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Abstract: Hyperspectral images can easily discriminate different materials due
to their fine spectral resolution. However, obtaining a hyperspectral image
(HSI) with a high spatial resolution is still a challenge as we are limited
by the high computing requirements. The spatial resolution of HSI can be
enhanced by utilizing Deep Learning (DL) based Super-resolution (SR).
A 3D-CNNHSR model is developed in the present investigation for 3D
spatial super-resolution for HSI, without losing the spectral content. The 3D-
CNNHSR model was tested for the Hyperion HSI. The pre-processing of
the HSI was done before applying the SR model so that the full advantage
of hyperspectral data can be utilized with minimizing the errors. The key
innovation of the present investigation is that it used 3D convolution as it
simultaneously applies convolution in both the spatial and spectral dimen-
sions and captures spatial-spectral features. By clustering contiguous spectral
content together, a cube is formed and by convolving the cube with the 3D
kernel a 3D convolution is realized. The 3D-CNNHSR model was compared
with a 2D-CNN model, additionally, the assessment was based on higher-
resolution data from the Sentinel-2 satellite. Based on the evaluation metrics
it was observed that the 3D-CNNHSR model yields better results for the SR
of HSI with efficient computational speed, which is significantly less than
previous studies.
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1 Introduction

Hyperspectral remote sensing, an advanced method of remote sensing, has gained significant
popularity over the past decade. This technique utilizes charge-coupled devices (CCDs) as a detector
system to capture numerous spectral channels [1-3]. The signal of a pixel often represents the
interaction of electromagnetic radiation from different constituents within the pixel. Hyperspectral
images (HSI) sets are employed to spectrally identify and classify the same objects on the surface.
Reflectance information of objects is collected through hyperspectral remote sensing, which consists
of hundreds of contiguous and narrow bands spanning a specific electromagnetic spectrum. The HSI
data cubes encompass both spatial and spectral content [1-3]. Therefore, HSI that is collected has
a very high spectral resolution so that the discrimination between the objects can be done by their
spectral signature. Because of spectral content, HSI is widely used in computer vision and remote
sensing applications, such as change detection [4,5], geological exploration [6], and object detection
[7]. Among the various applications of hyperspectral data analysis, agriculture is one of the most
promising areas, where hyperspectral data be used to control all stages of the crop cycle, from soil
preparation through sowing and growth to harvesting. Additionally, HSI can be utilized for crop
illness, soil fertility, plant development, fruit ripeness, parasites, and other inspections in fields and
plantations of all types.

As current imaging sensor technologies have limitations, there exists a trade-off between spatial
and spectral resolution. Hyperspectral imaging (HSI) often suffers from low spatial resolution, which
hampers its performance in various applications. Increasing the number of pixels per unit area can
improve the spatial resolution of HSI, but it leads to a reduction in available light and critical
degradation of image quality due to shot noise. Moreover, increasing chip size results in higher
capacitance, slowing down the rate of charge transfer. Therefore, both approaches are not feasible.
Signal post-processing techniques offer a solution to enhance the measured signal and overcome
the low spatial resolution of HSIs. One such technique is super-resolution (SR) reconstruction,
which utilizes one or more low-resolution (LR) images to obtain a high-resolution (HR) image. This
approach is cost-effective and can make use of existing LR imaging systems. HSIs have significant
practical utility, making it crucial to enhance their spatial resolution.

Various methods have been proposed to improve the spatial resolution of HSI using high-
spatial-resolution sources [¢]. Image fusion can be applied when an auxiliary image with high
spatial resolution, such as a multispectral image, is available. Techniques like maximum a posteriori
(MAP) estimation [§], stochastic mixing model-based methods, and others [9,10] have been proposed.
However, dictionary-based fusion methods, including spectral dictionary and spatial dictionary-
based methods, are predominant in hyperspectral and multispectral image fusion. Nevertheless, these
methods do not effectively utilize spatial and spectral content.

