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Abstract: To serve various tasks requested by various end devices with
different requirements, end-edge-cloud (E2C) has attracted more and more
attention from specialists in both academia and industry, by combining
both benefits of edge and cloud computing. But nowadays, E2C still suffers
from low service quality and resource efficiency, due to the geographical
distribution of edge resources and the high dynamic of network topology and
user mobility. To address these issues, this paper focuses on task offloading,
which makes decisions that which resources are allocated to tasks for their
processing. This paper first formulates the problem into binary non-linear
programming and then proposes a particle swarm optimization (PSO)-
based algorithm to solve the problem. The proposed algorithm exploits an
imbalance mutation operator and a task rescheduling approach to improve
the performance of PSO. The proposed algorithm concerns the resource
heterogeneity by correlating the probability that a computing node is decided
to process a task with its capacity, by the imbalance mutation. The task
rescheduling approach improves the acceptance ratio for a task offloading
solution, by reassigning rejected tasks to computing nodes with available
resources. Extensive simulated experiments are conducted. And the results
show that the proposed offloading algorithm has an 8.93%–37.0% higher
acceptance ratio than ten of the classical and up-to-date algorithms, and
verify the effectiveness of the imbalanced mutation and the task rescheduling.

Keywords: Cloud computing; edge computing; edge cloud; task scheduling;
task offloading; particle swarm optimization

1 Introduction

Nowadays, users use various end devices for processing their request tasks with a wide variety of
requirements. For example, smartphones are used by many people for entertainment in most of their
waking hours; more and more vehicles with different levels of intelligence are running on the roads;
Internet-of-things (IoT) devices can be seen almost everywhere. Due to the small physical sizes, most
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end devices have very limited capacities of the resource and battery, and cannot satisfy all user requests
alone. Therefore, to be better able to serve their users, many service providers exploit end-edge-cloud
cooperative computing (E2C), by combining both benefits of edge and cloud computing [1,2].

Cloud computing is to provide abundant computing and storage resources [3]. But cloud com-
puting usually has low-bandwidth and high-latency networks, because it generally uses a wide area
network (e.g., Internet) shared by varied users for the data transfer. Edge computing is to place some
servers close to end devices, and thus provides high-bandwidth and low-latency network services [4].
While, an edge computing center takes up very little space, and thus is equipped with only a few
servers. E2C makes end devices, edge computing, and cloud computing cooperate, for meeting the
requirements of both delay-sensitive and resource-intensive applications. Thus, E2C has attracted
much attention from both academia and industry.

While, how to make E2C resources cooperate well is challenging work for improving resource
efficiency and service quality [5]. Task offloading is one of the efficient ways to address the challenge,
which is to decide which and how many resources are allocated for every task in E2C. In recent
years, many works focused on the task offloading of E2C [6], but they have some issues that
should be addressed before their applications. For example, some works ignored the task or resource
heterogeneity, which may result in resource inefficiencies. Several works didn’t consider to exploited
local device resources for task processing, even though many modern devices are equipped with a
fair resource amount, leading to resource waste. Many existing offloading methods exploited only
one kind of heuristic or meta-heuristic algorithm, without exploiting the complementary advantages
of different kinds of algorithms for performance improvement. Some existing works have proposed
hybrid heuristic offloading algorithms. But these works just sequentially performed two or more
algorithms, which leads to a low combination performance. Thus, this work tries to design a hybrid
heuristic algorithm with an efficient combination approach, to improve service quality and resource
efficiency by increasing resource cooperativity in E2C.

This paper first formulates the task offloading problem of E2C as a Binary Non-Linear Program-
ming (BNLP), where the optimization objective is the task acceptance ratio. Then, to provide task
offloading solutions in polynomial time, this paper designs a hybrid heuristic algorithm by integrating
a mutation operator of the evolutionary algorithm and a heuristic task scheduling algorithm into
Particle Swarm Optimization (PSO). To further improve the algorithm performance, this paper designs
an imbalanced mutating scheme to improve the particle density near the global optimal position. In
addition, this paper proposes to reschedule rejected tasks by a heuristic algorithm for improving the
solution quality. To evaluate the performance of our proposed algorithm, this paper conducts extensive
simulated experiments, where environment parameters are set referring to related works and reality.
Experiment results show that our proposed algorithm performs better than ten of the classical and
up-to-data algorithms in optimizing the accepted ratio. In brief, the contributions of this paper are as
follows.

