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Abstract: The recent adoption of satellite technologies, unmanned aerial
vehicles (UAVs) and 5G has encouraged telecom networking to evolve into
more stable service to remote areas and render higher quality. But, security
concerns with drones were increasing as drone nodes have been striking
targets for cyberattacks because of immensely weak inbuilt and growing
poor security volumes. This study presents an Archimedes Optimization with
Deep Learning based Aerial Image Classification and Intrusion Detection
(AODL-AICID) technique in secure UAV networks. The presented AODL-
AICID technique concentrates on two major processes: image classification
and intrusion detection. For aerial image classification, the AODL-AICID
technique encompasses MobileNetv2 feature extraction, Archimedes Opti-
mization Algorithm (AOA) based hyperparameter optimizer, and backprop-
agation neural network (BPNN) based classifier. In addition, the AODL-
AICID technique employs a stacked bi-directional long short-term memory
(SBLSTM) model to accomplish intrusion detection for cybersecurity in UAV
networks. At the final stage, the Nadam optimizer is utilized for parameter
tuning of the SBLSTM approach. The experimental validation of the AODL-
AICID technique is tested and the obtained values reported the improved
performance of the AODL-AICID technique over other models.

Keywords: Aerial image classification; remote sensing; intrusion detection;
cybersecurity; deep learning

1 Introduction

Nowadays, drones or Unmanned Aerial Vehicles (UAVs) [1] can be referred to as flying objects
that can fly autonomously or with the help of human pilots. Drones were utilized for rescue opera-
tions, package delivery, environmental management, aerial mapping, aerial photography, irrigation,
monitoring, and other critical applications [2]. Intrusion detection methods and Security schemes will
be utilized for guaranteeing critical security features [3]. The aerial image classifier methods present
different indispensable classes that can be achieved by operating the changes in spatial organization
along with that systematic process for devising the desired method. Dissimilar to pixel categorizing
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methods, scene classifier delivers localized data even at the occurrence of wider aerial imageries which
have unambiguous semantic data of surfaces [4,5].

In this study, aerial scenes are distinguished into lower-level structures which often use spectral,
texture, structural features, and many more [6]. Then, low-level feature vectors that are visual parame-
ters are filtered globally or locally and implemented for defining the aerial scene images. Recently, deep
learning (DL) based techniques were implemented in high-level feature extraction [7]. The orthodox
DL methods deliver a potential result while processing existing problems such as speech or object
analysis, processing and predicting the natural language. So, the above-discussed structure gained a
reputed task and attained an existing ranking which had a focus on educational fields along with that
commercial groups. Also, DL techniques relevant to hierarchical features defined several phases of
extraction. Also, deep Convolutional neural networks (DCNN) were crucial components implemented
in scene classification, inspecting in addition to detecting processes [8]. DL methods, particularly CNN,
have attained great achievement in segmentation, image classification, and detection on numerous
benchmarks [9]. CNN refers to a hierarchical network invariant to image translations. The key to
success is the capability to study the progressively complicated transformations of input and for
capturing invariances from large, labelled data sets [10]. But it is problematic to directly implement
the CNNs to remote sensing scene classification for millions of variables to train the CNNs, which
trained samples are inadequate for training.

This study presents an Archimedes Optimization with Deep Learning based Aerial Image Classi-
fication and Intrusion Detection (AODL-AICID) technique in secure UAV networks. The presented
AODL-AICID technique concentrates on two major processes: image classification and intrusion
detection. For aerial image classification, the AODL-AICID technique encompasses MobileNetv2
feature extraction, Archimedes Optimization Algorithm (AOA) based hyperparameter optimizer, and
backpropagation neural network (BPNN) based classifier. In addition, the AODL-AICID technique
employs a stacked bidirectional long short-term memory (SBLSTM) model to accomplish intrusion
detection for cybersecurity in UAV networks. At the final stage, the Nadam optimizer is used for
optimal hyperparameter tuning of the SBLSTM model. The experimental validation of the AODL-
AICID technique is tested under different performance measures.