Sub-pixel-based analysis aims to extract valuable information from pixels for various applications.
Spectral Mixture Analysis (SMA) [11] is utilized to estimate the fractional abundance of pure ground
objects within a pixel. The extraction and estimation of end members can be done separately or treated
as a blind signal decomposition problem, for which techniques like convex optimization [!2], non-
negative matrix factorization [13,14], and neural network-based approaches are commonly employed
[15]. Sub-pixel level-based target detection methods have also been proposed to identify objects of
interest within a pixel [16,17]. Soft classification methods can address the challenges of classification
in low-spatial-resolution hyperspectral images (HSI) [17]. The emergence of sub-pixel mapping (SPM)
aims to generate a classification map by utilizing fractional abundance images to predict the locations
of land cover classes within mixed pixels [18—20]. Numerous methods have been proposed, including
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those that employ structural similarity [21], pixel/sub-pixel spatial attraction model [22], pixel swapping
algorithm [23], maximum a posteriori (MAP) [24,25] mode, Markov random field (MRF) [26,27],
artificial neural network (ANN) [28-30], simulated annealing [31], total variant model [32], support
vector regression [33], and collaborative representation [34]. However, it is important to note that these
techniques only overcome spatial resolution limitations in specific applications.

While many previous approaches have focused on single-band or grayscale super-resolution under
controlled conditions, they encounter challenges in real-world scenarios with a substantial number of
bands. Single-image super-resolution (SR) aims to reconstruct high spatial resolution images from
low spatial resolution images. Traditional linear interpolation techniques, such as bilinear and bicubic
methods, are commonly employed, but they often introduce side effects like edge blurring, ringing,
and jagged artifacts. Some studies [31] have attempted to split pixels into sub-pixels and estimate
their positions based on the zoom factor. However, assuming sub-pixels to be pure pixels is not a
suitable assumption. In the past decade, there has been significant attention given to SR of color
images, leading to the development of numerous algorithms, including iterative backpropagation-
based reconstruction and sparse representation-based algorithms. Incorporating color information
(RGB or RGB-D) enables better identification with more details. Additionally, the utilization of these
high spatial resolution (HSR) sensors, despite their coarse resolutions, does not require additional
scene information sources. In recent times, deep learning algorithms, particularly deep Convolutional
Neural Networks (CNN), have been successfully employed, yielding impressive outcomes. These deep
CNN architectures have been designed to learn the end-to-end mapping between low and high-spatial-
resolution images [35]. Furthermore, CNN architectures have been extended into deep networks,
employing cascaded small filters across expansive image scenes to extract contextual information [36].

Transfer learning (TL) has become increasingly favored in contemporary times owing to its
capacity to capitalize on pre-trained models and transfer knowledge across different tasks, resulting in
substantial reductions in computational resources and training time. Recently TL, specifically VGG-
16, ResNet50, and Xception models was utilized, to classify four species of Artocarpus fruits in
Malaysia [37]. TL was utilized for fruit image classification using different models including [38—40]
and observed good performance. In the field of DL, several research works have addressed specific
challenges and demonstrated its utility in various applications. A study conducted by researchers [41]
addresses the limitations of Mask R-CNN in instance segmentation and proposes an alternative model
called Mask-Refined R-CNN (MR R-CNN). Another research investigation focuses on biometric
security and presents a palmprint fuzzy commitment (FC) system that utilizes discriminative deep
hashing [42,43]. In another research study [44], a novel approach combining multi-layer convolution
feature fusion (MCFF) and online hard example mining (OHEM) surpasses existing methods in
detecting challenging objects. Additionally, a research paper [45] explores the application of Long
Short-Term Memory (LSTM) in time series forecasting of environmental variables, highlighting its
accuracy in predicting snow cover, temperature, and NDVI.

