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Abstract: The rapid advancement of data in web-based communication has
created one of the biggest issues concerning the security of data carried over
the internet from unauthorized access. To improve data security, modern cryp-
tosystems use substitution-boxes. Nowadays, data privacy has become a key
concern for consumers who transfer sensitive data from one place to another.
To address these problems, many companies rely on cryptographic techniques
to secure data from illegal activities and assaults. Among these cryptographic
approaches, AES is a well-known algorithm that transforms plain text into
cipher text by employing substitution box (S-box). The S-box disguises the
relationship between cipher text and the key to guard against cipher attacks.
The security of a cipher using an S-box depends on the cryptographic strength
of the respective S-box. Therefore, various researchers have employed different
techniques to construct high order non-linear S-box. This paper provides a
novel approach for evolving S-boxes using coset graphs for the action of the
alternating group A5 over the finite field and the symmetric group S256. The
motivation for this work is to study the symmetric group and coset graphs.
The authors have performed various analyses against conventional security
criteria such as nonlinearity, differential uniformity, linear probability, the bit
independence criterion, and the strict avalanche criterion to determine its high
cryptographic strength. To evaluate its image application performance, the
proposed S-box is also used to encrypt digital images. The performance and
comparison analyses show that the suggested S-box can secure data against
cyber-attacks.
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1 Introduction

Modern technical advancements and their successful application in real life have resulted in
a massive increase in the volume of data exchanged. Due to the confidential characteristics of
information, it is important to develop ways to reduce the risk of improper utilization. A user’s data
must be modified before transmission so that it is worthless to an attacker. Cryptography is employed
to securely store and transmit data, ensuring that only authorized individuals have access to the
original information. By utilizing cryptographic techniques, organizations can protect their sensitive
data from unauthorized access. For many decades, basic cryptographic systems have been used in a
variety of fields. Various companies and governments have used it in the past to conceal confidential
data from adversaries. However, a substantial number of safe and encrypted conversations occur online
every day. Cryptographic encryption techniques can be divided into two distinct categories: symmetric
and asymmetric encryption. Symmetric encryption involves the use of a single key to both encrypt and
decrypt data, while asymmetric encryption requires two separate keys, one for encryption and one for
decryption. Both of these encryption techniques are essential for ensuring the security of sensitive data
and communications. Modern symmetric encryption systems, which use the same keys for encryption
and decryption operations, require fewer processing resources and are more practicable than old
encryption algorithms. There are two types of symmetric encryption schemes: stream ciphers and block
ciphers [1]. Because of their ease of implementation and ability to offer much-needed cryptographic
strength, symmetric block ciphers are among the most extensively utilized algorithms for this purpose
[2,3].

The most popular form of block encryption is Advanced Encryption Standard (AES), which
employs substitution and permutation operations. To convert plain text into cipher text, the AES
block cipher uses a symmetric key and a variable number of rounds. On the input data block,
each round is composed of permutation and substitution operations. In substitution processes, input
blocks are substituted with output blocks using substitution boxes (S-boxes) [4]. The S-box is a basic
characteristic of modern block ciphers that creates confused cipher text from the provided plaintext
[5]. As the only nonlinear component of modern block ciphers, an S-box provides a complicated link
between the plaintext and the cipher text. This suggests that unsafe cryptosystems are prompted by
weak substitution boxes.

As a result, the development of resilient S-boxes is a critical aspect in the evolution of efficient
and safe cryptosystems. So, the researchers in this field have concentrated on the development of
innovative strategies for creating cryptographically secure S-boxes. Various ideas and methods for
building Substitution boxes have emerged in recent years. In [6], the author employed the I-Ching
operator to generate the S-box. When tested using several algebraic criteria, the resultant S-box offers
good cryptographic features. Authors in [7] gave the innovative technique to construct the strong S-
box using quantic fractional transformation, which is further used in image encryption protection. The
outcomes of the projected S-box are outstanding and strong against linear and differential attacks. In
[8], authors present the novel technique to construct the substitution box by using dynamic polynomial
mapping and constructing the large number of S-boxes. The results are good enough to withstand
against linear and differential attacks. In [9], the authors describe a revolutionary modular strategy
for building a huge number of S-boxes by gently modifying the parameters in a newly constructed
transformation.

