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Abstract: Intelligent vision-based surveillance systems are designed to deal
with the gigantic volume of videos captured in a particular environment to
perform the interpretation of scenes in form of detection, tracking, monitor-
ing, behavioral analysis, and retrievals. In addition to that, another evolving
way of surveillance systems in a particular environment is human gait-based
surveillance. In the existing research, several methodological frameworks
are designed to use deep learning and traditional methods, nevertheless,
the accuracies of these methods drop substantially when they are subjected
to covariate conditions. These covariate variables disrupt the gait features
and hence the recognition of subjects becomes difficult. To handle these
issues, a region-based triplet-branch Convolutional Neural Network (CNN) is
proposed in this research that is focused on different parts of the human Gait
Energy Image (GEI) including the head, legs, and body separately to classify
the subjects, and later on, the final identification of subjects is decided by
probability-based majority voting criteria. Moreover, to enhance the feature
extraction and draw the discriminative features, we have added soft attention
layers on each branch to generate the soft attention maps. The proposed model
is validated on the CASIA-B database and findings indicate that part-based
learning through triplet-branch CNN shows good performance of 72.98%
under covariate conditions as well as also outperforms single-branch CNN
models.
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1 Introduction

Security and surveillance of different areas seem to be quite critical in today’s modern days of the
digital realm to guarantee the safety of workplaces [1]. To implement this, surveillance cameras are
designated at different locations for recording activities of different places, locations, and people as a
monitoring system. Such multi-camera networks record abundant volumes of videos or footage at the
moment, hence manually monitoring and analyzing such enormous amounts of video content takes a
great deal of time and effort. To automate such processes, vision-based surveillance is designed using
state-of-the-art methods. Such vision-based surveillance systems can be designed in different ways, but
establishing surveillance systems based on biometrics is getting increasingly common. These biometric-
based surveillance systems exploit the physical and behavioral attributes of different individuals in
determining their identities [2]. More explicitly, the examples of physical attributes involve the face,
iris, fingerprints, etc. On the other hand, behavioral features include voice, signature, human gait, etc.
The interpretation or examination of such biological features is come under the study of biometrics to
determine human identities [1].

In the aforementioned biometric traits, gait recognition is becoming more prevalent, advan-
tageous, and conceivable [3]. Human gait recognition is an example of a biometric system whose
primary goal is to identify humans based on their walking patterns [4,5]. In comparison with other
biometric modalities, gait patterns can be retrieved from a larger distance and underlying persons
can be recognized without their cooperation with the system [6,7]. On the other hand, face, iris,
fingerprints, etc. necessitates a person to cooperate with the system, for example, the face should be at
a minimal distance from the camera to be properly recognized. In addition, gait recognition continues
to perform well whenever other biometric traits such as faces as well as fingerprints stay obscured. Due
to such advances and strengths, human recognition through gait patterns is an innovative technology
and can be more feasible to be utilized as a vision-based surveillance system deployed at different
important spots including shopping malls and military regions, etc. In previous research studies,
several approaches were designed by researchers to carry out recognition which was mostly categorized
as model-based as well as model-free methods. More precisely, in model-based approaches, gait
features are retrieved by designing the model of the human body using different geometrical shapes
[8,9]. These gait features are drawn by using different parameters involving speed, step size, and
stride of individuals. Likewise, model-free techniques also referred to as appearance-based approaches
employ the statistical as well as spatiotemporal features from silhouette-based frames of videos. These
silhouettes are acquired by performing segmentation or background subtraction from frames of
videos. Such kind of appearance-based techniques is popular under the umbrella of a vision-based
surveillance system designed by exploiting human gait [10].

Presently, in the era of Deep Learning (DL), different problems have been solved in several
domains including surveillance systems such as gait recognition and anomaly detection [11,12], tumor
detection, and skin cancer detection [13,14], planetscope nanosatellites classification [15], an intrusion
detection system for edge computing [16], botnet detection and classification [17], automated weed
detection algorithms utilizing UAV imagery [18,19], insider threat detection using NLP [20,21], etc.
Such deep learning model applications can be integrated with intelligent systems to perform several
tasks [22]. Among all of them, one of the biometric-based surveillance applications of deep learning
models includes human gait-based identification frameworks. There exist different gait representations
that are utilized as input of these models such as Gait Energy Image (GEI) [23], Boundary Energy
Images (BEI) [24], Gait Entropy Image (GeNI) [25], Motion Silhouette Images (MSI) [26], Enhanced
Gait Energy Image (EGEI) [27], Gait Flow Image (GFI) [28], Gait Information Image (GII) [29],
Dynamic Gait Energy Image (DGEI) [30], and Color-Mapped Contour Gait images (CCGI) [31]. Of
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all these, GEI-based [23] gait representations are the most commonly used. The advantages of GEI
over silhouettes are that it offers less computational complexity and exhibits good performance. The
steps involved in designing the deep learning frameworks include retrieving silhouettes from images
and then calculating gait representation from silhouettes that ultimately becomes the input of the
deep learning model. In existing research, different architectural configuration-assisted models are
designed to enhance performance [31,32]. Moreover, the concept of transfer learning is also leveraged
to perform gait recognition employing AlexNet, VGG19, and DenseNet models [33,34].