• The task offloading problem is formulated in binary non-linear programming (BNLP) for
E2C, concerning the cooperation of devices, edge servers, and the cloud, to optimize the accept
ratio.

• A hybrid meta-heuristic algorithm for solving the offloading problem, by integrating the
evolutionary strategy of Genetic Algorithm (GA) into PSO. And to further improve the
performance of the algorithm, the hybrid algorithm exploits an imbalance mutation operator
and the task rescheduling approach for generating better offspring and improving the solution
quality, respectively.
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• Extensive simulated experiments are conducted, where simulation parameters are set referring
to recent related works and reality. Experiment results confirm the performance of the
proposed hybrid offloading algorithm.

In the follows, this paper discusses related works in Section 2. In Section 3, this paper presents
the problem formulation and illustrates the proposed hybrid heuristic offloading algorithm in Section
4. Then, this paper details the performance evaluation in Section 5. At last, this paper concludes in
Section 6.

2 Related Works

With smart devices increasingly popular, E2C is applied to various fields of both academia and
industry. To improve service quality and resource efficiency in E2C environments, several works
studied the task offloading problem.

Sang et al. [7] proposed a heuristic offloading algorithm to improve the cooperativeness of EECC
resources, by offloading tasks to the cloud at first. This helps to improve overall user satisfaction but
negatively affects the overall performance. Wang et al. [8] presented the fastest response first (FRFOA)
and a load balance offloading algorithm (LBOA). FRFOA offloads the task to the ES such that the
response time is minimum, every time. LBOA assigns the task to the ES where the ES can satisfy the
requirements of the greatest number of tasks at every time. These above approaches are heuristic-based
solutions, which generally provide solutions with limited performance because they only exploit local
search strategies.

Therefore, some works aim at better offloading solutions by meta-heuristics with global search
abilities. Wang et al. [9] and Gao et al. [10] applied PSO with the same solution representation
method as this paper. To improve the exploration ability of PSO, Gao et al. [10] used the Lévy
Flight movement pattern for particle position updates. Wang et al. [11] used GA with the same
optimization objectives as this paper. Chakraborty et al. [12] employed GA to reduce the energy
consumption of task executions with latency constraints. Yadav et al. [13] used multiobjective grey wolf
optimization (MOGWO) technique for computation offloading in fog computing, to improve energy
consumption and computational time. Xu et al. [14] employed Multi-strategy collaboration-Tunicate
Swarm Optimization Algorithm (M-TSA) which is the standard TSA improved by a memory learning
strategy, the Levy flight strategy, and an adaptive dynamic weighting strategy, for seeking a solution
with an optimized weighted sum of the time delay and the energy consumption for E2C systems. These
works used only one kind of meta-heuristics, without exploiting the complementarity of different kinds
of meta-heuristics for better performance.

Bali et al. [15] used NSGA-II to optimize the energy and queue delay for offloading data on edge
and cloud servers. Hussain et al. [16] replaced the chromosome with its better offspring generated
by the crossover operator for each individual, which is similar to the behavior of the population
evolution in PSO. Nwogbaga et al. [17] performed a mutation operator for each individual at the end
of every iteration for PSO to improve the diversity and avoid premature convergence. Farsi et al. [18]
sequentially employed GA and PSO for the population evolution. Zhang et al. [19] presented a
dynamic selection mechanism for combining multiple meta-heuristics by selecting offspring generated
by these meta-heuristics for the next generation. All of the above works just performed two or more
meta-heuristics separately, which leads to a very improved performance.

The difference between our work and the above works is twofold. First, this work integrates
heuristic task ordering and heuristic task rescheduling approaches into PSO. Secondly, this work not
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only combines the mutation operator of GA in PSO but also exploits imbalanced mutation concerning
the resource heterogeneity of E2C, which is hardly considered by related works for designing meta-
heuristics or hybrid meta-heuristics.

