Chan Vese segmentation technique to identify the affected regions in the medical image. For feature
extraction purposes, the ETSOTL-MIAS technique designs a modified DarkNet-53 model. To avoid
the manual hyperparameter adjustment process, the ETSOTL-MIAS technique exploits the ETSO
algorithm. Finally, the classification of medical images takes place by random forest (RF) classifier.
The performance validation of the ETSOTL-MIAS technique is tested on a benchmark medical image
database.

The rest of the paper is organized as follows: Section 2 offers the proposed model and Section 3
discusses the experimental analysis. Finally, Section 4 concludes the study.

2 The Proposed Model

In this study, we have developed a new ETSOTL-MIAS technique for the identification and
classification of bone cancer on medical imaging. It comprises Chan Vese segmentation, modified
DarkNet-53 feature extraction, ETSO-based hyperparameter optimization, and RF classification.
The ETSOTL-MIAS technique involved the design of the Chan Vese segmentation technique to
identify the affected regions in the medical image. For feature extraction purposes, the ETSOTL-MIAS
technique designs a modified DarkNet-53 model. To avoid the manual hyperparameter adjustment
process, the ETSOTL-MIAS technique exploits the ETSO algorithm. Finally, the classification of
medical images takes place by the RF classifier. Fig. 1 defines the block diagram of the ETSOTL-
MIAS approach.

Figure 1: Block diagram of ETSOTL-MIAS system
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2.1 Image Segmentation

The ETSOTL-MIAS technique involved the design of the Chan Vese segmentation technique.
While segmenting images to define the bite-marked region, the Chan Vese technique can be exploited
for the pre-processed image [22].

Assume f (x) = (x1, x2) ∈ � ⊂ R
2
t signifies the input image that must be segmented. The

generalized image segmentation problems with the Mumford-Shah image are given as follows:

min μH1 (C) + λ

∫
�

(f − u)
2 dx +

∫
�\C

|∇u|2dx, (1)

Now, C indicates the edge set, u represents the differentiable function on �\C, H1 indicates the

1D Hausdorff measure, ∇u =
(

uχ1t uχ2

)
represents the gradient operator, |·| signifies the L2 norm and

variable μ > 0tλ > 0.

In Eq. (1), consider that C indicates the closed curve, the 1D Hausdorff measure of C gets curve
length and it is formulated by:

argminu, Cμ length (C) + λ

∫
�

(f − u)
2 dx +

∫
�\C

|∇u|2dx. (2)

Consider that the function:

u (x) =
{

c12 if x ∈ C
c22 if x /∈ C

,

Then obtain the succeeding model:

arg min
c1,c2,C

μlength (C) + vArea (C) + λ1

∫
x∈C

|f − c1|2dx + λ2

∫
x/∈C

|f − c2|2dxt (3)

From the expression, length (C) represents the length of curve C, Area (C) characterizes the area
inside C, and variable μ > 0, v > 0, λ1 > 0, λ2 > 0. Eq. (3) is called as Chan-Vese image segmentation
technique. The objective is to determine the optimum u-fitting f by minimizing the aforementioned
energy function. In Eq. (3), the first term characterizes the regularity by the curve length, the second
term-penalize the enclosed area of C for controlling its size, and the third and fourth terms penalize
discrepancy amongst the input image f and the piecewise constant function u.

2.2 Feature Extraction

To produce a set of feature vectors, a modified DarkNet-53 model is used [23]. It integrates the
residual networks with deep residual architecture. It encompasses 1 × 1 and 3 × 3 convolution layer
and residual block which can be formulated by Eq. (4):

an
m =

∑
j∈Xi

an−1
j ∗ yn

jm + zn
m (4)

From the expression, the input image is twisted by the convolution kernel for producing m separate
feature map an

m that is characterized in n layers by m feature maps, ∗ denotes the convolution function.
The feature vector of the image is denoted as Xi and the j component of the m convolutional kernel in
n layers can be characterized as yn

j .