In the aforementioned research studies, the suggested deep learning models show good perfor-
mance, nevertheless, when it comes to covariate variables, the performance reduces substantially. It
is discussed in [12] that there exist different types of covariate variables due to which performance
is affected. These covariate variables involve carrying scenarios, clothing variations, walk speed
conditions, as well as occlusion (both static and dynamic), and viewpoint variations. To more clearly
explained the problem, if the underlying deep learning model is trained on GEI images of different
persons in the normal walk, afterward whenever the model is put to test mode, then if the person
comes under different clothing and carrying conditions such as wearing long coats or carrying heavy
suitcases, their gait patterns are affected resulting in a more challenging scenario for the model to
properly recognize the person.

More precisely, clothing variations cause difficulties in obtaining good accuracy because they
impact the feature set [35]. For example, some important gait patterns are hidden in a long coat
worn by a person since the coat hides the regions of body parts [3]. Likewise, speed and occlusion
conditions are also challenging factors to consider while designing the gait recognition frameworks
[1,36,37]. It is observed from the above discussion that in appearance-based approaches to human gait
recognition, covariate factors remain an important challenge in the gait-based identification system.
In a nutshell, the major goal of this work is to develop an improved deep-learning model in terms of
performance under covariate situations. One important research question is what if that deep learning
model is focused on certain regions to determine the identity since it might be the case that all of
the regions of GEI images are not affected due to covariate factors. Secondly, in some recent studies
[12,38–42] in which deep learning models are designed and are trained, and tested on the same walking
conditions but in real circumstances, the walking condition during testing is not known in advance.
Hence, there is a need to investigate model performance when the covariate conditions of test time are
not known in advance. In addition, several deep learning models have been proposed in past research
as well, however when it comes to covariate conditions then the performance of the model drops [12].
Therefore, it is logically deduced from the results of existing studies that covariate condition is the
major challenge or problem that limits the performance of gait recognition. Hence, to handle this
problem, a triplet branch CNN model is proposed in this research study for human identification
based on gait patterns. More precisely, in this research there is extraction of three selective regions i.e.,
head, body, and legs, and utilize them as input to separate branches of the CNN model. The rationale
of selecting three parts separately is to handle covariate conditions e.g., these covariate conditions
affect certain regions of images, for instance, if a subject wears a hat, then in this case head region is
more affected, but identification is possible through the body and legs regions. Moreover, each branch
operates on separate regions of interest and extracts the features which are also further refined using
soft-attention layers to generate the attention maps from activation or feature maps. Each branch first
separately identifies the subject and later on final subject identification is done by probability-based
criteria, i.e., the label of subjects decided by each branch with the highest probability becomes the final
label of that particular subject. In this research, the evaluation of the proposed model is performed
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on the CASIA-B gait dataset and the findings show good improvement under clothing and carrying
conditions.

• A triplet-branch CNN model is suggested for region-wise identification of humans based on
gait features to handle covariate conditions.

• To empower feature learning, soft attention layers are added to extract more refined features.
• Experiments indicate that the proposed model shows good results in comparison with baseline

methods.

The rest of the paper is organized as Section II provides the literature review, section III provides
the proposed methodology, and Section IV describes the results with analysis followed by a conclusion
and references. Fig. 1 shows several example frames of video and their associated silhouettes from the
CASIA-B gait dataset.

Figure 1: Frames and silhouettes of videos from the CASIA-B dataset

2 Literature Review

To effectively recognize persons based on their gait patterns, different researchers suggested several
methods including model-based and model-free techniques. In each kind, distinct machine and deep
learning algorithms are proposed. The differences in existing studies also exist in terms of the approach
that is used to acquire the gait data, for example, floor sensors, accelerometers, radar, or image-based
data using cameras. All of such research studies attempt to handle and reduce the impact of covariate
variables which is a major issue in human gait recognition. Particularly, machine learning methods as
well as rule-based techniques are suggested in the work of Kececi et al. [43] to identify humans based
on their gait patterns. The wearable accelerometer and gyroscope are employed to retrieve the gait
patterns which then become the input of Random forests, Decision trees, and multi-layer perceptron.
Their suggested technique provides good results of about 99% accuracy. Following on, the Artificial
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Neural Networks (ANN) based method is also designed in the work of Bari et al. [44]. In their work,
the gait pattern of individuals is extracted by employing Kinect sensors followed by designing a novel
feature set. That feature includes joint relative cosine dissimilarity and joint relative triangle area and
attained good results in form of recall and F1-score values. Such sensor-based techniques are good in
terms of performance, nevertheless, they are not feasible and practically deployable due to the high
cost of sensors. More specifically, such methods necessitate an individual to either wear a sensor or
require a floor sensor to obtain human gait patterns for their identification [3].

In contrast to these approaches, vision-based surveillance approaches are more feasible and
commonly used. These methods do not require human cooperation as well as less costly in comparison
with sensors-based methods. It is reported in existing research that human gait can be obtained from
low-resolution cameras even if they are at a larger distance from humans [3]. In this category, i.e.,
vision-based gait recognition, several methods are suggested. For instance, a model-based frame-
work designed by Liao et al. [45] by exploiting the 3D human pose features followed by utilizing
convolutional neural networks (CNNs). Under the challenging situations of camera viewpoint and
clothing variations, their suggested technique exhibits excellent results. To enhance the performance
of human gait recognition, graph convolutional neural networks are also suggested in the work of
Teepe et al. [46]. Their proposed method is referred to as skeleton-based gait recognition and the results
are obtained by performing the experiments on CASIA-B and OUMVLP-Pose gait datasets and
achieving benchmarking results. An et al. [47] also suggested the 3D pose features since they are less
influenced by covariate variables, particularly viewpoint variations. Moreover, they have also extracted
the spatiotemporal features by fusion of CNN-LSTM deep learning models to increase the recognition
rate. The findings of the study also show that 3D pose features work better than 2D pose features. In
addition, the graph neural networks are suggested in the work of Zheng et al. [48] with a modification
of adding dual branches. The objective of their method is to lessen the camera view interferences
in conjunction with enabling spatiotemporal relationships. In order to predict the skeleton’s camera
viewpoints, a separate model namely an angle estimator is proposed. Furthermore, they have tested
their technique on a large gait database i.e., the CASIA-B gait dataset. Such model-based techniques
show good performance and are effective enough to overcome the challenging scenarios of covariate
variables. But on the other hand, they need better-resolution videos to appropriately compute the
geometric model of individuals, hence they are computationally demanding [1].

