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Abstract: When applied to Unmanned Aerial Vehicles (UAVs), existing Simul-
taneous Localization and Mapping (SLAM) algorithms are constrained by
several factors, notably the interference of dynamic outdoor objects, the
limited computing performance of UAVs, and the holes caused by dynamic
objects removal in the map. We proposed a new SLAM system for UAVs
in dynamic environments to solve these problems based on ORB-SLAM2.
We have improved the Pyramid Scene Parsing Network (PSPNet) using
Depthwise Separable Convolution to reduce the model parameters. We also
incorporated an auxiliary loss function to supervise the hidden layer to
enhance accuracy. Then we used the improved PSPNet to detect whether
there is a movable object in the scene. If there is a movable object, its feature
points will be removed in the tracking thread, and the removed feature points
will not participate in the pose estimation of the camera. In addition, we
proposed a filling method based on Generative Adversarial Networks (GANs)
for the holes caused by dynamic object removal in the map, which employs
a new auxiliary descriptor to assist GANs in restoring static scenes based
on semantic information. The proposed system is evaluated on the TUM
dataset, and the results indicate that the proposed method performs better
than DynaSLAM and DS-SLAM on the TUM dataset. We experimented on
the Cityscapes dataset, the improved PSPNet achieving an Intersection Over
Union (IOU) of 0.812.

Keywords: UAVs; SLAM; semantic segmentation; dynamic points remove;
GANs

1 Introduction

With the evolution of communication methods [1], UAVs are increasingly utilized in a broader
range of applications, particularly in map building. Visual SLAM (VSLAM) is a vision-based
localization and mapping technique extensively researched in recent years. Thanks to the development
of deep learning, SLAM in dynamic environments has produced relatively good research results, such
as DynaSLAM [2] and DS-SLAM [3]. The semantic information of the scene can help the visual
SLAM system resist the interference of dynamic objects in the environment and provide additional
auxiliary information for camera pose estimation. However, most existing visual SLAM systems are
designed for small indoor areas. In indoor scenes, the SLAM algorithm is often used for wheeled robots
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or fixed equipment, and high-performance computers can be used to process SLAM algorithms. The
indoor scene environment is relatively simple. Therefore, the map-building task for indoor SLAM is
relatively easy.

When the SLAM algorithm is used on UAVs, the working scene of SLAM changes from indoors
to outdoors. Three problems need to solve: (1) outdoor scenes have more dynamic distractions than
indoor scenes. (2) UAVs are constrained by battery life and load, so it is challenging to use high-
performance computers conditionally. The computing platform carried by the UAVs is generally an
embedded computing platform and computing performance is relatively weak. (3) Since many holes
will be generated in the constructed map after dynamic object removal, the traditional method is to fill
the holes through the multi-view geometric filling method, but this method is greatly affected by pose
estimation. Currently, several scholars have proposed SLAM algorithms designed explicitly for UAVs.
Aguilar et al. [4] proposed a high-precision real-time SLAM system. The system can run the SLAM
on the UAVs by using an RGB-D sensor, the Microsoft Kinect, and a small but powerful computer.
Bu et al. [5] proposed a method for real-time incremental stitching of large-scale aerial images using
a monocular SLAM system to estimate camera position and pose while generating a 3D point cloud.
However, both of these methods don’t solve the above problems, and there still needs to be satisfactory
solutions for SLAM for UAVs in dynamic environments.

In this paper, we proposed a new SLAM system based on ORB-SLAM2 [6] for UAVs in a dynamic
environment. We named the SLAM system RO-SLAM “A Robust Outdoor SLAM.” Firstly, we used
Depthwise Separable Convolution (DSC) to reduce the model size of PSPNet [7] and used an auxiliary
loss function to improve the accuracy. Then, we used the improved PSPNet to detect whether there
is a movable object in the scene. If there is a movable object, its feature points will be removed in
the tracking thread, and the removed feature points will not participate in the pose estimation of the
camera. In addition, we proposed a filling method based on GANs, using an auxiliary descriptor to fill
static scenes according to semantic information, which enhances the fault tolerance rate of the SLAM
system. We used the TUM dataset and the Cityscapes dataset to verify our method. The results show
that the proposed method performs better than others.