In the context of SR, earlier studies applied SR models on single images one by one or only
greyscale levels [2]. Other limitations of earlier studies were the resampling of the hyperspectral data
to coarser resolution and applying SR on the coarser image, while the original image was used as
ground truth with higher resolution data. The approach of using the same dataset for performance
appraisal is subjective. The novelty of the present investigation is that the developed 3D-CNNHSR
model was implemented on 159 hyperspectral bands together instead of applying SR on single images.
Additionally, the assessment was based on higher resolution data of sentinel-2 satellite data with 10 m
resolution (VIS) bands. Another strong feature of the present investigation was applying systematic
pre-processing, which is highly required when dealing with the HSI dataset [7,9,33].
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The current study makes a significant contribution by assessing super-resolution techniques
and utilizing improved hyperspectral data for vegetation analysis. The research focuses on applying
deep learning models to achieve hyperspectral super-resolution of vegetation areas in the Al-Kharj
region of Saudi Arabia. The investigation has three primary objectives: (1) Development of super-
resolution (SR) models for hyperspectral data; (2) Evaluation of SR dataset performance using a
high-resolution Sentinel-2 dataset; (3) Estimation and comparison of various vegetation indices for
promoting sustainable agricultural practices. The novelty of this study lies in the development and
implementation of the 3D-CNNHSR model for the hyperspectral dataset’s 159 bands, along with the
assessment of vegetation indices using the improved SR hyperspectral dataset to analyze crop patterns.
A key innovation of this research is the utilization of 3D convolution instead of 2D convolution,
enabling simultaneous convolution in both spatial and spectral dimensions to capture spatial-spectral
features. This approach involves clustering contiguous spectral content to form a data cube and
applying 3D kernel convolution to achieve 3D convolution.

2 Study Area and Data Sources

Al-Kharj is a productive agroecosystem located in a desert valley, irrigated by natural springs, and
dug wells. Al-Kharj governorate is located at 24° 8’ 54”N, 47° 18’18” E, in the middle of the Kingdom
of Saudi Arabia, 80 kilometers from Riyadh, the kingdom’s capital. Al-Kharj is defined by hot dry
summers with daily temperatures ranging between 45°C and 48°C; particularly cold days with daytime
temperatures ranging between 20°C and 25°C; with average winter precipitation is 51 mm.

The current investigation utilizes two pre-processed Level-1 (L1R) Hyperion image datasets (refer
to Table 1). The Hyperion sensor onboard the NASA Earth Observing (EO-1) satellite captures surface
reflectance of the Earth from 355 to 2577 nm, with a spatial resolution of 30 m and a spectral resolution
of 10nm for 242 continuous spectral bands. The Hyperion sensor consists of two spectrometers: a
VNIR (Visible Near-Infrared) and a SWIR (Short-Wave Infrared). The VNIR captures approximately
70 bands within the 400-1000 nm wavelength range, while the SWIR sensor observes 172 bands
within the 900-2500 nm range. Planet Labs’ Planetscope (PS) has revolutionized precision agricultural
monitoring by providing a spatial resolution of 3 m and a temporal resolution of 1 day (see Fig. 1) [7].
The PS data was used in the present investigation to analyze the latest vegetation patterns in the study
area for February 2021.

Table 1: Details of the satellite dataset used in the present investigation

# Satellite Scene ID Date Spatial Temporal Number of  Radiometric
resolution  resolution  bands resolution
(in m) (in days)
Hyperion ~ EO1H1650432015071110K4_IR 03/12/15 30 16 242 12
Hyperion  EO1H1650432017071110K4_IR 03/12/2017 30 16 242 12
3 Sentinel-2 L1C_T38QRM_A009155_2017 03/24/17 10 5 13 12
(FCC) 0324T072958
4 PS 20210212_073029_23_240c_3B 02/12/21 3 1 4 12, 14