3 Problem Statement

In the considered E2C environment, as shown in Fig. 1, there are various end devices, multiple
edge servers (ES), and a cloud that provides sufficient cloud servers (CS). In the E2C, users launch
various request tasks by these devices. For each device, the tasks that it launches can be processed
locally if it has enough resources for satisfying the requirements of these tasks. But, most of the
time, devices aren’t able to meet the requirements of their users’ tasks, especially devices without any
computing resources, such as environmental sensors. Therefore, some tasks are offloaded to ES for
their processing. In this case, the input data need to be transferred from the device to the ES, which
requires that a task can be offloaded to ES only if the device has a network connection with the
ES. Generally, an ES provides a local area network (LAN) for devices, e.g., 5G and Wifi, and thus
has limited coverage and can only provide services for devices in its coverage. When users have many
request tasks, and devices and ES cannot afford these tasks, delay-insensitive tasks can be offloaded
to the cloud that provides services over WAN and can cover all devices. The cloud provides resources
in the form of CS for processing offloaded tasks. The task offloading is to decide the computing node
(local device, ES, or CS) by which every task is processed.

Figure 1: The architecture of end-edge-cloud computing

3.1 System Model
E2C consists of D+E+V computing nodes, D devices (ni, 1 ≤ i ≤ D), E ES (ni, D+1 ≤ i ≤ D+E),

and V CS (ni, D+E +1 ≤ i ≤ D+E +V ). For node ni, the computing capacity is gi, and it provides bi

network data transfer rate. Binary constants, ai,j, 1 ≤ i ≤ D, D + 1 ≤ j ≤ D + E, are used to represent
the coverage of ES, where ai,j = 1 if device ni is covered by ES nj, and ai,j = 0 if not. Then, for a task of
ni, the data transfer rate is bi,j = ai,j · bj when it is offloaded to ES nj, where the data transfer rate can
be easily calculated by the signal power and Gaussian noise of the network [20].

There are T tasks (tk, 1 ≤ k ≤ T) requested from these D devices. This paper uses binary constants,
mi,k, 1 ≤ i ≤ D, 1 ≤ k ≤ T , to indicate the relationships between tasks and devices, where mi,k = 1
if tk is launched by ni, and mi,k = 0, otherwise. For task tk, the computing size, i.e., the amount of
required computing resources, is ck, and the amount of the input data is pk. The deadline of tk is dk,
i.e., the finish time of its processing must be not later than dk. This paper focuses on the hard deadline
requirement and leaves the consideration of the soft deadline constraint as one of future works. This
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is to say, if the deadline of a task can be met, it will be accepted and processed in E2C. Otherwise, the
task is rejected, as there is no profit from processing the task. Without loss of generality, this paper
assumes that dk ≤ dk+1, 1 ≤ k ≤ T − 1.

For formulating the task offloading problem of E2C, binary variables are defined to represent the
offloading decisions as Eq. (1).

xi,k =
{

1, tk is decided to be processed by ni

0, otherwise , 1 ≤ i ≤ D + E + V , 1 ≤ k ≤ T (1)

3.2 Task Processing Model
For a task, there are three cases for its processing: (i) the task is processed locally using its device

resources; (ii) the task is offloaded to an ES covering its device; (iii) the task is offloaded to a CS. Next,
this paper illustrates the task processing in these three cases, respectively.

3.2.1 Task Processing Locally

In the first case, there is no transmission delay, because the data are stored locally as they are
collected by the device according to the environment and the user behavior. Then, the processing time
of the task is its computing time. While, the task can be started only when the computing resource is
available, which is the time that the device completes all of its tasks that are processed before the task.
Intending to maximize the accepted ratio which is the ratio between the accepted task number and
the total task number, Earliest Deadline First (EDF) has proven that it provides the optimal solution.
Thus, for establishing the optimization problem of task offloading, this paper deduces the finish time
of every task by executing tasks with the order of EDF for each device. Therefore, the finish time of
tasks processed locally can be calculated by Eq. (2). Where ck′/gi is the computing time of tk′ processed
by ni and

∑k

k′=1

(
xi,k′ · ck′/gi

)
is the accumulative computing time of tasks including tk and tasks having

earlier deadlines than tk in ni. For each task processed locally, it can be only processed in its device and
thus Eq. (3) holds.

f L
k =

D∑
i=1

(
mi,k ·

k∑
k′=1

(
xi,k′ · ck′/gi

))
, 1 ≤ k ≤ T (2)

xi,k ≤ mi,k, 1 ≤ i ≤ D, 1 ≤ k ≤ T (3)

3.2.2 Task Processing in Edge Servers

When a task is offloaded to an ES, the processing time consists of the input data transfer and the
computing latencies. In this paper, this paper ignores the time consumed by the output data transfer,
as the computing result are generally much less than the input data for a task.