Next, the main layer is the batch normalization (BN) layer.

aout = ∝ (
an

m − ∂
)

√
ω2 + φ

+ γ (5)
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In Eq. (5), the scaling factor is characterized as ∝, the mean of each output can be denoted as
∂, the input variance can be indicated as ω, φ shows the constant offset characterized by γ , and the
convolution computation outcome can be represented as aout. The outcome of BN is represented as aoui.
The output is normalized through BN corresponding to the similar distribution of the coefficient of
the similar batch of eigenvalues. Later, it has the convolution layer that could speed up the convergence
rate and avoid avoiding overfitting. The subsequent layer is called the activation layer. In this work, a
leaky ReLU layer can be added as an activation function:

χj =
⎧⎨⎩yj′ if aout ≥ 0

yi

bi

, if aoui < 0
(6)

In Eq. (6), the input values are represented as yj, the activation value can be indicated as χj, and the
fixed parameter in the range (1, +∞) can be represented as bj. Another significant layer is the pooling
layer. In the network, this layer is used for weight downsampling. Besides, max -the pooling layer is
applied. At last, every weight is integrated with one layer through the 1D array is termed a feature.
Finally, this extracted feature was categorized in the output layer. The depth of these models is 53, the
size is 155 MB, the number of variables is 41.6 million, and the input size of an image is 256-by-256.

The ETSO algorithm is derived for the hyperparameter adjustment process. Tunicate can discover
the food source location in the sea [24]. Jet propulsion and swarm intelligence are the 2 characteristics
of tunicate deployed for discovering the food resource. Tunicate must satisfy 3 conditions such as
“avoid the conflicts between search agents, the movement towards the position of best search agent
and remain close to the best search agent” to precisely model the characteristics of jet propulsion.

For avoiding conflicts amongst searching agents, vector
→
B is deployed for calculating the novel

location of the searching agent as follows:

→
B =

→
M
→
G

(7)
→
M = C2 + C3 − →

F (8)
→
F = 2.C1 (9)

In Eqs. (8) and (9),
→
M represent gravitational force and

→
F stands for advection of water flow in

the sea, C1, C2, and C3 show the arbitrary integers within [0, 1] .
→
G indicates social forces amongst

searching agents. The vector
→
G is calculated as given in Eq. (10), in which xmax and xmin indicate the

subordinate and initial speed to make social interaction.
→
G = [Xmin + C1.Xmax − Xmin] (10)

The searching agent tends to shift towards a better-neighbouring direction afterwards avoiding

the conflicts among neighbours, in which,
→
XD indicates the distance between the food source and

search agent, FP indicates the food source location, x indicates the existing iteration, X p (y) shows the
location of tunicate and rand denotes the arbitrary number within [0, 1] .
→
XD = |FP − rand.X p (y) (11)



3114 CSSE, 2023, vol.47, no.3

The search agent sustains its location to better search agent, while, x
(
y1

)
indicates the updated

location of tunicate based on the food source location of FP as follows:

xp (y) =
{

FP + →
B.

→
XD if rand ≥ 0.5

FP − →
B.

→
XD if rand < 0.5

(12)

To stimulate the swarming behaviour of tunicate, the initial optimum solution is stored and it can
be mathematically expressed as follows:

xp

(
y1 + 1

) =
→
xp (y) + xp

(→
y + 1

)
2 + C1

(13)

The ETSO algorithm is designed by the use of the oppositional-based learning (OBL) concept.
The OBL is an optimization approach utilized for improving the diversity of optimization techniques
and improving its attained solution. Generally, the optimization algorithm starts its step towards
an optimum solution by first producing a set of solutions randomly. But this attained solution
was not based on randomly generated and preceding knowledge besides the problem search space.
Furthermore, most optimization algorithm while it updates the location of the searching agent it
depends on distance towards the present optimal solution, however, it is not possible to guarantee
to reach the global optimum solution. The OBL is used to overcome the problems of optimization
strategy. The OBL approach provides a helpful concurrent search in two directions that involves
the present solution and its opposite solution, taking the better one based on fitness for additional
processing.

