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ABSTRACT

Sentiment analysis (SA) of the Arabic language becomes important despite scarce annotated corpora and confined
sources. Arabic affect Analysis has become an active research zone nowadays. But still, the Arabic language lags
behind adequate language sources for enabling the SA tasks. Thus, Arabic still faces challenges in natural language
processing (NLP) tasks because of its structure complexities, history, and distinct cultures. It has gained lesser
effort than the other languages. This paper developed a Multi-versus Optimization with Deep Reinforcement
Learning Enabled Affect Analysis (MVODRL-AA) on Arabic Corpus. The presented MVODRL-AA model majorly
concentrates on identifying and classifying effects or emotions that occurred in the Arabic corpus. Firstly, the
MVODRL-AA model follows data pre-processing and word embedding. Next, an n-gram model is utilized to
generate word embeddings. A deep Q-learning network (DQLN) model is then exploited to identify and classify
the effect on the Arabic corpus. At last, the MVO algorithm is used as a hyperparameter tuning approach to adjust
the hyperparameters related to the DQLN model, showing the novelty of the work. A series of simulations were
carried out to exhibit the promising performance of the MVODRL-AA model. The simulation outcomes illustrate
the betterment of the MVODRL-AA method over the other approaches with an accuracy of 99.27%.

KEYWORDS
Arabic language; Arabic corpus; natural language processing; affect analysis; deep learning

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.033836
https://www.techscience.com/doi/10.32604/csse.2023.033836
mailto:m.alduhayyim@psau.edu.sa


3050 CSSE, 2023, vol.47, no.3

1 Introduction

Arabic is a rapidly growing language on Twitter and the official language for twenty-two countries.
But not much work has been done on analysing the Arabic language [1]. This can be because of
various dialects and complications in the Arabic language that make it difficult to build a single
mechanism for detecting emotions and sentiments in the Arabic language [2]. It can be divided into
2 major categories: Dialectical Arabic (DA) and Standard Arabic. Standard Arabic has 2 types they
are Modern Standard Arabic (MSA) and Classical Arabic (CA) [3]. Even though MSA became the
principal language of Arab countries and was printed in books and educated in schools [4], DA was
spoken as a native language in individuals’ informal daily interaction and contains a robust existence
in text and comments in emails or on microblogging networks. There exists only one MSA language
for every Arabic speaker, but numerous dialects do not have formal written formats [5]. These results
in the absence of lexicon sources for such dialects, and official grammar rulebooks do not work as
proficiently with DA and MSA.

Twitter is a rich data bank full of opinions, sentiments, and emotions. Sentiment analysis (SA)
is to classify a subjective text as negative, positive, or neutral [6]; emotion detection detects feelings
types via the expression of texts, like sadness, anger, fear, and joy. Automated emotion recognition
or affect detection focuses on identifying human affective states like sadness, joy, and love from
several modalities, which include video, text, image, and audio [7]. Since a particular natural language
processing (NLP) task, emotion identification from textual data has been a promising research matter
for the past few years. Substantial attempts have been made to build a perfect automatic system that
detects real human emotions from the text. A multilabel classifier challenge was assumed; more than
one emotion was taken in a study [8]. Therefore, it provides more difficulties beyond multiclass or
binary classifier issues. Automated text emotion recognition helps analyze user feelings, attitudes, and
sentiments from online text like product reviews, tweets, comments, Facebook status, blogs, and news
and maybe implied to several domains [9], i.e., customer services, chatbots, mental health monitoring,
and e-learning mechanisms. Deep learning (DL) is described as a sub-field of machine learning (ML)
which is made up of multiple hidden layers which were devised for feature extraction and complicated
modelling [10]. DL has resulted in breakthroughs in several NLP applications, like affect analysis and
Arabic sentiment.