For the task tk that is offloaded to ES ni (D + 1 ≤ i ≤ D + E), the input data transfer consumes
pk/

∑D

j=1

(
mj,k · bj,i

)
time, where

∑D

j=1

(
mj,k · bj,i

)
is the data transfer rate between the device that launches

tk and the ES, and the computing latency is ck/gi. To avoid performance interference, the data transfers
of different tasks offloaded to an ES are performed sequentially. Thus, with the EDF processing order,
the complete time of the data transfer for the task tk when it is offloaded to an ES can be calculated
by Eq. (4).

f E_NET
k =

D+E∑
i=D+1

(
xi,k ·

k∑
k′=1

(
xi,k′ · pk′∑D

j=1

(
mj,k′ · bj,i

)
))

, 1 ≤ k ≤ T (4)
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For a task offloaded to an ES, except the computing resource is available, its computing requires
the finish of the input data transmission. Therefore, the finish time of a task on an ES can be achieved
by Eq. (5), where max

1≤k′<k

{
xi,k′ · f E

k′
}

is the finish time of the task that is processed before tk.

f E
k =

D+E∑
i=D+1

(
xi,k ·

(
max

{
f E_NET

k , max
1≤k′<k

{
xi,k′ · f E

k′
}} + ck

gi

))
, 1 ≤ k ≤ T (5)

For each task, it can be only offloaded to the ES that has a network connection with its device.
Thus, Eq. (6) needs to be met.

xi,k ≤
D∑

i′=1

(
mi′ ,k · ai,i′

)
, D + 1 ≤ i ≤ D + E, 1 ≤ k ≤ T (6)

3.2.3 Task Processing in the Cloud

For tasks offloaded to the cloud for their processing, similar to ES, the processes include data
transfers and computing. Referring to Eqs. (4) and (5), the finish time of a task can be got when it is
offloaded to a CS by Eqs. (7) and (8).

f C_NET
k =

D+E+V∑
i=D+E+1

(
xi,k ·

k∑
k′=1

(
xi,k′ · pk′

bi

))
, 1 ≤ k ≤ T (7)

f C
k =

D+E+V∑
i=D+E+1

(
xi,k ·

(
max

{
f C_NET

k , max
1≤k′<k

{
xi,k′ · f C

k′
}} + ck

gi

))
, 1 ≤ k ≤ T (8)

3.2.4 Summary

Summarizing the above processing model in three cases, the finish time of all tasks in D2C can be
achieved, given a task offloading decision, from Eq. (9).

fk = f D
k + f E

k + f C
k , 1 ≤ k ≤ T (9)

For each task, it is processed by only one computing node, when it is accepted. Then, Eq. (10)
is satisfied for all tasks.

∑D+E+V

i=1 xi,k is 1 for the accepted task, and equals 0 if tk is rejected due to the
deadline violation.
D+E+V∑

i=1

xi,k ≤ 1, 1 ≤ k ≤ T (10)

3.3 Problem Model
This work considers the optimization objective as the acceptance ratio for the task offloading

in E2C, with the deadline constraints. Therefore, the offloading problem can be formulated as the
optimization model as follows.

Maximizing

T∑
k=1

D+E+V∑
i=1

xi,k

T
(11)

Subject to deadline constraints, Eq. (12) and Eqs. (1)–(10).

fk ≤ dk, 1 ≤ k ≤ T (12)
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As the total task number (T) is fixed, the optimization objective is identical to maximizing the
number of accepted tasks (

∑T

k=1

∑D+E+V

i=1 xi,k). Decision variables are xi,k, 1 ≤ i ≤ D + E + V ,
1 ≤ k ≤ T , which all are binary, making the offloading problem binary non-linear programming
(BNLP). This problem can be solved by some existing tools, e.g., lp_solve [21] and Optimization
Toolbox of MathWorks, Inc. [22]. These tools take exponential complexities, not applicable for middle-
to-large scale optimization problems. Therefore, in the next section, this paper proposes a polynomial
algorithm based on PSO.