Furthermore, there also exists some set of approaches referred to as appearance-based techniques,
in which the algorithms are designed to work over the human silhouette images, i.e., binary images
to obtain their gait features. These images are also less dedicated to texture and color variations. It
is observed from studies that algorithms that work on such silhouette images are less complex than
those of model-based techniques. But such silhouette-based methods also have some limitations i.e.,
the performance of the model substantially reduces when it comes to different covariate conditions
such as camera viewpoints, clothing, as well as carrying and speed conditions. To overcome such
limitations, and to build cost-effective as well as good performance gait recognition systems for
automated surveillance, different frameworks are designed. For example, a 3D CNN is designed
in the work of Gul et al. [49] whose input is the GEI rather than binary silhouette images. This
GEI-based gait representation is more compact and extracts body motion and spatial shape-based
features. OULP and CASIA-B are the two datasets on which the experimentation is performed
in their research. The findings show that their proposed method is effective in handling covariate
conditions. Likewise, a novel deep-learning model for human gait recognition is also suggested by
Arshad et al. [42] in which VGG19 and AlexNet are combined to draw the features and then feature
selection is performed using entropy and skewness methods. In the end, the final feature set is utilized
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to perform the recognition of humans using refined gait features. AVAMVG gait, CASIA A, B, and C
are the datasets on which they have tested their technique to indicate their findings and it is observed
that the fusion of both models leads to good outcomes. Subsequently, to overcome the problem of
covariate conditions particularly clothing and carrying scenarios, Alsaggaf et al. [50] suggested the
use of Generative Adversarial networks (GANs) type namely CGANs i.e., cycle consistent GANs.
They have performed the translation of GEI images that is disrupted from covariate factors to normal
GEIs. The working of CCGANs involved the cycle and they have trained the model in an unsupervised
manner to reconstruct the GEIs. The experimentation on the CASIA-B gait dataset shows that their
method attains good accuracy under challenging circumstances. Similarly, a novel CNN model capable
of handling different variations is designed in the work of Alotaibi et al. [32]. Their deep learning
model is more generalizable and has been trained on GEI images without performing augmentations
and has attained competitive accuracies. A joint-learning-based deep learning model involving both
the identification and verification process is proposed by Li et al. [51]. Their proposed model builds
upon joint intensity transformer networks that are good enough to handle covariate factors. For both
verification and identification, distinct loss functions are utilized including triplet and contrastive loss.
The findings of experimentation show that their suggested method generates good results whenever it
comes to challenging clothing and carrying conditions. Moreover, the Histogram of oriented gradients
(HOG) as well as the Zernike moment with random transform-based methods are used in the work of
Semwal et al. [52] to draw the gait features followed by the classification of approaches using machine
learning methods. The features are extracted from the GEIs which are then utilized to perform human
recognition through gait.

Furthermore, there also exists some research studies in which particular gait representations are
suggested to reduce the impact of covariate variables which ultimately helps in improving performance.
In this context, a particular kind of image referred to as Skeleton Gait Energy Image (SGEI) is
suggested in the work of Yao et al. [53] which is robust to challenging scenarios. In addition, a multi-
stage deep learning model is also designed along with a fusion of two types of gait representation
i.e., GEI and SGEI. This integration is accomplished to minimize the limitation of appearance-based
gait patterns. In a challenging clothing scenario, their suggested technique exhibits superior results.
Similarly, another special category of gait representation is suggested and referred to as Gait Entropy
Image (GeNI) in the research study of Bashir et al. [54]. These images show the pixel’s randomness
during the complete cycle of an individual’s gait. Their proposed gait representation also works well
in improving the performance of gait recognition under covariate conditions. Likewise, to handle
occlusion conditions which are also considered as one of the covariate factors several methods have
been devised [55–58].

Moreover, some recent literature on gait recognition frameworks also involves the use of deep
learning models such as Mogan et al. [38] suggested a VGG16-MLP-based deep learning model
by employing GEI-based gait representation to perform gait recognition. Their approach is based
on the transfer learning concept in which the first pre-trained VGG16 model is used to extract
features and later on fined tuned to perform classification and achieved good results. Similarly, in
another work by Mogan et al. [39] they employed a DenseNet variant namely DenseNet-201 with
multi-layer perceptron. This pre-trained DenseNet model draws the features from GEI and later on
the associations among these latent features and associated class is learned using the MLP model.
Ambika et al. [40] also employ DenseNet to handle view-based conditions in which the final layer
is modified to include softmax activation with 10 hidden units to perform 10 subject identification.
Mehmood et al. [41] employs DenseNet-201 for feature extraction followed by feature selection to
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reduce the feature vector sizes, and in the last classification is performed using One against All Multi
Support Vector Machine (OAMSVM).