In summary, we highlight our contributions here:

1. We proposed a SLAM system working in a dynamic environment, using a semantic segmen-
tation network to eliminate moving objects, the system has achieved outstanding results in trajectory
estimation precision, and the results are better than DS-SLAM and Dyna-SLAM.

2. We also proposed a static background restoration method based on GANs. We used auxiliary
descriptors to compensate for the shortcomings of the multi-view geometry method’s shortcomings
and improve the SLAM system’s fault tolerance.

3. Given the current situation that the computing performance of the computing platform carried
by the UAVs is generally not high, we used DSC to reduce the model size of PSPNet and an auxiliary
loss function to improve the accuracy. This approach increases the potential for utilizing semantic-
based SLAM algorithms on UAVs.

2 Related Works

VSLAM have developed over the years, and they can be divided into two categories in a dynamic
environment: (1) Semantic methods based. (2) Geometry methods based.
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2.1 Semantic Methods Based
In recent years, Deep Neural Networks (DNNs) have made significant strides in data analysis.

Many researchers have utilized DNNs to extract semantic information from data. For instance,
Flint et al. [8] proposed an indoor mapping system that makes use of photometric cues, pose
information, and sparse point cloud data obtained from a metric SLAM system to create a seman-
tically meaningful map of the indoor environment. Kundu et al. [9] proposed a novel framework
for simultaneously performing semantic segmentation and 3D reconstruction with monocular video
sequences. The authors used a DNN to estimate the per-pixel depth and semantic labels and then used
a fusion network to incorporate the estimated labels into the 3D reconstruction process. This approach
significantly improved the accuracy of both semantic segmentation and 3D reconstruction, especially
in challenging scenarios like environments with poor lighting or cluttered scenes. Hermans et al. [10]
employed a probabilistic graphical model to jointly estimate the 3D geometry and semantically
labeled objects in the scene. The model is trained on a large dataset of RGB-D images and object
annotations and incorporates both depth and color information to achieve robustness against cluttered
scenes and occlusions. Reference [11] introduced a method for generating dense maps of object-class
semantics in real-time, utilizing RGB-D videos captured by a depth sensor. The approach employs a
hierarchical Bayesian framework to jointly estimate the 3D geometry and semantic labels of objects
in real-time. The method uses a deep neural network for object detection and a Gaussian process
model for semantic segmentation, enabling the system to handle varying object appearances and
dynamics. Masaya et al. [12] proposed a new SLAM algorithm that leverages the benefits of semantic
segmentation to improve feature detection and tracking. DeepLab v2 [13] was employed by the
algorithm to eliminate dynamic objects through masking, enhancing the precision of camera pose
estimation and stability of the system. The approach outperformed baseline algorithms in challenging
environments. Bescos et al. [2] proposed a dynamic SLAM algorithm capable of handling fast-moving
and deformable objects in the environment. The algorithm combines semantic segmentation with tra-
ditional visual odometry and mapping techniques, resulting in improved tracking and mapping of the
environment. Inpainting techniques also fill in missing areas due to dynamic objects. Riazuelo et al. [14]
presented a SLAM algorithm that incorporates semantic segmentation to overcome challenges in
densely populated environments. The algorithm reduces the impact of dynamic obstacles by selectively
integrating the observations from the static background while using semantic segmentation to identify
and track non-static objects. Finally, Yu et al. [3] proposed a dynamic SLAM algorithm that combined
SegNet [15] to handle dynamic environments. The algorithm can detect dynamic objects, track their
movements, and update the map accordingly. The approach achieves SOTA performance on several
datasets, demonstrating its effectiveness in dynamic environments.