2 Related Works

He et al. [11] examine a conditional GAN (CGAN)-related collaborative ID technique with
blockchain (BC) allowed distributed federated learning for solving these issues. This research estab-
lishes LSTM into CGAN trained for improving the outcome of generative networks. According to
the extracting feature capability of LSTM networks, the created data with CGAN can be utilized as
augmented data and executed in the classification and recognition of intrusion data. Alissa et al. [12]
concentrated on the proposal of a Crystal Structure Optimizer with DAE-based ID (CSODAE-ID)
for securing the IoD platform. The purpose of the projected CSODAE-ID technique is to detect
the intrusion presence from the IoD platform. During the presented CSODAE-ID technique, a
novel Modified Deer Hunting Optimized-based FS (MDHO-FS) system was executed for choosing
the feature subsets. Simultaneously, the Auto-encoder (AE) technique was utilized for the intrusion
classifier from the IoD platform. The CSO technique is simulated by the development of crystal
frameworks dependent upon the lattice points utilized finally the hyperparameter-tuning procedure.

Tan et al. [13] introduce an ID approach dependent upon a DBN optimizer by PSO technique. At
primary, the classifier method dependent upon the DBN has been created, and the PSO system was
utilized for optimizing the hidden layer node count of DBN for obtaining a better DBN infrastructure.
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Sedjelmaci et al. [14] concentrate on a particular case which is UAV Edge Computing (UEC) network.
Addressing the security problem in the UEC network has compulsory owing to the significance of
UEC services like network traffic monitor, or searching and rescuing functions. Zhang et al. [15]
present a hybrid approach dependent upon either spectral traffic investigation or robust controller
or observer to anomaly estimate inside a UAV network. This technique was dependent upon either
Lyapunov Krasovskii functional or dynamic performance.

Whelan et al. [16] examine a novelty-based method to ID from UAVs by utilizing a one-class
classifier. PCA was implemented to sensor logs for reducing dimensional, and one-class classifier
techniques can be created per sensor. The count of one-class classifiers can be chosen: One-Class
SVM, AE-NN, and Local Outlier Factor. In [17], a railway clearance ID technique in aerial video
dependent upon CNN was presented. Initially, the rail track area has declared in aerial single frame
image with linear segment recognition technique, line segment merge as well as screen. At last, the
single frame detection outcome was optimised by the inter-frame connection of videos for obtaining
the last outcome of railway clearance ID from aerial video.

3 The Proposed Model

In this study, we have developed a new AODL-AICID technique for aerial image classification
and intrusion detection in UAV networks. The presented AODL-AICID technique concentrates on
two major processes: image classification and intrusion detection. For aerial image classification, the
AODL-AICID technique encompasses MobileNetv2 feature extraction, an AOA-based hyperparam-
eter optimizer, and a BPNN-based classifier. In addition, the AODL-AICID technique employed the
Nadam optimizer with the SBLSTM model for intrusion detection in the UAV networks. Fig. 1 depicts
the overall procedure of the AODL-AICID approach.

3.1 Module I: Aerial Image Classification
In this study, the AODL-AICID technique encompasses MobileNetv2 feature extraction,

an AOA-based hyperparameter optimizer, and a BPNN-based classifier applied for aerial image
classification.

3.1.1 Feature Extraction

Here, the AODL-AICID technique involves the MobileNetv2 model to generate a collection of
future vectors. MobileNet architecture alternatively referred to as MobileNetV1 applies to embedded
devices and smartphones [18]. Depthwise separable convolution was designed that comprised depth-
wise and pointwise convolutional layers for decreasing the size of the parameter and reducing the
dimension of several layers. Following, rectified linear unit (ReLU) and batch normalization (BN)
layers are added afterwards depth-wise separable convolution.

While applying MobileNet for testing on the ImageNet data, MobileNetV1 had 4.2 M parameters,
whereas widespread architecture GoogLeNet and VGG16 architecture had 6.8 and 138 M, corre-
spondingly. The experiment of the GoogLeNet attained 69.8% of accuracy whereas the MobileNetV1
on the ImageNet dataset attained 70.6% of accuracy. The authors developed a MobileNetV2 by
increasing invert residual, a short connection. The inverted residual was introduced to deal with
the memory problem by decreasing the quantity of tensor stored in memory while processing. The
linear bottleneck which is a rise in the number of feature maps namely ResNet increase the feature
maps from 64 to 128, 256, and 512, correspondingly. MobileNetV2 structure could reduce the
number of parameters and be faster in computational time than MobileNetV1. The experiment with
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MobileNetV2 attained an accuracy of 72.0%, that is was greater than NASNet, MobileNetV1, and
ShuffleNet.