4 PSO with Imbalanced Mutation and Task Rescheduling

In this section, this paper solves the task offloading problem for E2C, based on PSO. PSO
iteratively moves particles toward their personal best positions and the global best position, for
evolving the population consisting of multiple particles. PSO has a fast convergence speed, and can
provide a good solution with small population size, and thus has lower time complexity than many
evolutionary algorithms, e.g., genetic algorithm (GA). In addition, there are very few parameters
needed to be set when applying PSO. So PSO has been applied for solving combinatorial optimization
problems in many fields, e.g., unmanned aerial vehicle path planning [23], electrical power systems
[24], and network topology optimization [25]. As shown in the previous section, the task offloading
problem for E2C is also a kind of combinatorial optimization problem, and thus, this paper considers
exploiting PSO for solving the task offloading problem.

But PSO has some deficiencies needed to be concerned to achieve better solutions. The main one
is easily trapping into local optima. Therefore, this paper applies the mutation operator of GA to help
particles in escaping from local optima by increasing the randomness of some movements, like the
work of Nwogbaga et al. [17]. Different from this work, this paper takes into account the capacity
heterogeneity of resources and proposes an imbalanced mutation operator, which will be illustrated
in Section 4.3. Beyond this, to further improve the acceptance ratio and the resource efficiency,
this paper adds the task rescheduling approach in each offloading solution derived from particles,
by rescheduling the rejected tasks from their original assigned nodes to others, which is stated in
Section 4.4.

4.1 Algorithm Framework
Now, this paper details the proposed task offloading algorithm, PSO improved with imbalanced

mutation and task rescheduling (PIMR), as shown in Fig. 2. In PIMR, a particle position indicates a
task assignment solution, i.e., decisions of the computing nodes that tasks are assigned to. Then, with
a task execution order on each node, an offloading solution can be achieved from a particle position.
To improve the performance of the offloading solution derived from a particle, PIMR reschedules
rejected tasks, as illustrated in Section 4.4. The mapping between task offloading solutions and particle
positions are elaborated in Section 4.2. The fitness of every particle/position is the accepted number
when applying the corresponding offloading solution, which is shown in Eq. (13)

vl.k (t) = ω · vl.k (t) + c1 · r1 · (pbl.k − pl.k (t − 1)) + c2 · r2 · (gbk − pl.k (t − 1)) (13)
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Figure 2: The flow chart of PIMR

As shown in Fig. 2, at first, PIMR initializes a population consisting of multiple particles, where
each position in every dimension is randomly set for these particles. After the population initialization,
the fitness of every particle is evaluated by transforming the position into a task offloading with task
rescheduling. Then, PIMR records the personal best position as the current position for each particle
and the global best position as the best position with the best fitness of particles. After this, PIMR
iteratively evolves the population by updating the position of each particle as followings, where each
iteration can be divided into two phases.

In the first phase, for each particle, the position is updated, as done by PSO, by Eqs. (14) and
(15). Vl (t) = [vl,1 (t) , . . . , vl,k (t) , . . . , vl,T (t)] is the velocity of the lth particle at the tth iteration. Pl (t) =
[pl,1 (t) , . . . , pl,i (t) , . . . , pl,T (t)] is the position of the lth particle at the tth iteration. ω is the inertia weight
of particles. c1 and c2 are the acceleration coefficients of PSO. r1 and r2 are two random values ranging
from 0 to 1. PBl = [pbl,1, . . . , pbl,i, . . . , pbl,T ] is the personal best position of the lth particle. GB =
[gb1, . . . , gbk, . . . , gbT ] is the global best position of all particles.

vl.k (t) = ω · vl.k (t) + c1 · r1 · (pbl.k − pl.k (t − 1)) + c2 · r2 · (gbk − pl.k (t − 1)) (14)

pl.k (t) = pl.k (t − 1) + vl.k (t) (15)

After the particle updates its position, its fitness is evaluated. The personal best position will be
updated as the updated position if the updated position has better fitness, and the same action is
performed on the global best position.

In the second phase of each iteration, PIMR performs the imbalanced mutation operator on each
particle with the mutation probability, to increase the population diversity, combining the advantage
of GA and concerning the resource heterogeneity. The details of the imbalanced mutation operator
are presented in Section 4.3. After performing the mutation for a particle, its personal best position
and the global best position are updated as done in the first phase.