A hybrid model by combining both VGG-19 and AlexNet is also designed in [42] to perform
feature extraction for efficient gait recognition in addition to entropy and skewness-based features. In
all of these studies, the training and testing scenarios are built on the same covariate condition, hence,
the performance of the model is hidden when both sets are built under different covariate conditions.
Therefore, the main goal of this study is to build a deep learning model that is good to identify the
subject’s conditions when it is trained on normal walk scenarios and validated on the subject when
they appear with coats or while carrying bags. Over these recent studies, this study attempts to answer
a question, what if the model is learned to recognize subjects when they appear with a normal walk and
put on test mode to recognize persons when they appear with different covariate conditions. Secondly,
these covariate conditions are not the only coats and bags, the person can come with any condition in
real-time scenarios, hence, when the model is trained on all these conditions then it fails to recognize
a person when it comes with new conditions. As an intriguing scenario, this research construct a more
challenging setting in which the model is evaluated with unknown covariate conditions. The suggested
approach is created as a region-based method to deal with this problem.

3 Methodology

In this section, there is description of the proposed work in detail. More precisely, the proposed
model starts from preprocessing stages that is computing the gait representations namely GEI images
followed by a triplet-branch CNN model with soft attention layers to perform human gait recognition
as an identification task. Fig. 2 depicts the overall pictorial representation of the proposed model and
details of each step is described below:

Figure 2: Architecture of suggested Triplet-branch CNN model

3.1 Gait Representations
In existing studies, there exist several gait representations in appearance-based approaches,

however, the human GEI is one of the most commonly used gait representations. In this research,
first step is the collection of the human gait videos under different walking conditions such as normal
walking, walking while carrying heavy bags, and walking while wearing coats. The videos are processed
to compute binary silhouette images frame by frame followed by computing the GEI-based gait
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representation. More precisely, the mathematical equation used to compute the GEI images is given
below:

GEIimage = G (x, y) = 1
T

T∑
t=1

I (x, y, t) (1)

In the above Eq. (1), T is the total number of aligned binary silhouettes at time t having x and y
coordinates denoted asI (x, y, t). The result of this equation is the GEI image denoted as GEIimage and
is computed for every subject in the database. The high pixel values in the GEI denote the static part of
the human body while the bottom regions where the values of pixels are lower represent the motion-
reliant information about the subject. These gait representations are more compact than silhouette
images and can be utilized as input to the deep learning model.

3.2 Region Extraction
In the problem of gait recognition, challenges of covariate conditions are the main factor to hinder

the performance of the deep learning model. For instance, as shown in Fig. 3a, the GEI image in
which a person carries a bag is distinct from those of normal walking. However, it is also observed
that only some of the regions are disrupted due to covariate conditions. Hence, to make learning from
different regions this article proposed triple-branch CNN in which each branch specifically focused
on a separate part. To enable this kind of learning, the original GEI images is divided into three parts
i.e., head, body, and legs. More precisely, a normalized and center-aligned GEI image of dimension
240 × 240 × 1 in which the head part is from 0 to 40 in height, the body is from 40 to 177 and the
legs are from 177 to 240 as shown in Fig. 3b. After extracting regions, input is given in form of these
regions of interest to separate branches of the CNN model.

Figure 3: Region Extraction from GEI images

3.3 Proposed Triplet-Branch Convolutional Neural Network
After preparing the gait representation and extracting regions of interest, a triplet-branch CNN

model is deisgned. Convolution Neural Networks (CNNs) are one of the most popular and state-
of-the-art algorithms for solving various computer vision problems. CNN model starts learning in
a hierarchy by performing two operations in a repeated manner namely convolution and pooling
in a manner just like the working of basic cells in the visual cortex of the human brain. This kind
of automated feature extraction made them applicable to various domains and saves the overload
of traditional feature extraction approaches from images such as Histogram of Oriented Gradients
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(HOG), Local Binary Patterns (LBP), etc. CNN models are considered to be the most popular
algorithms to solve computer vision challenges in a variety of ways including image classification
[59], object detection and localization [60], as well as semantic, instance, and panoptic segmentation
[61]. CNN-based feature extraction is more generalizable and is end-to-end than conventional machine
learning approaches, particularly in the case of vision data. In this research, the approach of CNNs
is suggested, however, with a modification to handle the challenge of covariate conditions. More
precisely, a different region of interests of GEIs of size 40 × 240 (Head), 63 × 240 (legs), and
177 × 240 (body) are inputted to each branch of triplet-CNN. Following on, each branch of triplet-
CNN comprises convolutional and max-pool layers to extract the features of each part.

More precisely, a collection of convolutional filters is convolved over the image denoted as {Wk}k∈K

to produce another stack of tensors namely the activation maps denoted as
{
Hj

}
j∈J

. A tracking table
CT that maintains the associations among a collection of GEI image-parts i, a kernel K , and the
outcome j. On the resulting activation maps, an activation function is applied. In this study, “ReLu”
is employed as an activation function. Moreover, the relationship built through convolutional layers
is given in Eq. (2):

hj (x) =
∑

i,k∈CTi,j,k

( fi ∗ wk) (x) (2)

In the above Eq. (2), a convolution layer is denoted by ∗ that is applied over the GEI image parts
i.e., legs, head, and body parts. In the proposed model, there is a total of three convolution layers
having a total number of filters 32, 64, and 128 and a kernel size of dimension 3 × 3 having padding
parameter set to “same”. After every convolution layer followed by the activation function “ReLu”,
batch normalization and max-pool layers are added. With the help of this batch normalization layer,
training becomes faster due to normalizing input utilizing mean as well as variance. More precisely,
on each branch of CNN, a batch of samples of dimension D in the form of X ∈ RN∗D i.e., matrix is
inputted to the batch normalization layer wherein each instance is denoted by xi. Eq. (3) is employed
to mathematically present this concept.

x̂i = xi − μ√
σ 2 + ε

(3)

In the above Eq. (3), the symbols μ and σ 2 represent the mean and variance that are computed
using Eqs. (4) and (5).