For the assessment of super-resolution, Sentinel-2 L1-C data was used, specifically Band 4, 3, and
2, acquired in March 2017. The Sentinel-2 data underwent processing from Level-0 to Level-2. Level-0
includes preliminary quick-look and auxiliary data, while Level-1 processing consists of three steps to
generate Level-1A, Level-1B, and Level-1C data. The Level-1C data, which is an orthorectified product
corrected for elevation effects and provides reflectance for the top of the atmosphere, was utilized in
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the present investigation. It should be noted that the high spatial resolution of Sentinel VIS 10 (m)
data was not available for March 2015. Therefore, the performance evaluation of the 3D-CNNHSR
model was tested using the available data from March 2017, assuming it as the performance indicator.
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Figure 1: False-color composite of pivot fields using PS subset for Al-Kharj region on feb 02, 2021

3 Methodology

The methodology section is divided into two main sub-sections. In Section 3.1 we discussed the
pre-processing of Hyperion data, Section 3.2 discussed the SR implementation using DL, and the
vegetation assessment of Al Kharj based on SR images given in Section 3.3.

3.1 Hyperspectral Images Pre-Processing

Before the application of SR models, the Level-1 hyperspectral data requires preprocessing to
address various conditions such as low illumination, sensor errors, noise, and atmospheric effects. The
preprocessing steps involve the removal of bad bands, DN-to-radiance conversion, de-striping, and
atmospheric correction. From the total of 242 continuous bands in the Hyperion dataset, 83 bands
with quality issues were excluded, leaving 159 bands for further processing. Bands 1 to 7 and 225 to
242, which were not sufficiently illuminated, were removed. Additionally, bands 58 to 78 were excluded
due to overlapping regions, while bands 120 to 132, 165 to 182, and 221 to 224 were eliminated due to
water absorption effects.

3.1.1 De-Striping of the HSI

The calibration error of the detector array of this device causes vertical stripes in some bands.
The detectors must be tuned properly to avoid stripping artifacts. Striping can produce ambiguous
lines in images and variances in surrounding pixels. Strips in the images can degrade the quality of
hyperspectral analysis. The local de-striping algorithm approach was used in the present investigation,
it averages the striped pixel value. Local de-striping methods repaired problematic lines by averaging
DN values from left and right neighbor pixels.

3.1.2 Atmospheric Correction

Hyperspectral remote sensing utilizes data from sun radiation, surface properties, and sensors.
The Hyperion sensor captures the incoming solar radiation reflected from or emitted by the Earth’s
surface. The interaction between the incoming radiation and atmospheric particles and gases leads
to air absorption, reflectance, and scattering. In the range of 400-2500 nm, which corresponds to
hyperspectral images, the atmosphere contains around thirty different gases, giving rise to atmospheric
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challenges. The visible region is particularly affected by molecular scattering. To address these issues,
a correction technique called Fast Line-of-Sight (FLAASH) was employed. FLAASH correction
involved calculating the scene-average visibility by considering various influencing factors such as
sensor altitude (705 km), aerosol model (rural), K-T retrieval, beginning visibility (40.00 km), and
water absorption feature (1135 nm) during the correction process.

3.1.3 MNF (Minimal Noise Fraction)

The MNF transformation was utilized to separate and equalize the noise in the data, as well as
to minimize the dimensionality of data for the detection of the target. The MNF-converted data’s
bands are then sorted based on the spatial coherence from higher to lower values. MNF is a PCA
(principal component analysis) based on a two-step linear transformation. The first stage obtained
the covariance matrix for noise to decorrelate and rescale the data noise. The equalized spectrum of
the data was processed for PCA processed in the next step. To reduce noise during the data acquisition
process, the inverse Minimum Noise Fraction (MNF) transformation was employed. A total of 40
MNF bands were generated based on an eigenvalue plot (Fig. 2a). The analysis of the MNF graph
indicated that the first 10 MNF components provide the highest level of explanatory information.
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Figure 2: (a) Eigenvalue graph of MNF bands for Hyperion image of 12 march 2015; (b) shows a
visualization of all pixels’ PPI iterations

3.1.4 Pixel Purity Index ( PPI)

PPl is used to locate the purest pixels in a multispectral image based on the MNF images to obtain
the end member spectra. The imaging spectrum is projected onto a random vector. The frequency of
each pure pixel and outlier was calculated. The pixel values in the input image were transformed to
threshold values, which are generally slightly higher than the noise level of the data. Finally, a PPI
image is produced, with the value of each pixel showing how repeatedly a pixel has been used (Fig. 2b).