4.2 Solution Representation
In PIMR, a particle position is indicating a task offloading solution. There is a one-to-one

relationship between the dimensions of particle positions and tasks. And the position on a dimension
represents the computing node that the corresponding task is scheduled to. Then, the range of a
position on a dimension is the number of candidate computing nodes that the corresponding task
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can be processed on, which includes the task’s device, ES with connections with the device, and CS.
Now, a task assignment solution can be got from every particle position.

For example, there are 2 devices (d1 and d2), 3 ES (e1, e2 and e3), and 1 CS (c1 and c2) in an E2C.
Each device launches one task, where d1 and d2 launch t1 and t2, respectively. d1 has network connection
with e1, and d1 has connections with e2 and e3. Then, t1 can be scheduled to d1, e1, c1 and c2 for its
processing and these computing nodes are numbered as 1–4, respectively. t2 can be scheduled to d2, e2,
e3, c1 and c2, numbered as 1-5. In this E2C environment, the dimensions are 2 in each particle position,
which corresponds to these two tasks. The value ranges of these two dimensions are 1–4 and 1–5,
respectively, and the value of a dimension is the no. of the computing node that the corresponding
task is assigned to.

Given a task assignment solution, a task offloading solution can be achieved by deciding the
processing order on each computing node where multiple tasks are assigned. The ordering algorithm,
i.e., task scheduling, on a computing node has been studied since the invention of the operating system,
and there are several mature heuristic solutions. This paper focuses on the scheduling of tasks across
computing nodes for E2C. Therefore, this paper just applies one of the simplest methods, First Fit
(FF), for ordering the task processing on every computing node. In the future, we will try to design a
more efficient task-ordering algorithm for better performance.

4.3 Imbalanced Mutation
In general, the mutation operator used by evolutionary algorithms is a “balanced” mutation,

where the value of every dimension is mutated to possible values with an identical probability. Such
as, for a task, there are n candidate computing nodes, i.e., n possible positions in the corresponding
dimension. Then, the corresponding dimension is mutated to all possible positions each with a
probability of 1/n, when the mutation operator is performed on it. Thus, the application of the balanced
mutation operator is not concerning the resource heterogeneity in that computing nodes have different
capacities, which may lead to resource inefficiency.

Therefore, PIMR exploits an imbalanced mutation, which set the probability of each value that
a dimension is mutated to is positively associated with the corresponding computing node’s capacity.
The capacity is evaluated by the ratio of the slack time to the finish time for each computing node and
each task, where the slack time is the time distance of the finish time to the deadline. If the finish time
is later than the deadline, then the computing node has zero probability of processing the task. Then,
the probability (ρi,k) that the kth task is assigned to the ith candidate computing node is calculated by
Eq. (16), when the imbalance mutation is performed on the dimension.

ρi,k = max
{
0, dk − fi,k

}
/fi,k∑

i

(
max

{
0, dk − fi,k

}
/fi,k

) (16)

4.4 Task Rescheduling
As illustrated above subsections, PIMR randomly assigns tasks to their candidate computing node

in each offloading solution of particles, and thus, there can be a load imbalance between computing
nodes, leading to many tasks that are rejected due to dissatisfaction with their requirements. Therefore,
PIMR reschedules these rejected tasks to improve the acceptance ratio and resource efficiency. Given
the task offloading solution derived from a particle position, for each rejected task, PIMR schedules
it to the first computing node having available resources to meet its deadline constraint.
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5 Performance Evaluation

In this section, this paper illustrates simulated experiments and discusses the experiment results.

5.1 Simulated Experimental Environment
The simulated environments are established by referring to related works and reality [26], where

the values of parameters are shown in Table 1.

Table 1: Value of parameters in the simulated experiment

Parameter Value (range) Parameter Value (range)

Device number: 10 Task number: 1000
ES number: 5 Computing size: [0.5, 1.2] GHz
CS type: 10 Input data amount: [1.5, 6] MB

[2, 8] in devices
Core number: [4, 32] in ES Deadline: [1, 5] s

[1, 8] in CS
Cores’ capacity: [1.8, 2.5] GHz for devices

[1.8, 3.0] GHz for ES and CS
Network transfer rate: [80, 120] Mbps to ES

[10, 20] Mbps to CS

PIMR is compared with the following classical and up-to-date task offloading algorithms.