Figure 1: Overall procedure of the AODL-AICID system

To adjust the hyperparameter values of the MobielNetv2 model, the AOA algorithm is applied
in this work. The AOA approach [19] was applied to resolve the optimization problem in conjunction
with NR mathematical approach. The AOA technique is a metaheuristic approach used to resolve
different mathematical optimized problems and is verified the ability for fetching a global solution
from a limited duration. The AOA’s necessary condition hinges on Archimedes’ rule of buoyancy. The
AOA enables various phases defining the nearby global solution, and this phase is illustrated by the
following expression:

Phase 1: The initial population contains the immersed object (solution) and is regarded by
acceleration, volume, and density. Every solution was initialized by the arbitrary place from the fluid
as given below, following the fitness value to every solution is evaluated.

Oi = lbi + rand (0, 1) × (ubi − lbi), ∀i ∈ {1, 2, 3, . . . , N} (1)

Deni = rand (0, 1) (2)
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Voli = rand (0, 1) (3)

ACCi = lbi + rand (0, 1) × (ubi − lbi), ∀i ∈ {1, 2, 3, . . . , N} (4)

Now Oi indicates the ith solution from the population and N shows the population size. ubi and
lbi correspondingly represent the upper and lower limitations of the ith solution. Deni, Voli, and ACCi

indicate the density, volume, and acceleration of ith solutions. rand (0, 1) denotes the arbitrary scalar
encompassing a value within [0, 1].

Phase 2: The density and volume of every solution were upgraded through the succeeding
equation:

Den(t+1)

i = Den(t)
i + rand (0, 1) × (

Denbest − Den(t)
i

)
(5)

Vol(t+1)

i = Vol(t)
i + rand (0, 1) × (

Volbest − Vol(t)
i

)
(6)

Now Den(t)
i , and Vol(t)

i indicate the density and volume of ith solution at tth iteration. Denbest and
Volbest show the optimal density and volume of the best solution containing the best fitness value.

Phase 3: During the transfer operator and density factor, the collision among solutions remains
in an equilibrium state and it can be mathematically expressed in the following:

TF = exp
{

t − tmax

tmax

}
(7)

In Eq. (7), TF represents the transfer operator that can transfer the search technique under the
exploration to exploitation process. tmax shows the highest quantity of iterations. As well, a reducing
density factor (d) can assist the AOA to find nearby global solutions.

dt+1 = exp
{

t − tmax

tmax

}
−

(
t

tmax

)
(8)

Phase 4: During exploration, the collision between solutions takes place. Thus, if TF ≤ 0.5, a
random material (mr) has been selected where the acceleration of solution was upgraded by:

ACC(t+1)

i = Denmr + Volmr × ACCmr

Den(t+1)

i × Vol(t+1)

i

(9)

Now nmr, Volmr, and ACCmr show the density, volume, and acceleration of random material.

Phase 5: During exploitation, no collision among solutions takes place. If TF ≥ 0.5, the
acceleration of the solution was upgraded by the following expression:

ACC(t+1)

i = Denbest + Volbest × ACCbest

Den(t+1)

i × Vol(t+1)

i

(10)

In Eq. (10), ACCbest represents the acceleration of the solution having an optimal fitness.

Phase 6: The Normalize acceleration is used to assess the percentage of alteration:

ACC(t+1)

i−norm = g × ACC(t+1)

i − min {ACC}
max {ACC} − min {ACC} + z (11)

In Eq. (11), g, and z show the normalized range. ACC(r+1)

i−nom represent the step on the percentage
that every agent is in phase.