Razzaq et al. [10] provide a unique approach for generating the 462422016 various numbers of
AES-like S-boxes based on the notion of a coset graph and the actions of a symmetric group and a
permutation group. Razzaq et al. [11] built the S-box using the concepts of triangle groups (2, 3, 8),
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symmetric groups, and coset graphs. The resultant S-box has a nonlinearity of 113.75, which is higher
than the standard AES S-box. Yousaf et al. [12] build the S-box using the action of a finite Abelian
group, and the resulting S-box possesses optimum properties. Shahzad et al. [13] build the S-box using
the action A4 on PL (F257). This system is based on a coset diagram and the Fibonacci sequence. To
generate S-boxes for the action of PSL(2, Z) on a projective line over a GF

(
28

)
which is a finite field,

Razzaq et al. [14] employed a unique kind of bijective map and symmetric group. The motivation
behind this work is to study the coset graphs and symmetric groups. In literature, construction
techniques of S-boxes by action of A4, S4 and triangle group (2, 3, 8) on PL (F257) discussed. This
proposed method uses the concept of field extension for the generation of S-box by action of A5 on
PL (F269) instead of PL (F257) because the roots of the equation do not exist under mod 257; therefore,
the nearest prime field of Galois Field GF

(
28

)
in which the roots of the equation exist is used.

The technique of constructing the S-boxes by using the concept of an alternating group and coset
diagram is presented in this article. The following is the main contribution in this paper:

1) A novel group theoretic and graphical construction of S-box based on the orbits of a coset
graph, alternating group A5 and field extension is proposed.

2) Symmetric group S256 utilizes the S-box to generate it with good cryptographic properties.
3) S-box evaluated through standard S-boxes criteria that show outstanding results against linear

and differential attacks.

The remainder of the paper is structured as follows: Section 2 comprises the basic concept and
definitions related to the symmetric groups and coset graphs, while the algebraic structure of the
generation of suggested S-boxes is discussed in Section 3. Section 4 evaluates and compares the strength
of the newly suggested S-boxes to previous well-known S-boxes. Section 5 represents the result and
discussion portion. Conclusion and future work are presented in Section 6.

2 Algebraic Preliminaries

This section discusses several fundamental ideas and terms related to coset graphs, alternating
groups, and symmetric groups for the generation of S-boxes.

2.1 Modular Group and Coset Diagrams
The modular group M is an infinite, non-cyclic, and non-abelian group composed of two

generators, α and β. Basically, the bijective maps are generated by the generators α and β of M defined

as follows: α (u) = −1
u

and β (u) = u − 1
u

. Since the order of α and β is 2 and 3 respectively. Therefore,〈
α, β : α2 = β3 = 1

〉
is the finite presentation of M [15]. Several fields of science, such as number

theory, geometry and topology etc., use this infinite discrete group because it has a wide range of
applications. The concept of a coset graph for a modular group was introduced by Graham Higman
(FRS) in 1978. Since the modular group M has two generators of orders 2 and 3 respectively. Therefore,
the coset graph consists of the lines and triangles that are connected through edges with each other.
The vertices of triangle are permuted anti-clockwise by β. If the vertices a, b and c of the triangle T ,
it means that β (a) = b, β (b) = c and β (c) = a. If the line representing α join the vertices d and e
(which may be of same triangle), then β (d) = e. For more on coset graphs, readers refer to [16–19].

Consider a set Zn under multiplication modulo n defined as follows: Zn = {0, 1, 2, . . . , n − 1}. This
set forms a field when n is prime number p. The action of modular group M on Zp ∪ {∞} emerges a
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finite coset graph. Since α (0) = −1
0

= ∞. To make the action of M possible, we adjoin ∞ with Zp.

As an illustration, consider the action of M on Z11 ∪ {∞} = {0, 1, 2, 3, . . . , 10, ∞}. The permutation

representations of α and β, calculated by α (u) = −1
u

and β (u) = u − 1
u

are given as follows:

α : (0, ∞) (1, 10) (2, 5) (3, 7) (4, 8) (6, 9)

β : (0, ∞, 1) (2, 6, 10) (3, 8, 5) (4, 9, 7)

The coset graph of Z11 ∪{∞} has four triangles because the permutation of β contains four cycles.
In the permutation of α, cycle (2, 6, 10) is the triangle with vertex 2, 6 and 10 of the coset graph. By
doing this, four triangles can be formed. To connect the vertices of a triangle permutations of α are
used. For example, by the cycle (1, 10) in α, we mean there is an edge between vertex 1 and 10. The
coset graph is obtained by using the above permutation representation of α and β as shown in Fig. 1.