3.1.5 n-D Visualizer

The n-D Visualizer finds, identifies, and clusters the purest pixels and endmembers in an image.
In n-dimensions, a PPI-based software calculation discovers and arranges the purest pixels. Finally,
these pixels are used to create endmember spectra (Fig. 3a) that are input into image categorization
algorithms. The 3D hypercube of the Hyperion 2015 image with the spectral profile of vegetation for
a pivot field is shown in Fig. 3b.
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Figure 3: (a) n-D Visualizer showing endmember pixels, (Green for high vegetation, blue for less
vegetation, yellow for the barren area, and red for sand); (b) 3D hypercube of Hyperion 2015 image
with the spectral profile of vegetation for a pivot field indicated through the arrow

3.2 Proposed 3D-CNNHSR Model for Spatial SR

In hyperspectral applications, traditional 2D processing on HSIs can lead to spectral distortion
due to the loss of spectral content encoded in compact bands. To address this, we propose using 3D
convolution instead of 2D convolution, which considers both the spatial and spectral dimensions. By
convolving a cube formed by clustering contiguous spectral content with a 3D kernel, we capture
spatial-spectral features and mitigate spectral distortion. The 3D convolution is calculated as a
weighted sum of pixels in the data cube, as described by Eq. (1).

Cow =1 (X wuei @+2) (b +) (c+2) +)) (M

where C,, represents the output feature at the position (a, b, ¢); i (a + x) (b + y) (¢ + z)+/) represents
the input at the position (¢ 4+ x) (b + y) (¢ + z) + j) in which (x, y, z) represents the corresponding
offset of (a, b, c); w,,. represents weight. The flowchart of the methodology used in the present
investigation is shown using Fig. 4.

For SR of HSIs, we employed a 3D-CNNHSR, see Fig. 5. To begin, the Hyperion dataset was
resampled to 15 (m) using bicubic interpolation. This resampled data was utilized to assess with 3D-
CNNHSR. The interpolated images only had spatial values then the 3D convolution was utilized on
the original resolution of Hyperion data to assess the unbiased performance of the developed 3D-
CNNHSR model. To accomplish so, all 159 bands of pre-processed Hyperion data were fed into 3D-
CNNHSR to generate a higher spatial resolution of 15 meters resulting in a Hyperion image, which
also contains high spectral resolution.

The proposed 3D-CNNHSR has seven layers, with four convolutional layers, and three fully
connected dense layers, the output of the entire network was obtained through the final layer with
the softmax function. The number of neurons in a CNN depends on the parameters, however, in
SR applications, the initial result has a large impact on the network’s scalability due to higher
dimensionality. A subset of 100 x 100 pixels was fed to the 3D-CNNHSR model and a 3D kernel
which is also known as a filter or feature detector was used. The term “feature map” refers to a feature
that has been convolved. As a result, all the convolution layers’ filters are programmed to learn spectral
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information from contiguous spectral bands. We employ the ReLU activation function to control
the linearity after the convolution layer since features in HSI images are nonlinear generally. Four
convolution layers were added, resulting in the volume of information shrinking faster, therefore, to
preserve as much information in the early layers of our network padding was utilized. The maxpool
function was used to enable the sub-sampling or down-sampling by reducing the parameters, which
makes feature detection insensitive to changes in scale or orientation [46]. Dropouts were also used to
reduce the effect of overfitting by disconnecting neurons in the different layers. Finally, all activations
from previous layers were connected to neurons in the fully connected layer. The 3D-CNNHSR
model was compared and evaluated against the four layers of the 2D-CNN model (Fig. 5). The batch
dimension is denoted by the none dimension in the shape tuple (Fig. 5), which indicates that the layer
can accept input of any size. e.g., MNIST dataset might have the shape tuple (60000, 28, 28, 1), however,
the shape of the input layer would be (None, 28, 28, 1). The dimensions of the input shape for the 3D-
CNNHSR model were fouri.e., (100, 100, 100, 159). A three-dimensional image is a four-dimensional
data set, with the fourth dimension representing the number of channels. The input of the 2D-CNN
model has three dimensions (100, 100, 159), and the third dimension represents color channels and 4
layers of 2D convolution with 4 dropout layers to control overfitting.