• First Fit (FF) is one of the most classical and simplest scheduling algorithms for various
computing environments. FF is to assign the first task to the first computing node that can
meet the deadline constraint.

• First Fit Decreasing (FFD) is the same as FF, except that it assigns the task with the biggest
computing size at first.

• Earliest Deadline First (EDF) is the same as FF, except that it schedules the task with the
earliest deadline every time.

• Short Job First (SJF) schedules the task with minimal computing size each time.
• Random (RAND) randomly generates a population with multiple individuals and provides the

task offloading solution that corresponds to the individual with the best fitness.
• Genetic Algorithm (GA) uses the crossover, mutation, and selection operators for population

evolution [11,12].
• GA with Replacement (GAR) is the same as GA, except that it replaces each chromosome with

its best offspring after performing the crossover operator, and doesn’t perform selection [16].
• Particle Swarm Optimization (PSO) only uses Eqs. (13) and (14) for moving particles [9].
• PSO with mutation (PSOM) adds a mutation operator on each particle’s position at the end of

each iteration [17].
• The combination of GA and PSO (GAPSO) sequentially uses GA and PSO for evolution [18].

The metrics used for measuring the performance of each task offloading algorithm include the
following aspects.

• The number of accepted tasks is identical to the acceptance ratio, which is one of the commonly
used metrics for quantifying service quality or user satisfaction.
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• Overall computing resource utilization is one of the most popular approaches for the quantifi-
cation of resource efficiency.

• The task processing rate is to evaluate processing efficiency. Two metrics are used in this paper,
the finished computing size per time unit, and the processed data amount per time unit.

The experiments are conducted as following steps. (1) A simulated E2C environment is generated
with random parameters. (2) Every metric of each algorithm is measured in the simulated E2C. (3) For
each metric, its value is normalized by dividing it into that of FF for every algorithm, to highlight the
performance differences between different algorithms. (4) The previous three steps are repeated more
than one hundred times, and in the following, the box plots for each metric are presented. Experiment
results show that PIMR is statistically different from any other for each metric.

5.2 Experiment Results
5.2.1 Service Quality

Fig. 3 gives the normalized number of accepted tasks when applying different task offloading
algorithms. As shown in this figure, PIMR can accept 8.93%–37.0% more task numbers than others,
on average. In addition, PIMR has a stable performance in maximizing the accepted task number,
as it has no outlier as shown in the box plot of Fig. 3. This confirms the performance superiority of
our proposed algorithm, mainly benefiting from the imbalanced mutation and the task rescheduling
approaches. The mutation operator can improve the population diversity, which increases the ability of
PSO to break away from the local optimum, and thus PSOM has slightly better performance than PSO
in the accepted task number optimization, as shown in Fig. 3, PIMR improves the mutation operator
for PSOM by unbalancing the probabilities of positions mutated, where there is a positive correlation
between the capacity of computing nodes and the probabilities that tasks are assigned to the nodes.
This can result in particles being denser at the possible best positions, and thus there is more likely to
make the algorithm converge to an optimal position. In addition, PIMR performs rescheduling for
rejected tasks. This can not only increase the number of accepted tasks but also improve the efficiency
of resource usage. These two improvement approaches bring PIMR a competitive advantage over other
algorithms.

Figure 3: Normalized accepted task numbers achieved by different algorithms

From Fig. 3, it can be also seen that some meta-heuristic-based algorithms have poor performance
than heuristic-based algorithms, even though meta-heuristics have global search abilities. The main
reasons may be as followings. GA has a good global search ability due to its crossover and mutation
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operators. But GA has low convergence velocity, especially in large-scale search spaces including most
cases of the task offloading problem in E2C. Therefore, GAR uses the replacement to take the place
of the mutation operator, as done by the position updates of PSO, and achieves better performance
than GA. PSO has a fast convergence rate, but easily falls into the local optimum. Therefore, in the
offloading problem with a large-scale solution space, PSO has only slightly better performance than
RAND. GAPSO only sequentially exploits GA and PSO, which is an inefficient combination approach
and thus achieves comparable performance to GA or PSO.