This paper presents a Multi-versus Optimization with Deep Reinforcement Learning Enabled
Affect Analysis (MVODRL-AA) on Arabic Corpus. The presented MVODRL-AA model majorly
concentrates on identifying and classifying effects or emotions that occurred in the Arabic corpus.
Firstly, the MVODRL-AA model follows data pre-processing and word embedding. Next, an n-gram
model is utilized to generate word embeddings. A deep Q-learning network (DQLN) model is then
exploited to identify and classify the effects on the Arabic corpus. At last, the MVO algorithm is used
as a hyperparameter tuning approach to adjust the hyperparameters related to the DQLN model. A
series of simulations were carried out to showcase the promising performance of the MVODRL-AA
model.

The rest of the paper is organized as follows. Section 2 offers the related works, and
Section 3 introduces the proposed model. Next, Section 4 gives an experimental validation, and
Section 5 concludes the work.

2 Literature Review

AlGhamdi et al. [11] provided an intellectual mechanism for analysing Arabic tweets to detect
suspicious messages. And needed Arabic tweet datasets from the microblog social network site Twitter
through Twitter Streaming Application Programming Interface and saves in a desirable file format.
The mechanism tokenizes and pre-processes tweet datasets. Manual labelling was conducted on the
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tweet dataset for not-suspicious (label 0) and suspicious (label 1) classes. The labelled tweet datasets
can be utilized for training a classifier by using supervised ML systems to identify suspicious actions.
At the testing stage, the system processes the unlabeled tweet datasets and identifies whether they
belong to the not-suspicious or suspicious class. Alsayat et al. [12] introduced a complete strategy
proposal for Arabic Language Sentiment Analysis (ALSA). The ALSA structure examines the feelings
and opinions at every language level and the significance of framing an annotated corpus that helps
understand an Arabic sentence from the phonetics level to the metonymy and rhetorical levels.

Alharbi et al. [13] suggested a SA with DL (SA-DL) related method for predicting the polarity of
sentiments and opinions. Two kinds of recurrent neural networks (RNNs) were utilized for learning
higher-level representations. Afterwards, mitigating the data dependency challenges and raising the
forcefulness of the method, 3 distinct classifier techniques have been used for producing the concluding
output. Ombabi et al. [14] suggested a new DL method for ALSA based on a single-layer convolutional
neural network (CNN) structure for local feature extraction and 2 layers of long short-term memory
(LSTM) for maintaining long-run dependences. The feature maps studied by LSTM and CNN were
passed to the support vector machine (SVM) classifier for generating the concluding categorization.
This method can be maintained by the FastText word embedding method. In [15], an efficient
Bidirectional LSTM Network (BiLSTM) can be examined for enhancing ALSM by applying Forward-
Backwards encapsulating context information from the Arabic feature series.

The authors in [16] introduced an optimized heterogeneous stacking ensemble technique to
enhance the SA on Arabic text using three distinct pre-trained models. The proposed model enhances
the SA and prediction outcomes. The authors in [17] developed an ML model for Arabic tweet analysis.
Here, the Word2Vec approach is applied for word embedding with two pretrained continuous bag-of-
words (CBOW) approaches examined. Finally, Naïve Bayes (NB) model is employed as a baseline
classification model. The authors in [18] presented various DL models for Arabic SA. These models
have been validated on the hybrid dataset, and the Arabic book reviews dataset (BRAD). The presented
model investigated deep networks’ capability to detect discriminating features from data depicted at
the character level.

3 The Proposed Model

In this paper, an MVODRL-AA technique was introduced to identify and classify effects or
emotions that occurred in the Arabic corpus. Firstly, the MVODRL-AA model follows data pre-
processing and word embedding. Next, the n-gram model is utilized to generate word embeddings.
Then, the MVO with the DQLN model is exploited to identify and classify the effect on the Arabic
corpus. Fig. 1 depicts the overall block diagram of the MVODRL-AA approach.