Hyperion Images 2015 and |  Spectral Clustering of Contiguous
4 v
Spatial Subset l Spectral Cube |
v v
Bad Bands Removal l 3D CNN Model Development |
v v
Radiance Generation l 3D CNN Model Optimization |

v

Absolute Reflectance

A

Data Dimensionality Reductions
(MNF, PPI, n-D Visualization)

v

Spectral Analyst for End Members |

NDVI —»

Comparative NDVI

Assessment
LCI —» < LCI

Figure 4: Flowchart of the methodology used in the present investigation
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Figure 5: Architecture of the SR models (a): 3D-CNNHSR model; (b) 2D CNN model

dense_6: Dense

3.3 Vegetation Assessment for AL Kharj Area
3.3.1 NDVI

The NDVI index is an index of plant “greenness” or photosynthetic activity that is based on the
photosynthetic process of vegetation [7,9,33]. The NDVI method was based on the idea that plants
absorb the red light essential for photosynthesis but reflect the light in the NIR region.

The following equation can be used to calculate NDVI (2).

A (854) — \ (650)
NDVI = 2
A (854) + . (650) @
The Normalized Difference Vegetation Index (NDVI) is influenced by various factors such as
vegetation density, vegetation stress, and soil exposure. Being a ratio-based index, NDVI offers several
benefits, including the ability to account for topographic lighting variations and facilitate multi-

temporal image analysis for comparing images captured in different seasons.
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3.3.2 LCI

The LCI was found to be a sensitive measure of chlorophyll content in leaves that were less
impacted by scattering from the surface of the crop and interior structure variations [46]. LCI is
defined as the proportion of relative chlorophyll absorption intensities in the NIR and red edge and
red wavelengths, Eq. (3).

_ A(854) — A (711) 3)
A (854) + A (681)
The value of LCI grows as the amount of leaf chlorophyll in the leaf increases. The LCI was

developed using the pre-processed bands of HSI including 43, 29, and 26. The wavelengths of these
bands are 854, 711, and 681 nm, respectively.

LCI

4 Performance Evaluation

To assess the quality of the SR results, various performance metrics were employed, including
the mean peak signal-to-noise ratio (MPSNR), mean square error (MSE), and the mean structural
similarity (MSSIM) index. These metrics were selected as they are well-suited for effectively evaluating
image quality [21]. The SR images generated from the Hyperion dataset were compared against
the Sentinel-2 data, which has a ground truth spatial resolution of 10 meters. The mean structural
similarity index measure (MSSIM) was utilized as a technique to estimate the relative quality of digital
images. It measures the similarity between two images, providing an assessment of image quality by
comparing the SR results with a high-resolution ground truth image.

MSE and MPSNR, calculate absolute errors, whereas these MSSIM methods measure relative
errors. The MPSNR can be given as Eq. (4).
B V(max)i
i hhtts: 4)

MSE,

where BV (max,) is the pixel with the highest value in the x™ band, and MSE, represents the MSE of
the x™ band. MSE can be calculated as Eq. (5).

1 t 1 ! b ’
s =LY (i S (S (5 v ) )

where t, 1, and b, represent training samples, the output length of R(A), and the breadth of the output
respectively. The MSSIM between ground truth B of the reconstructed image R(A) can be defined as
Eq. (6).