2.2 Geometry Methods Based
The BaMVO [16] algorithm was proposed by Kim et al. to handle RGB-D sensors in dynamic

environments. The algorithm estimated non-parametric background models from depth scenes in to
reduce the residual weight of dynamic objects. Another motion removal method was presented by
Sun et al. [17], who utilized particle filtering to improve motion detection and then applied a map to
identify the foreground. Raluca [18] proposed a novel method to address dynamic objects, whereas
most current methods still deploy outlier filtering techniques. Their approach utilized segmentation
information to assign weights for dense RGB-D fusion. Emanuele et al. [19] employed a robust,
geometric approach to moving objects without relying on scene semantic interpretation. Yang et al. [20]
presented a meshing-based and geometric constraint visual SLAM algorithm that uses both sparse
feature points and dense depth images. This algorithm divides the scene into small blocks utilizing
meshing techniques, matches the blocks using geometric constraints, and excludes the influence of
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moving objects through dynamic object detection. Sun et al. [21] proposed a moving-object removal
approach for dynamic scene modeling with an RGB-D camera. The method analyzes the depth image
to detect dynamic objects and removes them to generate a 3D model of the static scene. Liu et al. [22]
proposed a general visual SLAM system, named DMS-SLAM, for real-time localization and map
construction in dynamic environments with multiple sensors. By using motion segmentation, they
improved the precision and robustness of the SLAM algorithm by distinguishing static and dynamic
objects. Moreover, the system utilizes multi-view geometric constraints and depth consistency checks
to optimize the quality of the generated map. Song et al. [23] presented a robust Bundle Adjustment
(BA) that can reject features from dynamic objects by leveraging the pose prior estimated by IMU pre-
integration. Then, they proposed keyframe and constraint grouping, based on multiple assumptions,
to decrease the impact of temporarily stationary objects on loop closure.

The methods mentioned above have shown promising results in pose estimation. However, there
is a need to develop a solution that can effectively handle real-time and dynamic environments while
resisting interference. Additionally, these methods may have limitations in restoring static scenes.
Table 1 displays a comparison between various SLAM systems in dynamic environments.

Table 1: Different SLAM systems in dynamic environments

Type Framework Speed Hardware Scenes

Flint et al. [8] SMB - - CPU M
Kundu et al. [9] SMB - - - M
Hermans et al. [10] SMB - 0.75 CPU D
Stuckler et al. [11] SMB - - GTX 675M D
Masaya et al. [12] SMB ORB-SLAM - - D
Bescos et al. [2] SMB ORB-SLAM2 2 Titan X D/M/S
Riazuelo et al. [14] SMB ORB-SLAM2 - - D
Yu et al. [3] SMB ORB-SLAM2 17 P4000 D
Kim et al. [16] GMB DVO 23 CPU D
Sun et al. [17] GMB DVO - CPU D
Raluca [18] GMB - - CPU D
Emanuele et al. [19] GMB - - CPU D
Yang et al. [20] GMB ORB-SLAM2 23 CPU D
Sun et al. [21] GMB DVO 0.1 CPU D
Liu et al. [22] GMB ORB-SLAM2 30 CPU D/M/S
Song et al. [23] GMB - - CPU M/S
Note: The “D” means RGB-D camera, the “M” means monocular camera, the “S” means stereo camera, the “SMB” means
“Semantic Methods Based,” and the “GMB” means “Geometry Methods Based.”