Phase 6: during Evaluation, the fitness value of each solution is assessed, and the best solution
was registered, for example, upgrading the optimal solution (xbest), Denbest, Volbest, and ACCbest.
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3.1.2 Image Classification

For classifying aerial images, the BPNN model is used. BPNN uses a monitored learning technique
and the feed-forward structure of ANN [20]. The conventional BPNN involves a single hidden layer, 1
input layer, and one output layer. It contains n output neurons, one input neuron, and m hidden
neurons. The data from the input layer is gone through the network by interconnecting weight
to the hidden layer and later the output layer. Fig. 2 depicts the structure of BPNN. The weight
interconnecting ith input components to hidden neurons jth are represented by Wji, whereas the weighted
interconnecting jth hidden neurons to output neurons kth are represented by Wkj. Every neuron
evaluates the output based on the amount of simulation it obtains as an input. The neuron’s net input
is evaluated by the weighed amount of its inputs, and the output of the neuron depends on a sigmoid
function and is based on the amount of net input.

Figure 2: Architecture of BPNN

Place Ic = (Ic1, Ic2, . . . , Icl), c = 1, 2, . . . , N as a cth patterns between N input patterns, whereby
WjWkj indicates the weight connecting amongst the ith input and jth hidden neurons, and the jth hidden
and kth output neurons, correspondingly.

Output from the neuron in the input layer is

Oc = Ici, i = 1, 2, . . . I (12)

Output from the neuron in the hidden layer is

0cj = f
(
NETcj

) = f
(∑l

i=0
Wji0ci

)
, j = 1, 2, . . . , m (13)

Output from the neuron in the output layer is

0cj = f
(
NETcj

) = f
(∑l

i=0
Wji0ci

)
, j = 1, 2, . . . , m (14)

where f () indicates the sigmoid function provided by (x) = 1/(1 + e−x).

3.2 Module II: Intrusion Detection
To recognize the intrusions accurately, the SBLSTM model is exploited here. The conventional

architecture of LSTM successfully resolves the gradient disappearing problem and transports valuable
data within the LSTM model [21]. Now, the Recurrent Neural Network (RNN) failed to capture long-
term dependency among feature vectors. The LSTM cell encompasses of forget gate (ft), input gate
(it), and output gate (0t). This gate controls a memory cell activation vector.
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• Forget gate: this gate determines how much information from the previous layer ct−1 is forgotten
or retained based on the present hidden layer ht−1 and input xt. The output of forget gate ranges
from zero and one. The forget gate is expressed as follows:

ft = Sigmoid
(
wxf xt + whf ht−1 + bf

)
(15)

In Eq. (15), bf , wxf , and whf shows the bias vector, the weight matrices amongst xt and ft, and the
weighted matrices amongst ht−1 and ft, correspondingly

• Input gate: this gate determines the amount of network input xt that should be retained in the
present cell state ct. The input gate is formulated as follows:

it = Sigmoid (wxixt + whiht−1 + bi) (16)

Now, bf , wxi, and whi correspondingly represent the bias vector, the weighted matrices amongst xi

and it, and the weight matrices amongst ht−1 and it.

• Output gate: this gate determines the number of data transported to the LSTM from the cell
state ct via the present output ht. LSTM gate is a completely interconnected network where
input represents a vector and output denotes a real number. The output gate can be formulated
below.

0t = Sigmoid (wxoxt + whoht−1 + b0) (17)

whereas bf , wxo, and who denotes the bias vectors, the weight matrices among xt and 0t, also the weight
matrices among ht−1 and 0t, correspondingly

The final output of the LSTM cell is output cell state ct and output layer ht, which is given as
follows:

ct = ft � ct−1 + it � c̃t (18)

ht = 0t � tanh (Ct) (19)

The intermediate input cell is represented by c̃t and is expressed as follows:

c̃t = tanh (wxcxt + whcht−1 + bc) (20)

Now bf , wxc, and whc specify the bias vector, the weight matrices amongst χi and c̃t, and the weight
matrices amongst ht−1 and c̃t correspondingly

The LSTM is exploited by fruit fly optimization for NN information for the analysis of time series.
At the same time, LSTM was employed in fully diverse fields to predict the lifetime of equipment in the
mechanical transmission system. A BiLSTM includes two different LSTMs that integrate data from
two directions. Next, the data is accomplished as word annotation from the user information. The

forward LSTM process the input left to right and evaluates the hidden layer
→
ht based on xi and

−→
ht−1,

while the backward LSTM process the input right to left and evaluates the hidden layer
←
ht based on xt

and
←−
ht−1. The forward and backward parameters in the BLSTM are mutually independent, while word

embedding is distributed. Lastly, the hidden layer of BLSTM can be determined that concatenate the
vector of the backward and forward directions during the t-time step.

ht =
[→

ht,
←
ht

]
(21)
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Furthermore, the deep hierarchical technique enhances classification performance. On the other
hand, the stacked BLSTM is effective in the shallow learning mechanism, thereby the proposed
technique determines the stacking BLSTM to apply the local context and latent symmetry complex
dataset. The output of the lower layer becomes the input of the upper layer in the Stacked BLSTM.