μ = 1
N

∑
i

xi (4)

σ 2 = 1
N

∑
i

(xi − μ)
2 (5)

Following, these batch normalization layers, a max-pool layer of window size 2 × 2 is added to
downsample each GEI part. The outcome of this layer is to select the highest value from a given
window and it is mathematically defined below:

yk,w
i = max0≤a,b<p(xik×p+a,w×p+b

) (6)

In the above Eq. (6), the highest value is selected from a region p × p, and provided to a neuron
yk,w

i that is present at the location (k, w) on ith activation maps. These consecutive sets of layers i.e.,
Convolution → Relu → BatchNormalization → Maxpool are added three times to extract the features
from each GEI part. Following on, soft attention layers are added to refine the features.
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3.3.1 Soft Attention

After extracting the features from each branch concentrated on a specific part of the human GEI is
refined using soft attention layers [62,63]. The input of this layer is the feature extracted from preceding
branches comprising convolution and max-pool layers. As described in some research studies, soft
attention is inputted with the feature tensor (t) resulting from previous layers as given in the below
equation:

fsa = γ t

(
K∑

k=1

softmax(Wk ∗ t)

)
(7)

In the above Eq. (7), feature tensor t ∈ R
h×w×d is provided to the 3D convolutions [64] having

weights Wk ∈ R
h×w×d×K in which K indicates a number of weights i.e., 3D. By employing softmax the

outcome of this operation of convolution is normalized to produce K attention maps. These attention
maps are fused to generate standalone activation maps. This resulting attention map is acted as a
weighting function α. To attentively preserve the important features, this α is multiplied with the input
tensor t followed by scaling with a learnable scaling parameter γ . In the end, the attentively scaled
features fsa is fused with the original input tensor (t) to generate the final features. When training of
the triplet-CNN starts, a value of γ is set to 0.01, so that the model progressively learns the amount
of attention necessary by triplet CNN. A pictorial representation of this module is depicted in Fig. 4.
From Fig. 4, it is clear that feature or activation maps resulting from different regions of each GEI that
are inputted to separate branches of CNN are then passed to soft attention layers to generate attention
maps. These attention maps comprise the refined information or features from every part of GEI. This
layer refined the activations to certain important features that are more discriminable to identify the
subject of the person using gait patterns from every specific region. Hence, the proposed approach
focuses on more precise and refined features. It first attempts to extract features from separate parts
and then refines those particular parts’ features to generate a more streamlined feature.

Figure 4: Soft attention layer in triplet CNN model

3.3.2 Classification Layers

As mentioned in the above sections each branch is focused on a separate part of GEI to extract
features and later on each branch has separate classification layers to classify each part of the GEI.
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For instance, each GEI part (i.e., head, legs, and body) is focused to extract features in a separate
branch of triplet-CNN, and later on, each branch classifies each part belongs to which subject. For
each branch, initially flatten layers are added to flatten the feature vectors, and later on, fully connected
layers are added with hidden units equal to the number of subjects available in the database along with
soft-max activations. After classification is done on each branch part by part, then the final label
of the subject is decided based on prediction probabilities from each branch. The classification of a
human subject with high confidence is finally selected as the label of a person. More precisely, these
probabilities are accessed from the softmax activation of each branch. Each branch assesses each part
of GEI in terms of how confident it is that this part belongs to which subject. The branch having high
confidence in classifying that subject is utilized to decide the final label and identification of a subject.
Furthermore, during training the main model is added combining all three branches to build up triplet
CNN. This main model combines the loss and accuracies of each branch. Moreover, each branch has
its loss function, optimizers, and all other parameter settings and trains separately. More precisely,
each branch employs the Adam optimizer, the loss function is “categorical cross-entropy”, and the
learning rate is initially set to 0.001 which is then decayed by learning_rate/epochs, where epochs
are set to 200. These hyperparameters are tuned to their best values after performing simulations
with different settings of these parameters. Moreover, the computational complexity in terms of total
trainable parameters is about 15.5 million and it takes about 30 mins to train on the CASIA-B gait
dataset on the Google Colab with 12 GB NVIDIA Tesla K80 GPU.

4 Experiments and Discussions

In this section, there is discussion of the dataset which used in this research as well as the
results with proper analysis. Moreover, the evaluation metrics used to evaluate the performance of
the proposed model are also discussed.

4.1 Dataset
To assess the performance of the proposed model, CASIA gait dataset [65] is employed which is

designed by the Chinese Academy of Sciences. This dataset is comprised of a total of three parts such as
CASIA-A, B, and CASIA-C datasets. There are a total of ten video sequences is available in the dataset
out of which six videos belong to normal walk sequences, two videos belong to walking sequences in
which a person carries a bag, and two videos belong to walking sequences in which a person walks
while wearing coats. Particularly, the normal walk sequences are denoted by “nm”, carrying conditions
i.e., bags denoted by “bg”, while clothing conditions i.e., coats are denoted by “cl”. Moreover, data
from 124 subjects are included in the database.