• Opposite number: based on the algorithm designed, which states that when x is a real number
with interval x ∈ [lb, ub] where lb and ub represent the lower and upper bounds of the variable in
the present j dimensions, x opposite number is x̃ and its value is attained by using the following
expression:

x̃ = lb + ub − x (14)

The same formula is used in multi-dimension search space and it can be generalized, in such cases,
the search agent solution is given by:

x = [x1, x2, x3, . . . , xn] (15)

x̃ = [̃x, x̃, x̃, . . . , x̃n] (16)

Eq. (15), shows the dimension of the existing solution and Eq. (16) shows the opposite solution
dimension of the present solution. At this time, every component in x̃ and its values would be attained
by using the following expression:

x̃ = lbj + ubj − xj where j = 1, 2, 3, . . . , n (17)

• Optimization Based on Opposition: The present candidate solution x is replaced by the
corresponding opposite solution x̃ based on fitness values. Consider the fitness function as
f ( .), then in all the iterations fitness values of every solution in the search space and the
corresponding opposite would be evaluated, and then the fittest solution would be chosen from
the set of opposite and original solutions.
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The fitness selection will be considered a main factor in the ETSO technique. Solution encoding
was used to evaluate the goodness of the candidate solution [25]. Here, the accuracy values are the
main condition used to devise a fitness function.

Fitness = max (P) (18)

P = TP
TP + FP

(19)

From the expression, TP represents the true positive and FP denotes the false positive value.

2.3 Image Classification

Lastly, the classification of medical images takes place by the RF classifier. An RF technique
established by Breiman is a group of tree predictive. All the trees are developed based on the subsequent
process [26]:

• The bootstrap stage: choose arbitrarily a subset of the trained database—a locally trained
dataset to grow the tree. The residual instances in the trained database procedure are a supposed
out-of-bag (OOB) set and can be utilized for estimating the RF goodness of fit.

• The growing stage: grow the tree by dividing the locally trained dataset at all the nodes based
on the values of one variable in an arbitrarily chosen subset of variables (an optimum divided)
utilizing the classification and regression tree (CART) approach.

• All the trees are grown to the maximum extent feasible. There exist without cutting.

The growing and bootstrap stages need an input of arbitrary quantities. It can be considered that
this quantity is independent betwixt trees as well as similarly distributed. Therefore, all the trees are
observed and sampled independently in the ensemble of every tree predictor to provide a trained set.

To predict, a sample is run with all the trees from a forest down to the end node that allocates
it, class. The predictive provided by the tree endures a voting procedure: the forest return class with a
maximal count of votes.

To extend our feature contribution process from the subsequent section, it should progress the
probabilistic interpretation of the forest predictive approach. Define by C = {C1, C2, . . . , CK} the
class group and by �K the set.

�K =
{
(p1, . . . , pK) :

∑K

k=1
pk = 1 and pk ≥ 0

}
.

The component of �K is understood as a probability distribution on C. Assume ek exists
component of �K with 1 at position k − a probability distribution concentrated at class Ck. When
a tree t prediction which is a sample i goes to class Ck afterwards, it is written Ŷi,t = ek. This offers a
mapping in predict of trees to set �K of probability measures on C. Assume:

Ŷ = 1
T

∑T

t=1
Ŷi,t, (20)

whereas T refers to the entire count of trees from the forest. Afterwards Ŷi∈	k and the predictive of
the RF for sample i corresponds with class Ck whereas kth co-ordinate of Ŷi is higher. Fig. 2 depicts
the architecture of RF.
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Figure 2: Architecture of RF

3 Experimental Validation

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 1050Ti 4 GB,
16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given as follows: learning
rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU. The performance of
the ETSOTL-MIAS model on bone cancer classification performance is tested on a medical dataset
comprising 100 samples with two classes as given in Table 1. Fig. 3 illustrates the sample images.

The confusion matrices of the ETSOTL-MIAS model are depicted in Fig. 4. On 80% of the TR
database, the ETSOTL-MIAS model has identified 37 samples in the cancerous bone and 37 samples
in healthy bone. Besides, on 20% of the TS database, the ETSOTL-MIAS technique has identified 10
samples of cancerous bone and 9 samples of healthy bone. In addition, on 70% of the TR database,
the ETSOTL-MIAS approach has detected 34 samples of cancerous bone and 28 samples of healthy
bone. At last, on 30% of the TS database, the ETSOTL-MIAS approach has identified 12 samples of
cancerous bone and 17 samples of healthy bone.