Figure 1: Coset graph for the action of PSL (2,Z) on Z11 ∪ {∞}
The coset graph emerges as a result of natural action of PSL (2,Z) on Z11∪{∞} as shown in Fig. 1.

The graphical representation is
〈
α, β : α2 = β3 = (αβ)

11 = 1
〉

because each vertex of the coset graph
is fixed by α2, β3 and (αβ)

11. In the case of the natural action of PSL (2,Z) on Zp ∪{∞}, only one coset
graph can be obtained for each p. Mushtaq in [20] proposed the method to construct the coset graph
for each element of ϑ in Zp known as parametrization method. This approach generates coset graphs
from which we can extract the order of αβ of our choice. Therefore, we can obtain the coset graphs for
various triangular groups (2, 3, k).
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2.2 Triangle Group and Alternating Group
The triangle group is a group that can be represent in the form: �(r, s, t) = 〈α, β : αr = β s = (αβ)t

= 1〉 where r, s, t > 1. The triangle groups �(2, 3, t) are particularly significant since they occur as a
quotient of PSL (2,Z) in many cases. Therefore, it’s more important to note that the members of the
group � (2, 3, t) are finite when k < 6. The alternating group A4, A5 and symmetric group S3, S4 are
finite triangle groups of the form �(2, 3, t).

2.3 Mushtaq Parametrization Scheme
Let us discuss the Mushtaq technique briefly (for proof and detail, see [20]).

Firstly, set α (u) = au + kc
cu − a

and β (u) = du + kf
fu − d − 1

. The values of parameters a, c, d, k, f can be

computed for each element of ϑ ∈ Zp, by solving the equations

ϑ = r2

�
(2.1)

r2 + ks2 = 3� (2.2)

d2 + d + kf 2 + 1 = 0 (2.3)

(2d + 1) a + 2kcf − r = 0 (2.4)

2fa − (1 + 2d) c − s = 0 (2.5)

Table 1 represent the relation between the value of ϑ ∈ Zp and the order of αβ. By using a
parametrization scheme, the value of ϑ for higher value of αβ can be found [20].

Table 1: Relation between the value of ϑ and order of αβ

Equation satisfied by ϑ Order of αβ

ϑ = 4 1
ϑ = 0 2
ϑ = 1 3
ϑ = 2 4
ϑ 2 − 3ϑ + 1 = 0 5
ϑ = 3 6
ϑ 3 − 5ϑ 2 + 6ϑ − 1 = 0 7
ϑ 2 − 4ϑ + 2 = 0 8
ϑ 3 − 6ϑ 2 + 9ϑ − 1 = 0 9
ϑ 2 − 5ϑ + 5 = 0 10
ϑ 5 − 9ϑ 4 + 28ϑ 3 − 35ϑ 2 + 15ϑ − 1 = 0 11
ϑ 2 − 4ϑ + 1 = 0 12
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3 Algebraic Structure of S-Box

The coset graph for the symmetric group
〈
α, β : α2 = β3 = (αβ)

5 = 1
〉

emerge as a result of the
action of PSL (2, Z) on Z269 ∪ {∞}. For the generation of 8 × 8 S-box, 256 entries are used, so the
nearest prime integer of 256, in which the roots of the equation exist, which is 269. Thus, for the action
of M, we opted for Z269∪{∞} is used. The value of ϑ satisfying the polynomial equation ϑ 2−3ϑ+1 = 0
in Z269 is present in Table 1. Since in A5 the order of αβ is 5, therefore, we have θ = 73. To find the

values of a, c, d, k and f , first solve the Eqs. (2.1) to (2.5). For Eq. (2.1), ϑ = r2

�
, we take � = 1, then

r = 197 is obtained. As r2 + ks2 = 3�, we assume k = 1 to obtain s = 71. By substituting d = 4 in
Eq. (3), f = 168 obtained. By putting k = 1, d = 4, f = 168, r = 197 and s = 71 in the Eqs. (2.4) and

(2.5), we find a = 65 and c = 207. Thus, we have α (x) = 65x + 207
207x − 65

and β (x) = 4x + 168
168x − 5

. Going

forward, the permutation representation of each element in Z269 ∪ {∞} by applying these mappings
to each individual element is computed. The calculations of α (x) and β (x)∀ x ε Z269 are conducted
using mod 269 and then represented in the form of permutations as follows:

α : (0, 92) (1, 108) (2, 95) (3, 112) (4, 130) (5, 198) (6, 203) (7, 217) (8, 214) (9, 16) (10, 265) (11, 114)

(12, 179) (13, 34) (14, 258) (15, 174) (17, 251) (18, 33) (19, 146) (20, 152) (21, 222) (22, 99) (23, 121)

(24, 223) (25, 51) (26, 209) (27, 249) (28) (29, 266) (30, 160) (31, 139) (32, 111) (35, 184) (36, 257)

(37, 207) (38, ∞) (39, 138) (40, 88) (41, 161) (42, 63) (43, 58) (44, 234) (45, 206) (46, 185) (47, 79) (48)

(49, 96) (50, 136) (52, 122) (53, 224) (54, 246) (55, 123) (56, 193) (57, 199) (59, 94) (60, 67) (61, 171)

(62, 87) (64, 166) (65, 231) (66, 80) (68, 131) (69, 128) (70, 142) (71, 147) (72, 215) (73, 233) (74, 250)

(75, 237) (76, 253) (77, 213) (78, 175) (81, 228) (82, 187) (83, 100) (84, 239) (85, 229) (86, 197) (89, 156)

(90, 102) (91, 182) (93, 211) (97, 140) (98, 219) (101, 236) (103, 143) (104, 227) (105, 176) (106, 261)

(107, 172) (109, 244) (110, 144) (113, 129) (115, 200) (116, 260) (117, 264) (118, 241) (119, 192)

(120, 177) (124, 133) (125, 135) (126, 247) (127, 157) (132, 268) (134, 252) (137, 164) (141, 180)

(145, 230) (148, 259) (149, 194) (150, 183) (151, 196) (153, 226) (154, 178) (155, 186) (158, 263) (159, 190)

(162, 195) (163, 254) (165, 204) (167, 191) (168, 225) (169, 240) (170, 267) (173, 238) (181, 208) (188, 218)

(189, 256) (201, 235) (202, 242) (205, 248) (210, 220) (212, 221) (216, 232) (243, 255) (245, 262)

β :(0, 74, 227) (1, 242, 170) (2, 133, 148) (3, 223, 158) (4, 260, 18) (5, 122, 220) (6, 259, 199) (7, 104, 117)

(8, 146, 66) (9, 71, 234) (10, 268, 125) (11, 183, 215) (12, 153, 252) (13, 48, 114) (14, 186, 251) (15, 94, 96)

(16, 159, 138) (17, 217, 63) (19, 204, 175) (20, 218, 145) (21, 258, 40) (22, 262, 178) (23, 78, 86)

(24, 236, 151) (25, 116, 209) (26, 73, 265) (27, 224, 196) (28, 62, 210) (29, 162, 250) (30, 67, 254)

(31, 202, 70) (32, 266, 228) (33, 144, 108) (34, 98, 65) (35, 168, 216) (36, 222, 54) (37, 58, 154)

(38, 181, 59) (39, 243, 194) (41, 203, 136) (42, 105, 90) (43, 139, 160) (44, 185, 214) (45, 97, 50)

(46, 230, 173) (47, 261, 235) (49, 64, 195) (51, 189, 131) (52, 248, 177) (53, 164, 89) (55, 225, 253)
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(56, 57, 106) (60, 118, 240) (61, 263, 156) (68, 77, 110) (69, 76, 255) (72, 198, 187) (75, 192, 246)

(79, 137, 226) (80, 93, 190) (81, 172, 257) (82, 113, 219) (83, 149, 184) (84, 115, 247) (85, 88, 102)

(87, 120, 129) (91, 140, 141) (92, 155, 107) (95, 109, 112) (99, 163, 132) (100, 152, 147) (101, 103, 182)

(111, 119, 174) (121, 128, 211) (123, 197, 239) (124, 171, 201) (126, 188, 232) (127, 264, 166)

(130, 167, 212) (134, 249, 180) (135, 169, 256) (142, 213, 241) (143, 244, 161) (150, 231, 205)

(157, 208, 176) (165, 238, 200) (179, 206, 193) (191, 267, 207) (221, 245, 233) (229, ∞, 237)

From the above permutation representation, one can see that 0 is mapped onto 92 through α and
β send 92 to 155 (i.e., β (0) = 155). Proceeding in this manner, 0 is mapped onto itself through (αβ)

5.
In the same way, (αβ)

5 fixes all entries of Z269 ∪ {∞}. This generates the coset graph satisfying the
relation α2 = β3 = (αβ)

5 = 1 of the triangle group (2, 3, 5), which is isomorphic to the alternating
group A5. Fig. 2 depicts a small patch of this coset graph with 54 orbits.