4.2 Evaluation Metrics
The evaluation metrics used to evaluate the performance of the proposed model as an identifica-

tion model includes accuracy, precision, recall, and F1-score. The following is the equation used to
compute these metrics.

Accuracy = TP + TN
TP + TN + FP + FN

(8)

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)
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F1 − score = 2 · Precision · Recall
Precision + Recall

(11)

In the above Eqs. (8)–(11), TN denotes the true negative, TP denotes the true positives, FN denotes
the false negatives while the FP denotes the false positives.

4.3 Experiments, Discussions, and Comparisons
To evaluate the performance of the proposed model, an experimentation is performed on the

CASIA-B gait dataset. More precisely, in the first step videos of different subjects are preprocessed to
acquire gait representation namely GEI images. Following on, the given GEI images is partitioned into
different regions i.e., Head, body, and legs. These regions eventually become the input of the triplet
CNN model to perform the gait recognition. Each branch of the model will result in predictions;
however, a probability-based voting is performed to decide the final label of the subject. The model
is evaluated by dividing the dataset according to different walking conditions. The training set
includes part-based GEI images of normal walking sequences (nm-01 to nm-04), while the test set
includes the remaining normal walk sequences (nm-05 to nm-06), carrying sequences of bags (bg-01 to
bg-02), and clothing sequences of coats (cl-01 to cl-02). The results of the proposed triplet CNN in
terms of accuracy, recall, precision, and F1 score are given in Table 1. More precisely, the first row
of Table 1 shows results with normal walk conditions, while the second and third row shows results
with bags and coats-based covariate conditions. Simulations are ran several times and then report the
average results along with standard deviations as shown in Table 1. Moreover, if analysis of the results
is performed in terms of different walking conditions, then as shown in Table 1, it is observed that
when train and test scenarios are similar i.e., normal walking then the accuracy of the gait recognition
model is high which is about 96.290%. Similarly, the precision, recall, and F1-score are about 95.908%,
96.290%, and 93.544% respectively. On the other hand, when experiments are performed in different
walking scenarios in which covariate variables are involved i.e., carrying condition of bags or clothing
conditions of coats, then the proposed model still performs well with accuracy, precision, recall, and
F-Score is about 57.408%,56.44%,57.258%, and 57.258% respectively in carrying conditions of bags.

Table 1: Results of triplet CNN in different walking scenarios

No Train set Test set Accuracy Precision Recall F-score
01 Normal walk Normal walk 96.290 ± 1.255 95.908 ± 1.6093 96.290 ± 1.2558 93.544 ± 1.533
02 Normal walk Walk with bags 57.408 ± 3.0485 56.44 ± 2.7200 57.258 ± 3.149 57.258 ± 3.149
03 Normal walk Walk with Coats 65.263 ± 1.47092 66.4098 ± 0.6461 65.080 ± 1.5248 62.77 ± 0.7764

Mean 72.987 ± 1.9248 72.987 ± 1.9248 72.919 ± 1.6584 71.19067 ± 1.819

Likewise, if the performance of the model is analyzed in terms of clothing conditions of coats,
then the proposed model achieves accuracy, precision, recall and F1-score is about 65.263%, 66.4098%,
65.080%, and 62.77%. It is observed from the results that in the presence of strict challenges of covariate
conditions the performance of the proposed model is encouraging. Since the presence of these covariate
variables disrupts the gait patterns or features. However, the motivation behind the proposed triplet
CNN is that it looks into different regions of GEI which might or might not be affected by covariate
factors. In addition, the average results (mean results of all walking conditions) is also reported. Hence,
overall, the proposed triplet-CNN model achieves a mean accuracy, precision, recall, and F1-score of
72.987%, 72.987%, 72.919%, and 71.19067%. Furthermore, the training accuracy and loss values are
also plotted for each branch of CNN separately. More precisely, the head, legs, and body branches of
CNN’s model loss and accuracy plots for normal walk conditions are depicted in Fig. 5. It is observed
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from the Figures that the proposed model shows good results in terms of convergence performance
over a set of epochs. Moreover, simulations ran several times whose results are also depicted in Figs. 5–8
respectively. These graphs indicate that the proposed model shows good convergence and reaches
optimal values over several simulations.

Figure 5: Accuracy and loss curves of different branches of triplet-CNN under normal walk conditions

Figure 6: Accuracy and loss curves of “head branch” of triplet-CNN over different simulations

In the existing studies, several models and approaches are designed to perform gait recognition.
The main objective of such methods is to increase and improve the performance of gait recognition
frameworks when they are subjected to several covariate conditions including carrying, clothing,
occlusions, and speed-related challenges. Because this covariate variable affects the image-specific
regions resulting in the loss of discriminative subject-related features. Hence, when there is less
discrimination in features and if they are not sufficient to properly indicate the subject then the
performance of the model drops. In this research study, a triplet-branch CNN is proposed which
focused on each region of GEI separately to classify the underlying subjects.
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Figure 7: Accuracy and loss curves of “body branch” of triplet-CNN over different simulations

Figure 8: Accuracy and loss curves of “leg branch” of triplet-CNN over different simulations