Finally, the Nadam optimizer is used for the hyperparameter tuning process. Nadam is called a
variant of the weight update rule [22]. It can be calculated by expression of ât and at as shown in
Eq. (22).

θt+1 = θt − η√
ût + ε

(
β1at−1

1 − β t
1

+ 1 − β1

1 − β t
1

dt

)
(22)

whereas
β1at−1

1 − β t
1

was a bias-corrected estimate of the momentum vector of the preceding time step. So,

substitute it with ât−1

�t+1 = �t − η√
ût + ε

(
β1ât−1 + 1 − β1

1 − β t
1

dt

)
(23)

Thus, the Nadam update rule was presented by substituting the bias-corrected prediction of the
previous momentum vector â with the bias-corrected prediction of the recent momentum vector ât−1

as given in Eq. (24).

�t+1 = �t − η√
ût + ε

(
β1ât + 1 − β1

1 − β t
1

dt

)
(24)

4 Performance Validation

The experimental validation of the AODL-AICID method is tested through the UCM Land use
data [23]. It is a 21-class land-use image data set meant for research purposes. There exist 100 images
for all classes. Every image measures 256 × 256 pixels. The images are manually extracted from large
imagery with the help of the USGS National Map Urban Area Imagery collection for various urban
areas around the country. The pixel resolution of this public domain imager is 1 foot. Fig. 3 depicts
the sample images from the UCM dataset.

Table 1 reports detailed classification outcomes of the AODL-AICID technique with other
DL models. Fig. 4 investigates the classification results of the AODL-AICID model with existing
models in terms of accuy. The results demonstrated that the VGGNet and CAVGG-BiLSTM models
have resulted in lower classification performance. At the same time, CAVGG-LSTM and RNet-50
models have reached somewhat improved and nearer performance. Along with that, the DLIRV2-
AIC technique has gained reasonable outcomes with an accuy of 98%. In contrast, the AODL-AICID
model highlighted its better performance on aerial image classification with an accuy of 98.60%.

Fig. 5 investigates the classification results of the AODL-AICID method with existing techniques
in terms of precn, recal, and Fscore. The results show that the VGGNet and CAVGG-BiLSTM methods
have resulted in lower classification performance. Simultaneously, the CAVGG-LSTM and RNet-
50 approaches have reached somewhat improved and nearer performance. Also, the DLIRV2-AIC
method has obtained reasonable outcomes with precn, recal, and Fscore of 96.94%, 98.27%, and
98.13%. In contrast, the AODL-AICID approach emphasized its better performance on aerial image
classification with precn, recal, and Fscore of 97.67%, 98.66%, and 98.52%.
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To assure the enhanced performance of the AODL-AICID method, a detailed result analysis takes
place on the CSE-CIC-IDS-2018 dataset [24]. In this case, only four types of attacks were considered.

Figure 3: Sample images from UCM dataset

Table 1: Classifier outcome of AODL-AICID approach with existing systems

Methods Accuy Precn Recal Fscore

AODL-AICID 98.60 97.67 98.66 98.52
VGGNet 79.17 79.00 78.51 82.23
CAVGG-LSTM 80.78 79.55 80.68 81.95
CAVGG-BiLSTM 79.95 80.20 79.38 84.24
GNet 82.37 80.29 80.61 85.19
RNet-50 80.03 80.36 82.08 82.23
DLIRV2-AIC 98.00 96.94 98.27 98.13
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Figure 4: Accuy outcome of AODL-AICID approach with existing systems

Figure 5: Precn, recal, and Fscore outcome of AODL-AICID approach with existing systems

Table 2 and Fig. 6 investigate the attack detection results of the AODL-AICID model under
botnet and DDoS attacks [5,25]. The outcomes show that the AODL-AICID technique has recognized
both botnet and DDoS attacks proficiently. For instance, the AODL-AICID model has accomplished
a higher accuy of 94.17% while the KNN, DT, GNB, SGD, and K-M techniques have reached
lower accuy of 88.48%, 82.27%, 82.55%, 91.55%, and 86.13% respectively. Besides, the AODL-
AICID technique has accomplished a higher accuy of 95.68% while the KNN, DT, GNB, SGD,
and K-M approaches have reached lower accuy of 86.82%, 90.86%, 83.74%, 90.30%, and 91.45%
correspondingly.