Figure 2: (Continued)
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Figure 2: Cyclic graphs of permutation (αβ)
5 = I

3.1 Proposed S-Box Method
The coset graph of alternating group A5 has 54 cycles of αβ, as shown in Fig. 2:

1) Find the cycle ω1 in which element 0 is the smallest of all Z269 elements.
2) Apply (αβ)

5 on 0, so that we can move through the cycle 0 ��� 155 ��� 251 ��� 217 ���
104 ��� 0 (see in Fig. 2).

3) Repeat step 1.2 for the next cycle containing the smallest element of Z269 − ω1. Until all the
cycles ωi of αβ are eliminated from the coset graphs, this procedure is repeated.

4) Write all the elements in a tabular form, and then apply a mapping I : Z269 → Z257 as follows:

I (x) =
{

x if x ≤ 255

0 if x > 255
(3.1)

After that, omitting the initial 0, disregard all vertices bigger than 255 and ∞ because an S-box
consists of 256 entries from 0 to 255. Following this, write the remaining elements in the 16 × 16 table,
which is an elementary S-box, as shown in Table 2.

Table 2: Initial s-box

0 155 251 217 104 1 33 4 167 2 109 161 203 3 95 133

171 5 187 113 87 210 6 136 45 193 57 7 63 105 157 8
44 9 159 80 10 26 25 189 135 11 13 98 82 72 12 206
97 141 134 14 40 102 42 17 15 111 162 49 16 71 100 149
39 18 144 68 51 116 19 66 93 121 78 20 147 234 185 230
21 54 75 229 88 22 163 30 43 154 23 128 76 55 197 24
158 156 53 196 27 180 91 101 151 28 62 120 52 220 29 228

(Continued)
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Table 2 (continued)

0 155 251 217 104 1 33 4 167 2 109 161 203 3 95 133

172 92 74 31 160 67 118 142 32 119 246 36 81 34 48 114
183 231 35 83 152 218 232 37 191 212 245 178 38 237 192 174
94 41 143 182 140 50 46 214 146 204 238 47 137 89 61 201
56 179 153 79 58 139 202 170 207 59 96 64 127 208 60 254
132 125 169 65 205 177 129 219 69 211 190 138 243 70 213 110
108 242 73 221 130 209 77 241 240 131 84 123 225 216 126 85
181 176 90 86 239 115 165 175 99 233 103 244 112 223 236 106
235 124 148 199 107 222 186 117 166 195 250 227 122 248 150 215
198 145 173 200 247 188 164 226 252 249 224 168 253 255 194 184

In the initial S-box, the mean non-linearity value is 101.25; however, this value may be enhanced
by using a particular permutation of the symmetric group to construct a robust S-box. In this scenario,
the 256 cells of Table 2 are subjected to a specific permutation of the symmetric group S256 given below.
As a result, a robust S-box in Table 3 is obtained with a mean non-linearity of 111.75.

Table 3: Proposed s-box

237 60 144 52 108 14 91 175 47 141 27 36 223 139 69 82

87 178 6 161 107 152 17 190 8 164 51 147 170 243 207 24
145 44 92 200 96 173 56 21 253 160 119 252 197 142 104 32
192 35 183 113 93 233 70 172 163 242 143 201 89 90 136 228
198 181 220 88 78 196 230 210 246 180 132 41 40 10 232 66
127 177 191 167 153 122 217 25 174 124 81 199 98 94 162 229
185 165 211 43 226 179 115 204 255 118 106 166 105 28 63 53
72 57 58 101 75 245 3 15 239 133 9 102 120 158 231 99
205 97 16 135 236 59 129 126 250 235 249 151 218 39 2 219
4 22 168 73 149 13 67 71 18 140 117 157 34 216 37 227
134 221 171 169 206 189 77 214 80 121 33 100 182 202 1 240
65 83 0 42 31 154 241 123 137 247 155 114 11 86 203 26
62 48 112 159 156 215 111 61 76 176 194 209 95 222 193 212
148 131 20 12 19 50 224 184 213 116 195 150 38 55 128 23
109 125 30 208 254 84 187 138 110 225 85 251 146 244 248 5
68 79 7 188 74 45 29 49 234 103 238 186 54 64 130 46