The motivation behind this approach is to correctly classify the subject from the perspective of
different parts of GEI even if some regions of GEI are affected due to covariate variables. It is observed
from the above results and experiments that the proposed model shows good results in comparison
with the single branch CNN model, as well as some other baseline methods including transfer learning
approaches e.g., MobileNet and Vgg16 model. It is observed from Tables 2–4 that the proposed triplet
CNN model outperforms the baseline models. The main reason behind these improvements is part-
based learning which helps in learning features from different parts and the parts that are not disrupted
by covariate factors will ultimately help in extracting more discriminative features. More precisely, the
single-branch CNN model achieves an average accuracy of 48.238% while the proposed triplet CNN
model achieves mean accuracy of 72.987%. Hence, there is an improvement of 24.749% is observed in
this case. Similarly, 22.117% performance improvement is observed in the case of comparative analysis
with transfer learning assisted VGG16 model. VGG refers to the Visual Geometry Group and is made
up of units, each of which is made up of 2D Convolution and Max Pooling layers. It is available in two
variants, VGG16 and VGG19, having 16 and 19 layers, respectively [66].
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Table 2: Comparison results of proposed triplet CNN with single branch CNN in different walking
conditions
No Train set Test set Accuracy Precision Recall F-score

Proposed triplet branch CNN model

01 Normal walk Normal walk 96.290 ± 1.255 95.908 ± 1.6093 96.290 ± 1.2558 93.544 ± 1.533
02 Normal walk Walk with bags 57.408 ± 3.0485 56.44 ± 2.7200 57.258 ± 3.149 57.258 ± 3.149
03 Normal walk Walk with Coats 65.263 ± 1.47092 66.4098 ± 0.6461 65.080 ± 1.5248 62.77 ± 0.7764

Mean 72.987 ± 1.9248 72.987 ± 1.9248 72.919 ± 1.6584 71.19067 ± 1.819
Baseline single branch CNN model

01 Normal walk Normal walk 95 ± 1.118 95.81 ± 1.095 94.67 ± 1.118 94.264 ± 1.0868
02 Normal walk Walk with bags 30.20 ± 2.64 29.04 ± 3.147 30.32 ± 2.54 27.34 ± 2.664
03 Normal walk Walk with Coats 19.516 ± 4.20 10.61 ± 3.227 19.5164 ± 4.20 13.92 ± 3.313

Mean 48.238 ± 2.65 45.513 ± 2.48 48.168 ± 2.619 45.17 ± 3.5319

Table 3: Comparison results of proposed triplet CNN with VGGNet (Transfer learning approach) in
different walking conditions

No Train set Test set Accuracy Precision Recall F-score
Proposed triplet branch CNN model

01 Normal walk Normal walk 96.290 ± 1.255 95.908 ± 1.6093 96.290 ± 1.2558 93.544 ± 1.533
02 Normal walk Walk with bags 57.408 ± 3.0485 56.44 ± 2.7200 57.258 ± 3.149 57.258 ± 3.149
03 Normal walk Walk with Coats 65.263 ± 1.47092 66.4098 ± 0.6461 65.080 ± 1.5248 62.77 ± 0.7764

Mean 72.987 ± 1.9248 72.987 ± 1.9248 72.919 ± 1.6584 71.19067 ± 1.819
Baseline transfer learning assisted VGG16

01 Normal walk Normal walk 90 ± 3.39 90.13±3.99 89.51 ± 3.40 88.369 ± 3.95
02 Normal walk Walk with bags 44.53 ± 4.77 44.60 ±3.11 44.70 ± 4.75 41.64 ± 3.66
03 Normal walk Walk with Coats 18.08 ± 0.618 16.11 ± 1.627 18.279 ± 0.839 15.001 ± 0.836

Mean 50.87 ± 2.92 50.28 ± 2.909 50.829 ± 2.99 48.33 ± 2.815

Table 4: Comparison results of proposed triplet CNN with MobileNet (Transfer learning approach)
in different walking conditions

No Train set Test set Accuracy Precision Recall F1-score
Proposed triplet branch CNN model

01 Normal walk Normal walk 96.290 ± 1.255 95.908 ± 1.6093 96.290 ± 1.2558 93.544 ± 1.533
02 Normal walk Walk with bags 57.408 ± 3.0485 56.44 ± 2.7200 57.258 ± 3.149 57.258 ± 3.149
03 Normal walk Walk with Coats 65.263 ± 1.47092 66.4098 ± 0.6461 65.080 ± 1.5248 62.77 ± 0.7764

Mean 72.987 ± 1.9248 72.987 ± 1.9248 72.919 ± 1.6584 71.19067 ± 1.819
Baseline transfer learning assisted MobileNet

01 Normal walk Normal walk 68.15 ± 0.23 69.75 ± 0.64 68.27 ± 0.232 65.24 ± 0.011
02 Normal walk Walk with bags 28.20 ± 3.29 25.58 ± 4.818 28.49 ± 3.28 29.88 ± 3.513
03 Normal walk Walk with Coats 19.70 ± 1.82 19.813 ± 2.41 20.826 ± 1.81 17.18 ± 1.557