An entire classifier result of the ETSOTL-MIAS model with 80:20 of TR/TS data is depicted in
Table 2.

Fig. 5 represents the bone cancer classification outcomes of the ETSOTL-MIAS model with 80%
of the TR database. With cancerous bone class, the ETSOTL-MIAS model has reached accubal of
94.87%, precn of 90.24%, recal of 94.87%, Fscore of 92.50%, MCC of 85.12%, and Gmean of 92.53%.
Meanwhile, with healthy bone class, the ETSOTL-MIAS method has reached accubal of 90.24%, precn

of 94.87%, recal of 90.24%, Fscore of 92.50%, MCC of 85.12%, and Gmean of 92.53%.
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Table 1: Details of the dataset

Class No. of images

Cancerous bone 50
Healthy bone 50
Total number of images 100

Figure 3: Sample images

Figure 4: (Continued)



3118 CSSE, 2023, vol.47, no.3

Figure 4: Confusion matrices of ETSOTL-MIAS approach (a)–(b) TR and TS databases of 80:20 and
(c)–(d) TR and TS databases of 70:30

Table 2: Bone cancer classifier outcome of ETSOTL-MIAS system on 80:20 of TR/TS databases

Class labels Accuracybal Precision Recall F-score MCC G-mean

Training phase (80%)

Cancerous
bone

94.87 90.24 94.87 92.50 85.12 92.53

Healthy
bone

90.24 94.87 90.24 92.50 85.12 92.53

Average 92.56 92.56 92.56 92.50 85.12 92.53

Testing phase (20%)

Cancerous
bone

90.91 100.00 90.91 95.24 90.45 95.35

Healthy
bone

100.00 90.00 100.00 94.74 90.45 95.35

Average 95.45 95.00 95.45 94.99 90.45 95.35

Fig. 6 shows the bone cancer classification outcomes of the ETSOTL-MIAS method with 20%
of the TS database. With cancerous bone class, the ETSOTL-MIAS technique has reached accubal of
90.91%, precn of 100%, recal of 90.91%, Fscore of 95.24%, MCC of 90.45%, and Gmean of 95.35%. In the
meantime, with healthy bone class, the ETSOTL-MIAS methodology has reached accubal of 100%,
precn of 90%, recal of 100%, Fscore of 94.74%, MCC of 90.45%, and Gmean of 95.35%.

An entire classifier result of the ETSOTL-MIAS model with 70:30 of TR/TS data is depicted in
Table 3.
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Figure 5: Average outcome of ETSOTL-MIAS system on 80% of TR database

Figure 6: Average outcome of ETSOTL-MIAS system on 20% of TS database

Table 3: Bone cancer classifier outcome of ETSOTL-MIAS system on 70:30 of TR/TS databases

Class labels Accuracybal Precision Recall F-score MCC G-mean

Training phase (70%)
Cancerous
bone

89.47 89.47 89.47 89.47 76.97 88.48

Healthy
bone

87.50 87.50 87.50 87.50 76.97 88.48

(Continued)
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Table 3 (continued)
Class labels Accuracybal Precision Recall F-score MCC G-mean

Average 88.49 88.49 88.49 88.49 76.97 88.48
Testing phase (30%)

Cancerous
bone

100.00 92.31 100.00 96.00 93.37 97.18

Healthy
bone

94.44 100.00 94.44 97.14 93.37 97.18

Average 97.22 96.15 97.22 96.57 93.37 97.18

Fig. 7 signifies the bone cancer classification outcomes of the ETSOTL-MIAS technique with 70%
of the TR database. With cancerous bone class, the ETSOTL-MIAS approach has reached accubal of
89.47%, precn of 89.47%, recal of 89.47%, Fscore of 89.47%, MCC of 76.97%, and Gmean of 88.48%. In the
meantime, with healthy bone class, the ETSOTL-MIAS method has reached accubal of 87.50%, precn

of 87.50%, recal of 87.50%, Fscore of 87.50%, MCC of 76.97%, and Gmean of 88.48%.