3.2 Permutation of Symmetric Group of Order 256
The permutations of S256 are explain as follows,

(1, 179, 164, 242, 33, 34, 123, 73, 53, 77, 28, 243, 38, 192, 233, 108, 125, 91, 224, 107, 193, 5, 47,
212, 190, 55, 180, 177, 75, 69, 27, 114, 35, 196, 162, 102, 74, 170, 134, 141, 221, 195, 148, 173, 81, 40,
166, 14, 119, 106, 110, 67, 3, 236, 160, 60, 248, 101, 11, 225, 138, 208, 235, 137, 83, 117, 42, 189, 30,
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109, 4, 87, 57, 120, 46, 113, 56, 23, 19, 231, 252, 147, 59, 95, 45, 16, 122, 43, 150, 214, 103, 7, 171, 37,
78, 249, 44, 93, 201, 176, 229, 21, 17, 163, 85, 68, 241, 65, 142)(2, 187, 24, 63, 172, 254, 105, 140, 18,
240, 198, 204, 184, 144, 89, 100, 70, 218, 54, 124, 12, 20, 52, 6, 175)(8, 145, 94, 222, 13, 191, 217, 128,
188, 232, 155, 251, 215, 98, 197, 255, 203, 230, 206, 158, 61, 131, 50, 10, 143, 49, 130, 127, 194, 58, 199,
167, 174, 228, 92, 223, 133, 22, 72, 80, 71, 213, 121, 48, 165, 115, 245, 186, 99, 112, 64, 149, 154, 104,
116, 181, 129, 51, 161, 39, 88, 227, 209, 66, 153, 237, 86, 146, 76, 211, 62, 152, 168, 29, 111, 247, 26,
207, 136, 159, 200, 183, 135, 79, 97, 126, 157, 185, 15, 205, 234, 219, 250, 139, 118, 151, 256, 216)(9,
84, 96, 32, 25, 246, 244, 36, 169, 31, 156)(41, 132, 178, 226, 90, 182, 82, 253)(220, 238, 239)(202, 210).

4 Algebraic Analysis

In this part, the proposed innovative approach and suggested S-box as shown in Table 3 against
widely accepted traditional methods is examined. To examine the cryptographic strength of the S-box,
performance standards have been developed. Several key analyses are used to determine the robustness
of the S-box, including nonlinearity, differential approximation probability, bit independence criteria,
strict avalanche criteria, and linear approximation probability.

4.1 Non-Linearity (NL)
To obtain the original plaintext from an S-box constructed in such a way that the plaintext and

cipher text have a linear mapping, it is simple to conduct a linear cryptanalysis attack. An S-box must
be constructed with a strong nonlinear mapping among its input and output to withstand this assault.
A test based on this criterion was introduced in 1988 by Pieprzyk et al. [21]. Using Eq. (4.1), one can
determine the nonlinearity of an n-bit Boolean function.

Nh = (2)
n

2

[
1 − (2)

−n max |Wh (u)| ] (4.1)

where Wh (u) is the value of Walsh Spectrum defined as: -

Wh (u) =
∑

u∈Fn
2

(−1)
h(z)⊕u.z (4.2)

The suggested S-box nonlinearity outcomes for eight balanced Boolean functions are 112, 112,
112, 112, 112, 112, 112, and 110, with a minimum of 110, a maximum of 112, and an average of 111.75.
An assessment of the mean nonlinearity of the resultant S-box compared to those of other recent S-
boxes is shown in Fig. 3. As can be observed, the final S-box has the necessary capacity to preserve
the linearity, making linear cryptanalysis difficult for the attacker.

Figure 3: A comparison between average NL value of proposed s-box with various s-boxes



CSSE, 2023, vol.47, no.2 2557

4.2 Strict Avalanche Criterion (SAC)
The strict avalanche criteria [22,23], are fundamental characteristic for every cryptographic S-box,

stating that modifications in input and output bit values affect the strict avalanche criteria (SAC).
When a single bit alters the input outcomes in a transfer of 1/2 of the output bits, an S-box encounters
the SAC. An S-box with a SAC score close to 0.5 has reasonable ambiguity. Table 4 shows the
dependency matrix containing the SAC values of the proposed S-box and maximum, minimum values
of SAC are displays in the columns of this table. The average SAC value of the S-box is equal to 0.4988.
This SAC number demonstrates that the suggested S-box satisfies the SAC property satisfactorily.