Mean 38.68 ± 1.78 38.381 ± 2.622 39.19 ± 1.774 37.43 ± 1.693
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Another model, i.e., MobileNet [67] is also employed as a baseline for comparative analysis.
MobileNet is built on a simplified design that builds low-weight deep neural networks using depth-wise
separable convolutions. It is observed from the results in Table 3 that the proposed triplet CNN also
shows good improvement with great margins in comparison with the MobileNet model. In addition,
it is also observed when no covariate conditions are involved then the performance of the proposed,
including the baseline model shows good results e.g., in the case of the Normal walk. However,
when covariate factors are involved then the performance is affected. For example, in the case of
VGG16, the performance of the model is dropped to 44.53% in the carrying condition of bags, but
the proposed triplet CNN better handle this problem of covariate factors and shows an accuracy of
57.068%. Similarly, with clothing conditions, the performance of the baselines model is very less, but
the proposed triplet CNN achieves an accuracy of 65.2635% respectively. Similarly, the other metrics
which include precision, recall, and F1-score have also encouraged values. For instance, a proposed
triplet-CNN achieves a precision of about 72.987% which is higher than the baseline methods i.e., the
baseline single-branch CNN model achieves a mean precision of 45.513%. On the other hand, the other
two baseline architectures in which the concept of transfer learning is involved achieve a precision of
50.28% and 38.381% which are comparatively low values. In addition, if recall values are analyzed then
the proposed triplet-CNN model also has a high recall of about 72.919% which is comparatively higher
than baseline models including single-branch CNN architecture VGG16 and MobileNet as they have
attained the recall values of 48.168%, 50.829%, and 39.19% respectively. Furthermore, the F1-score
provides a combined evaluation of both precision and recall values. In the case of F1-Score, the values
achieve up to 71.190% which is again higher than base-lines models of deep learning which exhibit the
F1-Score of about 45.17%, 48.33%, and 37.43% respectively.

Moreover, to compare the proposed method with state-of-the-art methods, a summarized compar-
ison is performed as shown in Table 5 in which those methods and their results are given. It is evident
from Table 5 that in existing methods, the training and testing covariates are when same then the results
are higher, and this is the most widely chosen setting as shown in Table 5 (i.e., where “no” is written
in column 4). Yet, when models are subjected to diverse covariate circumstances, the performance
of these approaches is veiled. Because the subject under real-time surveillance might be viewed under
diverse settings at test time, i.e., the test situations such as a person coming with either bags and jackets
or any other scenario are not known in advance. As a result, there is a requirement for a model that can
be trained on a person’s usual walking scenarios and then evaluated on a person when they encounter
any walking situations. When analysis of the model is carried out with this experimental setting, the
results are relatively poor as shown in Table 5 (i.e., where “yes” is written in column 4). This is because
deep learning models are incapable of dealing with unknown covariate circumstances. To address this,
architecture is modified and learning of the CNN model to triple-branch CNN which is good enough
to deal with unknown walking scenarios as given in Table 5 and shows 72.987% accuracy.

To conclude, the proposed model was observed to be more advantageous in comparison with
single-branch and transfer learning methods as shown in Tables 2–5. The reason for this improved
performance is the region-based learning because due to covariate conditions, the GEI image is
disrupted to some extent such as when a person wears a coat then a body part is more affected.
To counter this, the triplet-CNN model tries to identify a person from several regions such as the
head, body, and legs with the possibility that certain specific parts are not influenced and a person
may be readily identified, resulting in the strength of the triplet-CNN. Furthermore, it is necessary
to acknowledge the limitation of the proposed work, hence, one possible limitation is that when
covariate conditions disrupted almost all regions of GEI then this will ultimately hinder the process
of discriminative feature learning and performance drops. For example, a person wearing a cap along
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with coats, then in this case both head and body part is affected. To overcome this in the future, GANs-
based models can be built to reconstruct the affected regions to normal walk GEIs. Furthermore, the
proposed work can also be extended to a one-shot learning model as a verification task in which a
similarity learning-based deep learning model is extended to regions-based similarity learning.

Table 5: Comparison results of proposed triplet CNN with state-of-the-art methods

Authors Models Dataset Different covariate
conditions in Train/Test

Performance (%)

Mogan et al. [38] VGG16-MLP CASIA-B No 100%
Min et al. [68] Deep CNN CASIA-B No 98.75%
Aung et al. [69] CNN CASIA-B No 92.94%
Howard et al. [67] MobileNet∗ CASIA-B Yes 38.68%
Simonyan et al. [66] VGG16∗ CASIA-B Yes 50.87%
Min et al. [68] Deep CNN∗ CASIA-B Yes 48.23%

Proposed Triplet-CNN CASIA-B Yes 72.987%
Note: ∗reproduced.

5 Conclusion

Human gait-based surveillance systems are one of the evolving biometric technologies used
to enable surveillance at different places. As a vision-based surveillance system, it has potential
advantages as it allows to recognize people even when they are uncooperative. In the existing literature,
several approaches comprising deep learning and traditional machine learning methods are designed,
nevertheless, covariate variables are one of the challenging problems that hinder the accuracy of the
underlying system in identifying different subjects. These covariate variables affect certain regions of
gait representation images, hence, to cope with this problem, a triplet branch CNN is proposed that is
able to deal with each region of the GEI image separately. Later on, probability-based majority voting
criteria are designed to finally decide the label of subjects. Moreover, soft attention layers are also
added to refine the extracted features from each region. The experiments have been conducted on the
CASIA-B gait dataset and triplet-CNN achieve good results. The findings of the research indicate that
the region-based CNN model has an improvement with great margins over single-branch models. In
the future, the proposed model can also be extended to include the region-proposal network as a layer
in the model to extract regions automatically instead of considering only three regions. Additionally,
the triplet-branch CNN model is expanded and trained as a transfer learning strategy, with each
branch based on a pre-trained deep learning model and fine-tuned to perform classification.
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