3.1 Data Pre-Processing and Word Embedding

At the beginning level, the MVODRL-AA model follows data pre-processing and word embed-
ding. Tweet pre-processing is the primary level in the suggested technique, transforming Arabic
tweets to a form suitable and appropriate for the multilabel emotion classifier mechanism. Such
pre-processing tasks encompass eliminating diacritics, punctuation, digits, stop words, and Latin
characters and inspecting the process of tokenization, light stemming, and normalization. Moreover,
improved the tweets by copying the embedded emoji in their respective Arabic words. Such language
was used to reduce the tweets’ noisiness and ambiguity to increase the proposal’s effectiveness and
accuracy.
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Figure 1: Overall block diagram of MVODRL-AA approach

Lexical n-gram methods were broadly utilized in NLP for syntax feature mapping & statistical
analysis [19]. An advanced n-gram method for analyzing the generated corpus comprises tokenized
words to find the word’s popularity or set of nearest terms. The probability of the existence of a series
is computed by utilizing the probability chain rule:

P (x1, x2, x3, xn) = P (x1) P (x2|x1) P (x3|x1, x2) . . . P
(
xn|x1, x2, x3, . . . , x(n−1)

)
(1)

=
∏n

i=1
P

(
xi|x(i−1)

1

)
(2)

For instance, it could assume a sentence as “Still COVID19 wave is running”. As per the probabil-
ity chain rule, P (“Still Covid-19 wave is running”) = P(“Still”) × P(“Covid-19” | “Still”) × P(“wave” |
“Still Covid-19”) × P(“is” | “Still Covid-19 wave”) × P(“running” | “Still Covid-19 wave is”).

The words probabilities in every sentence after applications of the probability chain rule:

P (W1, W2, W3, Wn) =
∏

j
P

(
Wj|W1, W2, W3, W(j−1)

)
(3)

=
∏n

j=1
P

(
Wj|W(j−1)

1

)
(4)

The bigram method predicts the word probability a by utilizing the conditional probability
P (Wi|Wi−1) of one previous term on the specified condition of each preceding word P

(
Wi|W i−1

1

)
.

P (W1, W2) =
∏

i=2
P (W2|W1) (5)

The expression for the probability can be:

P
(
Wk|W(k−1)

) = count
(
W(k−1)Wk

)
count

(
W(k−1)

) (6)

The famous trigrams, unigrams, and bigrams are found in our corpus using the n-gram method.
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3.2 DQLN-Based Affect Classification

At this stage, the model is exploited to identify and classify the effect on the Arabic corpus. Deep
reinforcement learning (DRL) integrates three mechanisms such as reward, state, and action. The
DRL agent aims to learn the mapping function from the state to action spaces. Next, the DRL agent
obtains an award. The objective is to maximize the overall rewards. The classification method of the
DQLN method is a function that receives the sample and returns the label probability [20].

π (a|s) = P (at = a|st = s) (7)

The classifier agent’s goal is to recognize an instance in the trainable dataset correctly. Meanwhile,
the classifier agent obtains a positive reward once it properly recognizes the instance; it accomplishes
the objective by maximizing gt cumulative rewards:

gt =
∑∞

k=0
γ krt + k (8)

In the RL technique, there exists a function that calculates the quality of state and action
incorporation called as Q function:

Qπ (s, a) = Eπ [gt|st = s, at = a] (9)

According to the Bellman equation, the Q function is expressed by:

Qπ (s, a) = Eπ [rt + γ Qπ (st+1, at+1) |st = s, at = a] (10)

The classification agent maximizes the cumulative reward by solving the optimal Q∗ function, and
the greedy approach in an optimal Q∗ function is the best classification method π ∗ for DQLN.

π ∗ (a|s) =
{

1, if a = argmaxaQ∗ (s, a)

0, else
(11)

Q∗ (s, a) = EA [rt + γ max Q∗ (st+1, at+1) |st = s, at = a] (12)

The table records the Q function in the lower dimension finite state space. However, in the higher
dimension constant state space, the Q function is not resolved, yet a deep Q-learning method is
proposed that fits the Q function using a deep neural network (DNN). In the deep Q-learning method,
the transmission data (s, a, r, s′) accomplished from (12) are stored in the replay memory M. The
agent arbitrarily instances a mini-batch of transition B from M and implements the gradient descent
stage on the Deep Q network according to the loss function:

L (θk) =
∑

(s,a,r,s′)∈B
(y − Q (s, a; θk))

2 (13)

In Eq. (13), y indicates the evaluated target of the Q function as follows:

y = r + (1 − t) γ max
a′ Q (s′, a′; θk−1) (14)

In Eq. (14), s′ denotes the following state of s, a′ signifies the act performed by the agent in state
s′, t = 1 if terminal = True; then t = 0, and it is given below:

∇L (θk)

∇θk

= −2
∑

(s, a, r, s′)∈B
(y − Q (s, a; θk))

∇Q (s, a; θk)

∇θk

(15)
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Now, the optimal Q∗ function is attained by minimalizing the loss function (8), and the greedy
policy in the optimal Q∗ function gets the highest cumulative reward. As a result, the optimal
classification method π∗ : S → A for DQLN is attained. Fig. 2 illustrates the structure of Deep
Q-Networks.

Figure 2: Structure of deep Q-networks

3.3 MVO-Based Hyperparameter Tuning

Finally, the MVO algorithm is used as a hyperparameter tuning approach to adjust the hyperpa-
rameters related to the DQLN model. MVO employs the black-and-white hole conception to explore
the search space, where it employs a wormhole to exploit the search space [21]. Similar to each
evolutionary algorithm, it initiates the optimization technique by initializing a population of solutions
and trying to improve the solution through a predetermined iteration count. In the study, the individual
development in every population is implemented according to the theory regarding the presence of a
multi-universe. In this theory, every object in the universe can be regarded as a variable, and every
solution to an optimizing issue is considered a universe. In the optimization technique, MVO follows
the subsequent stages:

� The high inflation rate is proportionate to the low probability of black holes.
� The high inflation rate is proportionate to the high probability of white holes.
� Object in the universe with low inflation rate tends to obtain further objects via black holes.
� Object in the universe with high inflation rate moves from white to black holes.
� Objects in each universe might face random motion toward the better universe nevertheless of

the inflation rate.

In MVO, a wormhole tunnel is often determined among a universe, and the better universe formed
solar.

Y j
i =

⎧⎪⎨
⎪⎩

{
Yj + TDR × ((

upbj − lbpj

) × R4 + lbpj

)
R3 < 0.5

Yj − TDR × ((
upbj − lbpj

) × R4 + lbpj

)
R3 ≥ 0.5

R2 < WEP

Y j
i R2 ≥ WEP

(16)

In Eq. (16), Yj characterizes the j-th objects of the better universe, uj
i signifies the j-th variables

of the i-th universe, lbpj specifies the lower limit at jth iterations. In contrast, ubpj denotes the upper
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limit at jth iterations and R2, R3, and R4 represent arbitrary parameter ranges from zero and one,
travelling distance rate (TDR) and wormhole existence probability (WEP) are constant variables, in
which WEP is increased linearly via the iteration whereas TDR is minimized over the iteration. The
adaptive equation for the coefficients is shown in the following:

WEP = WEPmin + iter ×
(

WEPmax − WEPmin

Maxiter

)
(17)

In Eq. (17), WEPmin denotes the minimal values of WEP, WEPmax indicates the maximal values of
WEP, iter represents the current iteration, and maxiter shows the maximal iteration count.

TDR = 1 − iterAC

MaxAC
iter

(18)

In Eq. (18), AC is separated by exploitation accuracy through iteration. The high value of AC
is a very precise exploitation. Initially, the process initiates with initializing a collection of arbitrary
universes (solution in the searching region) of the optimization issue. In every iteration, an object with
a higher inflation rate in the universe moves towards the universe with a lower inflation rate.

4 Performance Validation

The proposed model is simulated using Python 3.6.5 tool. In this study, the effect analysis of
the MVODRL-AA model on the Arabic language is examined on the SemEval2018-Ar Dataset
comprising 10107 Arabic tweets under 11 class labels, as displayed in Table 1.