 J—
MPSNR = ;Zi=010 x log10 (

MSSIM = l ! (2MR(A>1'MY; +P1) (2GR(A)iB[ +P2)

p= (M?«An + u3 + pl) (%» +oj+p 2)

where R (A), and B; is the x™ band of R(A) and B, notations with © and o represent the mean and
variance values of associated bands.

(6)

5 Results and Discussion

Hyperion images for March 12, 2015, and March 12, 2017, before and after super-resolution
(below) using 3D-CNNHSR were shown in Figs. 6-8. Based on visual inspection it was observed
that the spatial quality of Hyperion data was improved using 3D-CNNHSR. The features such
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as some premises which were blurred in the original Hyperion data were improved and detectable
after super-resolution. Furthermore, to verify the performance of the 3D-CNNHSR for spatial SR
of HSIs rigorous experiments were performed. Due to the unavailability of higher resolution data
for March 2015 in the public domain; it was assumed that the assessment of the developed model
was consistent for both years i.e., 2015 and 2017. The developed model was tested on various land
use/landcover classes including vegetation area. The parameters of the 3D-CNNHSR model were
also assessed for various combinations of neurons and kernel filters. The outputs of the models were
computed by fixing the number of layers as constant while changing the filters continuously and then
comparing them to see which condition the model performed best in. An important observation
was that LCI generate better results for vegetation classification assessed using Sentinel-2 data of
24 March 2017 for Hyperion 12 March 2017 image. It was observed based on vegetation indices
analysis that LCI performs better than NDVI due to the saturation behavior of NDVI in scattered
vegetation and exposed soil reflectance. In general, a higher mean peak signal-to-noise ratio (MPSNR)
and mean structural similarity (MSSIM) value indicate better visual quality, while a lower Spectral
Angle Mapper (SAM) value indicates reduced spectral distortion and higher quality of spectral
reconstruction (refer to Table 2).
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Figure 6: (a) Hyperion image of march 12, 2015; (b) output of 3DCNNHSR; (¢) output of 2D CNN;
(d) Hyperion image of march 12, 2017; (e) output of 3DCNNHSR; (f) output of 2D CNN
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Figure 7: Hyperion image of march 12, 2015, pre (a—¢) and after (f—) applying the 3D-CNNHSR
model

Figure 8: Hyperion image of march 12, 2017, pre (a—e) and after (f—) applying the 3D-CNNHSR
model

The performance of the 3D-CNNHSR was compared with the 2D-CNN model and bicubic
interpolation. It was observed that the 3D-CNNHSR model outperformed the 2D-CNN model and
bicubic based on MSE, and MSSIM values. Furthermore, because the 2D-CNN has fewer parameters
of 8,838,751 which is 33 times lesser than the 293,554,979 parameters for 3D-CNNHSR, training is
significantly faster for the 2D-CNN model. However, the 3D-CNNHSR model outperforms not only
based on evaluation metrics but also because the visual quality of the images was higher, see Fig. 6.
The 3D-CNNHSR model output seems better than the original image while the 2D-CNN output
looks blurry compared to the 3D-CNNHSR model output. The results of the present study were also
compared with earlier studies for assessment. It was observed that the present model outperformed
the 3D-FCNN model developed by [2], based on MPSNR and MSSIM values. The highest value
obtained by [2] for PSNR was 0.969 however present study achieved the PSNR values of 0.987 and
0.986 for the data of 2015 and 2017, respectively. The MPSNR value achieved by [2] was 33.92 using
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pre-processed Pavia dataset; however present investigation used raw data and converted it to a low-
noise dataset after performing rigorous pre-processing steps before feeding to a 3D-CNNHSR model
and achieving better PSNR values.