5.2.2 Resource Efficiency

Fig. 4 shows the resource utilizations achieved by various offloading algorithms. This figure shows
that heuristics have higher resource utilization than meta-heuristics. This is because heuristics prefer to
process tasks locally and offload tasks to ES when local devices have full overloads. Only when there
is no available local or edge resource, tasks are considered to be offloaded to CS by heuristics. This
can lead to some delay-insensitive tasks being processed locally at first, and thus fewer tasks being
offloaded to ES and CS, when applying heuristics, compared with meta-heuristics, resulting in less
time consumed by data transfers. PIMR has a similar utilization to other meta-heuristics. Concerning
the much better performance of PIMR in the acceptance ratio optimization, PIMR performs better
than other meta-heuristics overall. Compared with heuristics, PIMR accepts more tasks at the cost of
computing resource utilization. It’s worth it because the acceptance ratio impacts not only the profit
but also the reputation of service providers.

Figure 4: Normalized resource utilizations achieved by different algorithms

5.2.3 Processing Rate

Figs. 5 and 6 present the processing rates in computing and data processing, respectively. PIMR
achieves fast computing and data processing rates, which are 12.2%–37.1% and 11.0%–39.7%, com-
pared with other algorithms. These results confirm the high task processing efficiency of PIMR.
This is because PIMR accepts much more tasks, i.e., processes more computing and data, than other
offloading algorithms, as illustrated in Section 5.2.1. And all offloading algorithms have comparable
makespan (the latest finish time of all accepted tasks) in our experiments.
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Figure 5: Normalized computing rates of various algorithms

Figure 6: Normalized data processing rates of various algorithms

5.2.4 Performance of Imbalanced Mutation and Rescheduling

In this section, the impacts of the imbalanced mutation operator and the task rescheduling
approaches on offloading algorithms are evaluated. Results are shown in Figs. 7 and 8. Where X_IM
is the algorithm X exploiting the imbalanced mutation, respectively, in Fig. 6. X_RS is the offloading
algorithm X integrated with the task rescheduling, in Fig. 8.

Figure 7: The impacts of the imbalanced mutation on offloading algorithms
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Figure 8: The improvement of the task rescheduling approach on various offloading algorithms

From Fig. 7, it can be seen that the imbalanced mutation degrades the performance of GA
and PSOM, which is contrary to our original purpose of aiming at increasing the probability that
algorithms converge to the global optimum for the offloading problem. The reason for the adverse
effects on the performance improvement of the imbalanced mutation may be that the solution space
is so huge that it’s very rare that an individual is updated into a region including an optimal solution.
In addition, the imbalanced mutation can speed up the convergence rate, and thus make it easy that
offloading algorithms to be trapped into local optima when no individual is moved into a global
best region. But the imbalanced mutation has a good complementarity with the task rescheduling
approach, as shown in Fig. 7, PIMR has better performance than PSOM_RS in both service quality
and processing rate. This gives us an inspiration that some designed improvement schemes may have
reverse effects, but they may be complementary to others, and their joint application can perform
much better than their application alone. Fig. 8 shows that the rescheduling approach can improve
offloading algorithms by 11.2%–23.8% in various performance metrics.

6 Conclusion

This paper studies the task offloading problem in E2C environments. This paper first formulates
the problem into a BNLP, where the objective is maximizing the accepted task number, which is one of
the commonly used metrics for quantifying service quality and user satisfaction. To solve the problem
with polynomial time complexity, this paper proposes a task offloading algorithm, PIMR, based
on PSO. And to improve the performance, PIMR integrates two improvement approaches in PSO,
the imbalanced mutation and the task rescheduling. At last, this paper evaluates the performance
of PIMR through extensive experiments, and the results confirm the performance superiority of
the proposed algorithm in various aspects. Experiment results show that PIMR has an 8.93%-
37.0% higher acceptance ratio and 11.0%–39.7% processing rate, compared with ten classical and
up-to-date algorithms, and the imbalanced mutation and the task rescheduling jointly do have an
improvement in PIMR. In this paper, we only focus on independent tasks, which are common in e.g.,
data processing and Web applications. In the future, we will extend our work to support the offloading
of interdependent in E2C, to expand the application scope.
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