Table 4: Strict avalanche values

0.5 0.5 0.4688 0.4844 0.5 0.5156 0.5156 0.5

0.5 0.5312 0.5469 0.4844 0.5 0.5469 0.4531 0.5
0.5312 0.4844 0.4688 0.5156 0.4688 0.4688 0.5625 0.4531
0.5 0.5312 0.4844 0.4844 0.5312 0.5156 0.5 0.4688
0.4844 0.5156 0.5 0.4531 0.4844 0.5156 0.4844 0.5156
0.4688 0.5156 0.5 0.5156 0.5 0.4688 0.4844 0.4688
0.5 0.5469 0.4844 0.4531 0.4844 0.4688 0.4531 0.5469
0.5156 0.4688 0.5 0.5 0.5781 0.4844 0.5156 0.5312

4.3 Bit Independent Criterion (BIC)
The bit independence criteria require pairwise comparisons of variables to determine their

independence. According to this criterion [22,23], inverting an ith input bit alters output bits jth and
kth independently of one another. Secure output bits are generated by an S-box that makes the output
bits independent. If an S-box has the BIC quality, all of its constituent Boolean functions are strongly
nonlinear and satisfy the SAC requirement. Tables 5 and 6 present the outcomes BIC nonlinearity
and BIC-SAC of the resultant S-box, respectively, which identify the relationship between changing
ith input and matching changes in jth and kth output bits. Proposed S-box has a mean BIC nonlinearity
outcome of 103.64, whereas the average BIC-SAC score is 0.497, which is approximately equal to the
ideal score of SAC, which is 0.5. As a result, this S-box meets the BIC’s standards. Comparison of the
BIC, SAC, DP and LP outcomes of the resultant S-box to those of other previously suggested S-boxes
present in Table 7.

Table 5: BIC nonlinearity values of suggested s-box

0 104 106 108 106 94 104 104

104 0 106 106 98 108 104 108
106 106 0 104 104 100 108 100
108 106 104 0 104 100 106 104
106 98 104 104 0 102 104 100
94 108 100 100 102 0 102 102
104 104 108 106 104 102 0 106
104 108 100 104 100 102 106 0
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Table 6: BIC SAC values of suggested s-box

0 0.5059 0.4766 0.5156 0.5098 0.4922 0.5215 0.4707

0.5059 0 0.4922 0.5117 0.4824 0.4941 0.5 0.5
0.4766 0.4922 0 0.5078 0.4805 0.498 0.4922 0.5117
0.5156 0.5117 0.5078 0 0.498 0.4922 0.5176 0.5078
0.5098 0.4824 0.4805 0.498 0 0.4805 0.5059 0.4941
0.4922 0.4941 0.498 0.4922 0.4805 0 0.4648 0.498
0.5215 0.5 0.4922 0.5176 0.5059 0.4648 0 0.4941
0.4707 0.5 0.5117 0.5078 0.4941 0.498 0.4941 0

Table 7: A comparison between BIC-NL, BIC-SAC, LP, and DP values of s-boxes

S-boxes SAC BIC-NL LP DP

Proposed 0.4988 103.64 0.1328 0.039
[23] 0.502 103.7 0.125 0.039
[24] 0.493 102.3 0.141 0.047
[25] 0.504 112 0.062 0.011
[26] 0.5029 103.7 0.125 0.039
[27] 0.507 106.9 0.1328 0.031
[28] 0.509 106.1 0.113 0.031
[29] 0.503 103.9 0.1328 0.039
[30] 0.499 103.6 0.125 0.039
[31] 0.501 103.6 0.139 0.039
[32] 0.5029 102.9 0.1484 0.04687
[33] 0.4958 103.5 0.1328 0.05469
[34] 0.5101 106.25 0.1484 0.0391
[35] 0.500 103.9 0.109 0.039
[36] 0.506 103.5 0.125 0.039
[37] 0.4973 102.78 0.15625 0.0391
[38] 0.4980 103.5 0.14063 0.0391

4.4 Linear Probability (LP)
In current block ciphers, the cryptologist aims to provide enough bit diffusion and uncertainty

to prevent cryptanalysis. These requirements can be met by strong S-boxes by providing a nonlinear
mapping between input and output. A low linear probability (LP) S-box suggests a greater nonlinear
mapping and confers resistance to linear cryptanalysis. This criterion determines the greatest value of
an event’s imbalance. Matsui [39] developed this analysis, and a mathematical formula for calculating
the LP value of the S-box is presented below.