3 Proposed Method

3.1 Framework of RO-SLAM
The SLAM system in this paper is based on the ORB-SLAM2 framework. In this paper,

ORB-SLAM2 is improved because of its shortcomings in dynamic environments and its application
requirements on UAVs. The improved SLAM system is named RO-SLAM.
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Once the SLAM system has been activated, it initializes the Intel RealSense camera to capture
images. The tracking and semantic segmentation threads work in parallel to process these images
simultaneously. The tracking thread first extracts ORB (Oriented FAST and Rotated BRIEF) feature
points from the captured images. Subsequently, it awaits the output of the semantic segmentation
thread, which provides information on the semantic meaning of each pixel in the images. When the
semantic segmentation results are available, the tracking thread generates semantic descriptors based
on the identified semantic labels, which helps to identify dynamic feature points and exclude them
from the map construction process. Concurrently, an auxiliary descriptor is also produced to ensure
robustness against potential point misplacements. By this process of identifying semantic feature
points and removing dynamic ones, only stable static feature points are preserved. These points are then
deployed for feature matching and map construction, which ultimately enables the system to accurately
map the environment and navigate through it. After removing dynamic feature points, the semantic
segmentation mask covers the image to simulate the missing image. Then, the pre-trained GAN will
combine the auxiliary descriptor for inpainting in specific regions. The system will ultimately combine
the inpainting results, semantic information, and stable static feature points to map construction. The
system structure is shown in Fig. 1.

Figure 1: RO-SLAM structure

3.2 Semantic Segmentation and Dynamic Points Remove
In order for this system to be practical in real-world scenarios, there needs to be a balance

between accuracy and real-time performance. To reduce the model size, we use Depthwise Separable
Convolution [24] to improve the backbone of PSPNet. The structure is shown in Fig. 2.

The improved backbone of PSPNet consists of 5 parts. The parameter of each is shown in Table 2.
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Figure 2: Improved PSPNet structure

Table 2: The parameter of the new backbone

Stage Components Output stride

Block 1 [3 × 3 std.conv, 8] 2

Block 2 [3 × 3 max − pooling, 8] 4

Block 3

⎡
⎢⎢⎢⎣

3 × 3 dw.conv, 64
1 × 1 pw.conv, 16
3 × 3 dw.conv, 16
1 × 1 pw.conv, 64

⎤
⎥⎥⎥⎦ × 4 8

Block 4

⎡
⎢⎢⎢⎣

3 × 3 dw.conv, 128
1 × 1 pw.conv, 32
3 × 3 dw.conv, 32
1 × 1 pw.conv, 128

⎤
⎥⎥⎥⎦ × 8 8

Block 5

⎡
⎢⎢⎢⎣

3 × 3 dw.conv, 256
1 × 1 pw.conv, 64
3 × 3 dw.conv, 64
1 × 1 pw.conv, 256

⎤
⎥⎥⎥⎦ × 4 32

Block 1 consists of a standard convolution layer with a single layer and a convolution kernel
size of (3 × 3), which can be utilized for extracting shallow features of the input image, most of
which are contour and corner features. Block 2 is a max-pooling layer. Semantic segmentation focuses
on distinguishing the boundary relationship between each instance and the scene and considering
the demand for parameters of the lightweight network. Therefore, we use max-pooling to reduce
the dimensionality of interior features. Although this approach may decrease accuracy, the balance
between accuracy and inference speed is the key for lightweight real-time networks. Block 3 is a
Depthwise Separable Convolution with four core sizes (3 × 3, 1 × 1) and channels (64, 16, 16, 64).
It plays the role of deep feature extraction together with the next Block 4 and Block 5. The entire
backbone network used 33 layers of Depthwise Separable Convolutions.

Although, the improved backbone network significantly reduces the number of parameters
through the alternate use of two sets of Depthwise Separable Convolution. However, this bottleneck
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structure may suffer from a vanishing gradient. We integrate deep supervision information within the
loss function used for training to solve this problem and use the auxiliary loss to supervise Block 4 and
Block 5. The loss function is described as follows:

L = Lp +
K∑
i

αiLa (1)

Among them, Lp is the main loss function. La is the auxiliary loss function, K represents the
number of auxiliary loss branches, and K is equal to the number of categories, and the αi represents
the proportion of different categories in the total sample. The cross-entropy at each pixel is averaged
to calculate Lp and La according to the following equation:

L = 1
HW

HW∑
i

− log
esi

ĉ∑C

c esi
c

(2)

HW represents the dimensions of the input image. si
c represents the probability that pixel i belongs

to category c, ĉ, represents the ground truth in the dataset, and C represents the overall count of
categories within the dataset. And we define the objective function as:

F(W) = P(W) + A(W) (3)

P(W) is the main objective function, A(W) is the auxiliary objective function for the hidden layer
and W represents convolution kernel weight. The P(W) is the optimization object of the output layer
and is described as follows:

P(W) = ||w(out)||2 + Lp (4)

Lp is described as follows:

Lp = lp(W , w(out)) (5)

w(out) represents the output layer weight. The A(W) can be characterized as the following:

A (W) =
K∑

i=1

αi

[||w(i)||2 + La − γ
]

(6)

w(i) represents the input layer weight, γ is an artificial bias and La can be characterized as the
following:

La = la(W , w(i)) (7)

We combine Eqs. (4)–(7):

F (W) = ||w(out)||2 + lp

(
W , w(out)

) +
K∑

i=1

αi

[||w(i)||2 + la

(
W , w(i)

) − γ
]

(8)

Among them, lp and la are defined as follows:

lp =
∑

yi
[1− < w(i), φ(Z(K), y) − φ(Z(K), yi) > ]2

+ (9)

la =
∑

yk �=y
[1− < w(i), φ(Z(i), y) − φ(Z(i), yi) > ]2

+ (10)

Z(·) represents hidden layer variables, y represents ground truth, and yi represents the prediction
of each branch.
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In addition to learning the weight of the convolution kernel, the model can also learn sensitive
features in the hidden layer.

After we get the semantic information from semantic segmentation model, we combine the ORB
feature points to mark the feature points which belong to the movable objects. Then the ORB feature
points that are marked as dynamic are eliminated from the original set.

Pstatic = Pall − Pdynamic (11)

In Eq. (11), the Pall refers to the original set of ORB feature points, while Pdynamic represents the
set of feature points that pertain to objects which have the potential to move within the surrounding
environment. To ensure accurate feature point matching and pose estimation, we utilize the subset
Pstatic, which only includes feature points with static positions in the environment.

Algorithm 1: Dynamic points remove
Input: RGB images queue, Dynmatic objects classes
1: While RGB images queue do
2: do semantic segmentation, (class, M) ← results
3: do ORB feature extract ← Pall

4: if class∈Dynamic objects classes do
5: remove ORB feature points in results ← Pstatic

6: End

3.3 Auxiliary Descriptor and Static Scene Restoration
The SIFT [25], SURF [26], and BRIEF [6] descriptors are all common descriptors without any

semantic information, even though they supply photometric information of key points. To restore
static scenes after removing dynamic points, we proposed an auxiliary descriptor to record dynamic
objects’ semantic and location information. The example of the auxiliary descriptor is described as
follows:

D4×4 =

⎛
⎜⎜⎝

l1 u1 u2 l2

v1 p c v2

v3 b n v4

l3 u3 u4 l4

⎞
⎟⎟⎠ (12)

In Eq. (12), the
(

p c
b n

)
represents the class of the feature point (p represents the person, c

represents the car, b represents the bicycle and n represents the unknown object). The current area class
belongs to the corresponding class whose corresponding position value is 1. The (u, v) represents the
pixel coordinate of the center position of the area, and l represents the max value between height and
width.

The removed feature points will no longer participate in the construction of the point cloud map,
and there will be many holes in the process of map construction, which is not friendly to downstream
tasks. Therefore, the SLAM system must restore each frame’s static scene. The traditional method
uses the multi-view geometric filling method, which means projecting each pixel of the keyframe to
the dynamic area of the current frame for filling. But this filling method does not guarantee that each
removed area can be filled because the feature points of the current frame do not appear in the key
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frame database, and the corresponding pixels will not be filled. If the estimation of camera pose is
inaccurate, the filling method will be highly ineffective and may even lead to ghosting artifacts.