Fig. 3 illustrates the confusion matrix created by the MVODRL-AA model on the entire dataset.
The figure implied that the MVODRL-AA model has properly identified 1689 samples under class 1,
392 samples under class 2, 815 samples under class 3, 754 samples under class 4, 1150 samples under
class 5, 1060 samples under class 6, 1044 samples under class 7, 956 samples under class 8, 1594 samples
under class 9, 56 samples under class 10, and 198 samples under class 11.

Table 1: Dataset details

Label Class No. of tweets

1 Anger 1723
2 Anticipation 424
3 Disgust 855
4 Fear 780
5 Joy 1177
6 Love 1104
7 Optimism 1074
8 Pessimism 1001
9 Sadness 1638
10 Surprise 98
11 Trust 233

Total number of tweets 10107
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Figure 3: Confusion matrix of MVODRL-AA approach under the entire dataset

Table 2 and Fig. 4 indicate the affect analysis outcomes of the MVODRL-AA model on the entire
dataset. The MVODRL-AA model has recognized Arabic tweets under class 1 with accuy, precn, recal,
Fscore, and AUCscore of 99.16%, 97.07%, 98.03%, 97.55%, and 98.71%, respectively. Simultaneously,
the MVODRL-AA model has identified Arabic tweets under class 5 with accuy, precn, recal, Fscore,
and AUCscore of 99.38%, 96.96%, 97.71%, 97.33%, and 98.65% correspondingly. Concurrently, the
MVODRL-AA technique has recognized Arabic tweets under class 9 with accuy, precn, recal, Fscore,
and AUCscore of 99.05%, 96.84%, 97.31%, 97.08%, and 98.35% correspondingly. At last, the MVODRL-
AA approach has recognized Arabic tweets under class 11 with accuy, precn, recal, Fscore, and AUCscore

of 99.48%, 91.67%, 84.98%, 88.20%, and 92.40% correspondingly.

Table 2: Result analysis of MVODRL-AA approach with distinct class labels under the entire dataset

Entire dataset
Labels Accuracy Precision Recall F-score AUC score

1 99.16 97.07 98.03 97.55 98.71
2 99.34 91.80 92.45 92.13 96.05
3 99.31 96.45 95.32 95.88 97.50
4 99.45 96.17 96.67 96.42 98.17
5 99.38 96.96 97.71 97.33 98.65
6 99.16 96.28 96.01 96.15 97.78
7 99.28 96.04 97.21 96.62 98.37
8 99.21 95.64 96.40 96.02 97.96
9 99.05 96.84 97.31 97.08 98.35
10 99.49 84.85 57.14 68.29 78.52

(Continued)
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Table 2 (continued)
Entire dataset
Labels Accuracy Precision Recall F-score AUC score

11 99.48 91.67 84.98 88.20 92.40

Average 99.30 94.53 91.75 92.88 95.68

Figure 4: Average analysis of MVODRL-AA approach under the entire dataset

Fig. 5 demonstrates the confusion matrix created by the MVODRL-AA model on 70% of training
(TR) data. The figure implied the MVODRL-AA technique has properly identified 1204 samples
under class 1, 281 samples under class 2, 589 samples under class 3, 520 samples under class 4, 840
samples under class 5, 725 samples under class 6, 686 samples under class 7, 677 samples under class
8, 1118 samples under class 9, 39 samples under class 10, and 127 samples under class 11.

Figure 5: Confusion matrix of MVODRL-AA approach under 70% of TR data
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Table 3 and Fig. 6 depict the affect analysis outcomes of the MVODRL-AA method on 70% of
TR data. The MVODRL-AA model has recognized Arabic tweets under class 1 with accuy, precn,
recal, Fscore, and AUCscore of 99.08%, 96.78%, 97.97%, 97.37%, and 98.64%, respectively. Concurrently,
the MVODRL-AA model has recognized Arabic tweets under class 5 with accuy, precn, recal, Fscore,
and AUCscore of 99.46%, 97.33%, 98.25%, 97.79%, and 98.94%, respectively. Simultaneously, the
MVODRL-AA model has recognized Arabic tweets under class 9 with accuy, precn, recal, Fscore, and
AUCscore of 99.12%, 97.13%, 97.47%, 97.30%, and 98.46%, respectively. Finally, the MVODRL-AA
approach has recognized Arabic tweets under class 11 with accuy, precn, recal, Fscore, and AUCscore of
99.53%, 91.37%, 85.81%, 88.50%, and 92.82%, correspondingly.