LP = maxa1,a2 �=0

∣∣∣∣#{w ∈ W |w.a1 = g (w) .a2}
2n

− 1
2

∣∣∣∣ (4.3)
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where a1 mask denotes the parity of input bits and a2 mask denotes parity of output bits. W is the
collection of all input values and 2n is the total number of elements. The highest LP of the suggested
S-box is just 0.1328. Table 7 shows a comparison of different S-boxes’ LP scores. The findings of this
study show that proposed S-box is robust to linear attacks and that the LP score in the suggested S-box
is lower than that of several other S-boxes.

4.5 Differential Probability (DP)
Differential cryptanalysis is thought to be a valuable approach for obtaining the original plaintext.

Variations in the plaintext and ciphertext are discovered throughout this attempt. Biham et al.
proposed this test [40]. The differential uniformity of a Boolean function is calculated by requiring
that the XOR values of each output have the same probability as the XOR values of each input. The
formula for calculating DP is provided below.

DPg = max�w �=0,�z

(
#{w ∈ W |g (w) ⊕ g (w ⊕ �w) = �z}

2n

)
(4.4)

Table 7 shows the comparison of differential probability values of the suggested S-box and several
other S-boxes. Table 8 explains the differential uniformity values of the suggested S-boxes. Fig. 4
depicts a graphical analysis of the DP score of the suggested S-box and several other S-boxes.

Table 8: Input/output XOR distribution table

6 8 6 6 6 6 6 6 6 6 6 6 6 6 4 8

6 6 6 6 8 10 6 10 6 8 6 6 6 10 6 6
6 6 6 6 6 6 8 6 8 8 6 6 6 6 8 8
6 8 8 6 6 6 6 6 8 6 6 8 6 6 8 6
8 6 10 6 6 6 6 8 6 8 6 6 6 6 8 8
8 8 8 6 6 10 6 6 8 8 6 6 10 10 8 8
8 6 6 6 6 8 6 8 6 6 6 6 6 8 8 6
6 6 6 6 6 6 6 6 6 6 8 8 6 8 8 6
6 6 6 8 6 6 6 6 6 6 6 6 8 8 6 6
6 8 6 6 6 6 8 8 6 8 6 6 6 8 8 8
6 6 6 8 6 6 6 6 8 10 6 8 6 6 4 6
8 6 6 6 6 6 6 8 8 8 8 10 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 8 8 6 6
8 8 6 8 8 6 6 6 6 6 8 6 6 6 8 6
6 8 6 6 8 8 8 8 8 8 8 6 8 6 8 6
6 8 6 6 8 8 6 6 6 6 10 8 6 6 8 0

5 Results and Discussion

High nonlinearity is an important criterion for constructing good cryptosystems. In comparison
to the other S-boxes shown in Fig. 1, the created S-box’s mean NL score of 111.75 is relatively high.
According to this NL score, linear attacks are exceedingly difficult to succeed against the S-box. The
SAC score is 0.4988 as shown in Table 4, which is nearly equivalent to the SAC’s ideal score. With
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regard to nonlinearity, the resultant S-box’s mean BIC score is 103.64 as shown in Table 5, and the
resultant S-box has an LP score of 0.1328, which is quite good when compared to existing S-boxes.
The complete comparison of DP, BIC-NL, LP, and SAC demonstrate in Table 7. When these outcomes
are compared to existing S-boxes, it is clear that the resultant S-box meets the typical S-box security
protocols.

Figure 4: A bar chart showing the DP score of the proposed s-box with different s-boxes

6 Conclusion

In this study, a group-theoretical and graphical method for creating the high nonlinear component
of the AES block cipher was presented. This approach is simple, innovative, and dynamic in nature.
The preliminary 8×8 S-box was generated by the action of PSL (2,Z) on Z269. The construction of the
proposed S-box used suitable permutations of the symmetric group S256 to boost the unpredictability
of the preliminary S-box. The S-boxes’ algebraic properties, including their high NL value of 111.75,
very low LP value of 0.1328, small DP value of 0.039, and ability to fend off attacks from linear and
differential operators, make them significantly more effective than more recent S-boxes. In the future,
the proposed S-boxes can be used in multimedia security applications such as watermarking, audio
and video steganography, and image encryption.
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