Table 2: Attack detection outcome of AODL-AICID approach under botnet and DDoS attacks

Methods Accuracy rate Precision Recall F-score AUC score

Botnet Attack
AODL-AICID 94.17 95.15 95.21 96.00 96.40

(Continued)
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Table 2 (continued)

Methods Accuracy rate Precision Recall F-score AUC score

KNN 88.48 88.71 88.87 89.06 88.65
DT 82.27 82.94 82.43 82.89 82.76
GNB 82.55 82.73 82.74 82.96 84.07
SGD 91.55 90.83 90.12 90.53 91.26
K-M 86.13 85.57 86.49 86.68 86.67

DDoS Attack
AODL-AICID 95.68 94.54 93.69 92.80 93.78
KNN 86.82 87.69 88.07 88.26 89.14
DT 90.86 90.18 90.91 91.07 90.57
GNB 83.74 84.19 83.66 83.70 84.58
SGD 90.30 89.94 89.81 89.90 90.12
K-M 91.45 92.64 92.45 91.99 92.85

Figure 6: Attack detection of AODL-AICID approach (a,b) Botnet attacks (c,d) DDoS attack
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Table 3 and Fig. 7 investigate the attack detection results of the AODL-AICID approach under
web and Infiltration attacks. The results specified that the AODL-AICID method has recognized both
botnet and DDoS attacks proficiently. For example, the AODL-AICID model has accomplished a
higher accuy of 94.38% while the KNN, DT, GNB, SGD, and K-M techniques have reached lower accuy

of 85.29%, 84.28%, 79.44%, 92.05%, and 90.10% correspondingly. Also, the AODL-AICID method
has executed a higher accuy of 96.57% while the KNN, DT, GNB, SGD, and K-M approaches have
gained lower accuy of 94.47%, 90.70%, 88.75%, 92.19%, and 88.39% correspondingly.

These results ensured the effectual performance of the AODL-AICID model on the UAV
networks.

Table 3: Attack detection outcome of AODL-AICID approach under web and Infiltration attacks

Methods Accuracy rate Precision Recall F-score AUC score

Web Attack
AODL-AICID 94.38 93.24 96.56 94.16 95.08
KNN 85.29 85.77 85.58 86.50 87.22
DT 84.28 84.49 83.90 83.62 84.38
GNB 79.44 79.63 79.56 80.64 80.33
SGD 92.05 92.63 93.58 93.73 94.57
K-M 90.10 90.73 90.24 89.58 89.78

Infiltration Attack
AODL-AICID 96.57 95.57 95.81 95.07 94.92
KNN 94.47 95.27 94.68 94.34 94.63
DT 90.70 91.53 90.92 90.76 91.60
GNB 88.75 87.99 88.44 87.77 88.25
SGD 92.19 91.77 91.85 91.27 90.70
K-M 88.39 89.04 88.63 89.58 89.22

Figure 7: (Continued)
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Figure 7: Attack detection of AODL-AICID approach (a,b) web attacks (c,d) infiltration attack

5 Conclusion

A new AODL-AICID technique has been introduced for aerial image classification and intrusion
detection in UAV networks. The presented AODL-AICID technique concentrates on two major
processes: image classification and intrusion detection. For aerial image classification, the AODL-
AICID technique encompasses MobileNetv2 feature extraction, an AOA-based hyperparameter
optimizer, and a BPNN-based classifier. In addition, the AODL-AICID technique employed the
Nadam optimizer with the SBLSTM method for intrusion detection in the UAV networks. The
result analysis of the AODL-AICID technique is tested under different performance measures. In
future, deep learning-based ensemble fusion models can boost the performance of the AODL-AICID
approach.
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