Table 3: Result analysis of MVODRL-AA approach with distinct class labels under 70% of TR data

Training phase (70%)
Labels Accuracy Precision Recall F-score AUC score

1 99.08 96.78 97.97 97.37 98.64
2 99.35 92.13 92.74 92.43 96.19
3 99.26 96.56 95.00 95.77 97.34
4 99.41 95.76 96.47 96.12 98.06
5 99.46 97.33 98.25 97.79 98.94
6 99.17 96.80 95.39 96.09 97.51
7 99.25 95.54 97.03 96.28 98.26
8 99.25 95.62 96.85 96.23 98.18
9 99.12 97.13 97.47 97.30 98.46
10 99.53 88.64 58.21 70.27 79.07
11 99.53 91.37 85.81 88.50 92.82

Average 99.31 94.88 91.93 93.11 95.77

Figure 6: Average analysis of MVODRL-AA approach under 70% of TR data

Fig. 7 portrays the confusion matrix created by the MVODRL-AA method on 30% of testing (TS)
data. The figure denoted the MVODRL-AA model has properly identified 485 samples under class 1,
111 samples under class 2, 226 samples under class 3, 234 samples under class 4, 310 samples under
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class 5, 335 samples under class 6, 358 samples under class 7, 288 samples under class 8, 476 samples
under class 9, 17 samples under class 10, and 71 samples under class 11.

Figure 7: Confusion matrix of MVODRL-AA approach under 30% of TS data

Table 4 and Fig. 8 represent the affect analysis outcomes of the MVODRL-AA model on 30%
of TS data. The MVODRL-AA model has recognized Arabic tweets under class 1 with accuy, precn,
recal, Fscore, and AUCscore of 99.34%, 97.78%, 98.18%, 97.98%, and 98.87%, respectively. Simultaneously,
the MVODRL-AA model has recognized Arabic tweets under class 5 with accuy, precn, recal, Fscore,
and AUCscore of 99.18%, 95.98%, 96.27%, 96.12%, and 97.90% correspondingly. Concurrently, the
MVODRL-AA method has recognized Arabic tweets under class 9 with accuy, precn, recal, Fscore, and
AUCscore of 98.88%, 96.16%, 96.95%, 96.55%, and 98.10%, respectively. At last, the MVODRL-AA
model has recognized Arabic tweets under class 11 with accuy, precn, recal, Fscore, and AUCscore of 99.34%,
92.21%, 83.53%, 87.65%, and 91.66% correspondingly.

Table 4: Result analysis of MVODRL-AA approach with distinct class labels under 30% of TS data

Testing phase (30%)
Labels Accuracy Precision Recall F-score AUC score

1 99.34 97.78 98.18 97.98 98.87
2 99.31 90.98 91.74 91.36 95.68
3 99.41 96.17 96.17 96.17 97.92
4 99.54 97.10 97.10 97.10 98.42
5 99.18 95.98 96.27 96.12 97.90
6 99.14 95.17 97.38 96.26 98.38
7 99.34 97.02 97.55 97.28 98.57
8 99.11 95.68 95.36 95.52 97.44
9 98.88 96.16 96.95 96.55 98.10

(Continued)
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Table 4 (continued)
Testing phase (30%)

Labels Accuracy Precision Recall F-score AUC score

10 99.37 77.27 54.84 64.15 77.34
11 99.34 92.21 83.53 87.65 91.66

Average 99.27 93.77 91.37 92.38 95.48

Figure 8: Average analysis of MVODRL-AA approach under 30% of TS data

The training accuracy (TA) and validation accuracy (VA) gained by the MVODRL-AA method
on the test dataset is shown in Fig. 9. The experimental outcome denoted the MVODRL-AA technique
has achieved maximal values of TA and VA. Particularly the VA is greater than TA.