Figure 7: Average outcome of ETSOTL-MIAS system on 70% of TR database

Fig. 8 shows the bone cancer classification outcomes of the ETSOTL-MIAS method with 30%
of the TS database. With cancerous bone class, the ETSOTL-MIAS approach has reached accubal of
100%, precn of 92.31%, recal of 100%, Fscore of 96%, MCC of 93.37%, and Gmean of 97.18%. Eventually,
with healthy bone class, the ETSOTL-MIAS methodology has reached accubal of 94.44%, precn of
100%, recal of 94.44%, Fscore of 97.14%, MCC of 93.37%, and Gmean of 97.18%.

The TACC and VACC of the ETSOTL-MIAS technique are investigated on bone cancer clas-
sification performance in Fig. 9. The figure displays that the ETSOTL-MIAS algorithm has shown
improved performance with increased values of TACC and VACC. Notably, the ETSOTL-MIAS
technique has attained maximum TACC outcomes.
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Figure 8: Average outcome of ETSOTL-MIAS system on 30% of TS database

Figure 9: TACC and VACC analysis of the ETSOTL-MIAS system

The TLS and VLS of the ETSOTL-MIAS method are tested on bone cancer classification
performance in Fig. 10. The figure exhibited the ETSOTL-MIAS approach has revealed better
performance with the least values of TLS and VLS. Seemingly, the ETSOTL-MIAS method has
reduced VLS outcomes.

A clear precision-recall study of the ETSOTL-MIAS algorithm under the test database is given
in Fig. 11. The figure shows the ETSOTL-MIAS technique has enhanced values of precision-recall
values in several classes.
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The detailed ROC investigation of the ETSOTL-MIAS technique in the test database is given in
Fig. 12. The outcomes exhibited by the ETSOTL-MIAS algorithm have shown its ability in classifying
distinct class labels in the test database.

Figure 10: TLS and VLS analysis of the ETSOTL-MIAS system

Figure 11: Precision-recall analysis of the ETSOTL-MIAS system
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Figure 12: ROC analysis of the ETSOTL-MIAS system

To assuring the improved bone cancer results of the ETSOTL-MIAS model, a widespread
comparison study is made in Table 4 [27]. Based on accuy, the ETSOTL-MIAS model has provided
a higher accuy of 97.22%. Meanwhile, based on precn, the ETSOTL-MIAS approach has provided a
higher precn of 96.15%.

Table 4: Comparative analysis of the ETSOTL-MIAS system with recent algorithms

Methods Accuracy Precision Recall F-score

ETSOTL-MIAS 97.22 96.15 97.22 96.57
KELM model 95.43 94.53 93.07 93.88
RF model 92.22 92.91 93.46 92.87
Fuzzy model 94.59 92.23 93.60 93.68
SVM model 93.87 94.57 92.34 93.62
GoogleNet model 96.47 94.90 94.95 95.00
ResNet-50 model 93.21 94.19 93.59 92.48

Moreover, based on recal, the ETSOTL-MIAS method has provided a higher recal of 97.22%.
Finally, based on Fscore, the ETSOTL-MIAS approach has provided a higher Fscore of 96.57%. These
results assured the maximum performance of the ETSOTL-MIAS model on bone cancer identifica-
tion.
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4 Conclusion

In this study, we have developed a new ETSOTL-MIAS technique for the identification and
classification of bone cancer on medical imaging. The ETSOTL-MIAS technique involved the design
of the Chan Vese segmentation technique to identify the affected regions in the medical image. For
feature extraction purposes, the ETSOTL-MIAS technique designs a modified DarkNet-53 model.
To avoid the manual hyperparameter adjustment process, the ETSOTL-MIAS technique exploits the
ETSO algorithm. Finally, the classification of medical images takes place by the RF classifier. The
performance validation of the ETSOTL-MIAS technique is tested on a benchmark medical image
database. The extensive experimental analysis showed the promising performance of the ETSOTL-
MIAS technique under different measures.
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