We used a GAN to restore the static background after removing the dynamic objects. This method
has the advantage of camera-independent pose estimation. Feature Normalization (FN) is a widely
used technique in training neural networks, which normalizes the features of input data across spatial
dimensions. However, in the context of image inpainting, previous methods utilizing fuzzy neural
networks have neglected the impact of damaged areas in the input image on normalization. The
alterations to the mean and variance resulting from full-space FN have the potential to limit the
effectiveness of training image inpainting networks. To overcome this issue, the Region Normalization
(RN) approach partitions the pixels of the input image into distinct regions, utilizing the input mask to
calculate the mean and variance of each region for normalization. This technique facilitates improved
training of image inpainting networks. RN can be described as follows:

R̂k
b,c = 1

σ k
b,c

(
Rk

b,c − uk
b,c

)
(13)

In Eq. (13), uk
b,c is the mean value and σk

b,c is the standard deviation. X∈RB×C×S×W is assumed to be
the full feature of the input, and (B, C, S, W) represent bacth_size, the number of channels, length,
and width, respectively. We set B, C as an index and divide Xb,c into k subregions:

Xb,c = R1
b,c ∪ R2

b,c ∪ . . . ∪ RK
b,c (14)

xb,c,s,w is a pixel in the input feature while xb,c,s,w∈Rk
b,c∈Xb,c, (b, c, s, w) is the index of xb,c,s,w on

(B, C, S, W). uk
b,c and σk

b,c are described as follows:

uk
b,c = 1

|Rk
b,c|

∑
x

b,c,s,w∈Rk
b,c

xb,c,s,w (15)

σ k
b,c =

√√√√√ 1
|Rk

b,c|
∑

x
b,c,s,w∈Rk

b,c

(xb,c,s,w − uk
b,c)

2 + ε (16)

Finally, we merge all subregions:

X̂b,c = R̂1
b,c ∪ R̂2

b,c ∪ . . . R̂K
b,c (17)

There are certain particularities in using the GAN to repair images in SLAM. General image
repair only needs to consider the rationality of the restored image, but SLAM considers the image’s
rationality and the reality’s relevance. For example, the semantic segmentation network will divide
a car into moving instances, and its feature points will be removed. If it is repaired with a general
generation confrontation network, the empty area may be filled as a blank road, and for pedestrians
or others, the correct one should be filled as a road. When the hole is filled as other instances, the
semantic information of the scene will become confused. At this moment, the auxiliary descriptor can
show its talents. When we input an image after removing dynamic points, the semantic segmentation
mask covers the image to simulate the missing image. And then, the image is sent to the encoder of the
corresponding attribute according to the information of the auxiliary descriptor. When performing
region segmentation, the segmentation is performed according to the location information of the
auxiliary descriptor:
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xc,s,w =
{

R1
c(Dynamic − object − class)

R2
c(no − Dynamic − object − class)

(18)

In Eq. (18), the size of R1
c is (l, l). We use Eq. (13) to conduct local normalization, merge A and

B, and then get the repaired image through the decoder.

4 Experimental Results and Discussion

4.1 Pose Estimation Precision
The TUM dataset [27] comprises 39 indoor scenes captured in image sequences. Every sequence

contained in the dataset includes 8-bit RGB images of size 640 × 480, along with their corresponding
16-bit depth images and timestamps. Additionally, the dataset provides accurate real camera trajecto-
ries. We used six sequences of dynamic scenes in the TUM dataset to verify the proposed method. The
sequences are as follows:

1© fr3/walking_halfsphere sequence; 2© fr3/sitting_halfsphere sequence; 3© fr3/walking_xyz
sequence; 4© fr3/sitting_xyz sequence; 5© fr3/walking_rpy sequence; 6© fr3/walking_static sequence.

To evaluate the performance of our proposed methods, we performed comprehensive experiments
that included a comparison of our test results against those of ORB-SLAM2 and other dynamic
SLAM systems. The W_xyz sequence duration is 27 s, with a total of 2884 frames of images. The
absolute trajectory errors of fr3/walking_xyz are shown in Fig. 3.

Figure 3: Absolute trajectory errors of ORB-SLAM2 (left) and RO-SLAM (right) on the
fr3/walking_xyz sequence

We also calculated the relative trajectory errors shown in Fig. 4.