Table 2: Appraisal of performance for the developed models in the present investigation and other
SOTA methods

Method Image date  MPSNR MSE MSSIM Computation Images
time

3D-CNNHSR March 12, 58.987 10.213 0.987 1 h, 15min, Hyperion

2015 58.912 10.106  0.986 and 32
2D-CNN March 17, 77 145 25987  0.865 10min, 175

2015 75432 23845 0.883
Bicubic 32.716 27.882 0.781 7s

31.954 27.987 0.854

SRCNN [1] 2001 36.44 - 0.961 0.6s RGB images
3D-FCNN [2] - 33.92 - 0.933 20h Pavia centre
MAP [£] 1987 38.97 ; ; ; AVIRIS

6 Computational Efficiency

The developed 3D-CNNHSR model converges faster using callback functions and an automated
and optimal number of epochs. The 3D-CNNHSR model had 293,554,979 parameters, while the 2D-
CNN model has fewer parameters 8,838,751 which is 33 times lesser than the 3D-CNNHSR. The
training is significantly faster for the 2D-CNN model. However, the 3D-CNNHSR model outperforms
not only based on evaluation metrics but also the visual quality of the images was higher. The
computational complexity for 3D-CNNHSR and 2D-CNN were O (n) and O (n*), respectively. The
current study made use of TPUs (Tensor Processing Units) v2-8. These TPUs are application-specific
circuits developed by Google. It speeds up the training operations for AI models using eight cores
and 64 GB of memory. The TPU v2-8 that was used in this study with 68 epochs, 3D-CNNHSR
took 1h, 15min, and 32 s for training (Fig. 9a), which is quite lesser compared to the 20 h taken by
[2]. Additionally, [2] used very smaller image sizes including 33 x 33, 44 x 44, and 55 x 55; however
present investigation took images 100 x 100 in size for training. The model developed by [2] has fewer
parameters of 88907 based on the smaller image size used for training however the MPSNR value
(34.03) was low compared to higher MPSNR values of 58.987 and 58.912 using 3D-CNNHSR for 2015
and 2017, respectively. Bicubic interpolation, on the other hand, took only 7s and 32 milliseconds to
perform the image resampling using the same system specifications, however, it yields a low MPSNR
of 32 and a high MSE. The relationship between the 3D-CNNHSR model’s loss and the epoch number
is shown in Fig. 9a. As the number of epochs increases, i.e., as learning develops, the loss values drop.
The model’s loss patterns were different when the hyperparameters of the 3D-CNNHSR were changed.
According to the analysis, some models lose weight swiftly, while others lose weight gradually. Before
calculating the learning, rate and putting it to the test by modifying the layers for the Al-Kharj photos
using 3D-CNNHSR, we tried 7 layers with different learning rates. Among the various combinations,
the model with 7 layers and 0.05 Ir performed best, as shown in Fig. 9b.
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Figure 9: (a) Computational speed of the 3D-CNNHSR model; (b) loss with epochs for the 3D-
CNNHSR model

7 Conclusion

In this paper, we have addressed the issue of low spatial resolution of a hyperspectral dataset
based on the developed and optimized 3D-CNNHSR model for super-resolution. Hyperspectral pre-
processing was performed systematically before applying the 3D-CNNHSR model so that the noise
can be minimized, and the SNR can be improved. The bands of the Hyperion dataset were reduced to
159 from a total of 242 bands after pre-processing. The super-resolution was applied for all 159 bands.
The performance of the 3D-CNNHSR was evaluated using MPSNR, MSE, and MSSIM metrics
based on the Sentinel-2 dataset which contains a 10 m resolution. The developed model has shown
a high MPSNR of 58.987 and 58.912 for Hyperion 2015 and Hyperion 2017 SR images, respectively.
MSSIM suggested that the 3D-CNNHSR model achieved the value of 0.987 and 0.986 for the March
2015 and March 2017 SR images. The computational speed of the 3D-CNNHSR model was found
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promising using the TPU v2-8 with 68 epochs, 3D-CNNHSR took 1 h, 15min, and 32 s for training,
which is quite lesser compared to the previous studies. The SR images were utilized for assessing the
vegetation of the Al-Kharj area based on NDVI and LCI. Additionally, it was observed that LCI
performed better than NDVI in an arid area of Al-Kharj. The future scope of the present investigation
is to assess and optimize the 3D-CNNHSR for other domains [47].
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