Figure 9: TA and VA analysis of MVODRL-AA methodology



CSSE, 2023, vol.47, no.3 3061

The training loss (TL) and validation loss (VL) attained by the MVODRL-AA approach on the
test dataset are displayed in Fig. 10. The experimental outcome implied the MVODRL-AA algorithm
had exhibited the least values of TL and VL. In specific, the VL is lesser than TL.

Figure 10: TL and VL analysis of MVODRL-AA methodology

A clear precision-recall analysis of the MVODRL-AA method on the test dataset is displayed in
Fig. 11. The figure indicates the MVODRL-AA method has enhanced precision-recall values under
all classes.

A brief ROC analysis of the MVODRL-AA method on the test dataset is illustrated in Fig. 12.
The results indicated the MVODRL-AA approach had shown its ability to categorize distinct classes
on the test dataset.

To ensure the improvements of the MVODRL-AA model over other models, a comparative
study is given in Table 5 and Fig. 13 [22]. The outcomes implied the supremacy of the MVODRL-
AA model over other models. Based on accuy, the MVODRL-AA model has reached an increased
accuy value of 99.27%. In contrast, the Bidirectional Encoder Representations from Transformers
(BERT), Arabic BERT (AraBERT) v01-base, AraBERT v02-base, AraBERT v02-large, BiLSTM, and
LeNet models have obtained reduced accuy of 93.15%, 92.84%, 86.68%, 93.42%, 90.73%, and 86.58%
respectively. In addition, based on precn, the MVODRL-AA model has attained an increased precn

value of 93.77%. In contrast, the BERT, AraBERT v01-base, AraBERT v02-base, AraBERT v02-
large, BiLSTM, and LeNet models have reduced precn of 87.72%, 85.01%, 91.01%, 90.82%, 85.31%,
and 87.07% correspondingly. Next to that, based on Fscore, the MVODRL-AA model has acquired
an increased Fscore value of 92.38%, whereas the BERT, AraBERT v01-base, AraBERT v02-base,
AraBERT v02-large, BiLSTM, and LeNet models have reached reduced Fscore of 86.84%, 87.15%,
87.77%, 86.04%, 86.85%, and 87.36% correspondingly. The detailed results and discussion assume
that the MVODRL-AA model has shown enhanced results over other models.
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Figure 11: Precision-recall curve analysis of MVODRL-AA methodology

Figure 12: ROC curve analysis of MVODRL-AA methodology
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Table 5: Comparative analysis of MVODRL-AA approach with existing methodologies

Methods Accuracy Precision Recall F-score

MVODRL-AA 99.27 93.77 91.37 92.38
BERT model 93.15 87.72 87.98 86.84
AraBERT v01-base 92.84 85.01 87.08 87.15
AraBERT v02-base 86.68 91.01 88.73 87.77
AraBERT v02-large 93.42 90.82 88.11 86.04
BiLSTM model 90.73 85.31 88.60 86.85
LeNet model 86.58 87.07 87.13 87.36

Figure 13: Comparative analysis of MVODRL-AA approach with existing methodologies

5 Conclusion

This paper introduces the MVODRL-AA technique to identify and classify effects or emotions
in the Arabic corpus. Firstly, the MVODRL-AA model followed data pre-processing and the word
embedding process. Next, the n-gram model is utilized to generate word embedding. The DQLN model
is then exploited to identify and classify the effect on the Arabic corpus. At last, the MVO algorithm is
used as a hyperparameter tuning approach to adjust the hyperparameters related to the DQLN model.
A series of simulations were carried out to showcase the promising performance of the MVODRL-
AA model. The simulation outcomes signify the betterment of the MVODRL-AA method over other
approaches. In the future, the outcomes of the MVODRL-AA model can be extended to the use of
hybrid metaheuristics. Besides, the proposed model can be employed in the fake news detection process.
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