Through Figs. 3 and 4, RO-SLAM has a more significant improvement in camera pose estimation
than ORB-SLAM2 in a dynamic environment.

We also compared the performance with DynaSLAM and DS-SLAM. To ensure objective and
accurate results, we ran each experimental sequence ten times and took the median value. The detailed
results can be found in Table 3.
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Figure 4: Relative trajectory errors of ORB-SLAM2 (left) and RO-SLAM (right) on the
fr3/walking_xyz sequence

Table 3: The experiment results on the TUM dataset (RMSE of ATE) (unit: m)

Sequence DynaSLAM DS-SLAM ORB-SLAM2 RO-SLAM

fr3/walking_halfsphere 0.0250 0.0222 0.3510 0.0210
fr3/walking_xyz 0.0150 0.0151 0.4590 0.0146
fr3/walking_rpy 0.0400 0.2835 0.6620 0.1300
fr3/walking_static 0.0090 0.0067 0.0900 0.0090
fr3/sitting_halfsphere 0.0170 - 0.0200 0.0160
fr3/sitting_xyz 0.0140 - 0.0090 0.0090

It can be concluded from Table 3 that RO-SLAM has a better performance improvement than
DynaSLAM and DS-SLAM on the fr3/walking_halfsphere and fr3/walking_xyz sequences, and
the absolute trajectory errors are 0.0210 and 0.0146, respectively. However, the precision of the
fr3/walking_rpy sequence is lower than that of DynaSLAM. The reason may be that the method in
this paper is not sensitive to low-angle rotation.

4.2 Semantic Segmentation Accuracy
The improved PSPNet is built using the Pytorch1.5.1 framework, and the network is randomly

initialized under the default settings of PyTorch. The model training in this paper is performed on an
NVIDIA Tesla V100-FHHL-16 GB. The improved PSPNet is trained using the standard Cityscapes
dataset [28], the dataset is divided into 2957:500:1525 (training: verification: testing), the optimization
function uses Adam, the learning rate is 0.01, and the training is 100 epochs. The visualization result
of the model training convergence process is shown in Fig. 5.

And we compared the proposed method with other classic methods on the Cityscapes dataset.
These classic methods are often used in SLAM. Table 4 displays the results obtained from our
experiments.
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Figure 5: Model training convergence

Table 4: Semantic segmentation on the cityscapes dataset

Method IoU

SegNet [15] 0.570
FCN [29] 0.653
DPN [30] 0.668
DeepLab [13] 0.704
PSPNet [7] 0.784
Improved PSPNet 0.812

Our experimental results indicate that the proposed method outperforms other classic methods.
The proposed method performed better than PSPNet and improved the IoU by 2.8 points. In the
actual scene, the segmentation outcomes of PSPNet and our proposed method are presented in Fig. 6.

Figure 6: The results of semantic segmentation in actual scene
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It can be seen that PSPNet has made false detections on the upper part of the person and has
missed detections on the left tree trunk and electric lights. The proposed method is relatively regular
in scene segmentation, with no false or missed detections.

4.3 Map Building in Real Environment and Efficiency Analysis
We experimented in a real environment, and the test scene is a straight road with pedestrians and

cars. The DJI Matrices 600, a heavily loaded hexacopter UAV, is chosen as the aerial platform of this
study. The flying height of the UVA is 3.5 meters, and the flying distance is 50 meters. The UAV’s
flying trajectory is a straight line of the south to north. And the UAV has a flying speed of 1 meter
per second. Suppose the UAV follows a path that is too fast or too irregular. In that case, it may result
in blurry or distorted images, making it difficult to accurately detect and classify objects or features
in the scene. We implemented our system using C++, which was executed on a computer running
the Ubuntu 16.04 operating system. The computer was equipped with Intel i7-8750H@2.20 GHz and
16 GB of memory. The graphic card is NVIDIA GTX1060-6 GB. And we used Intel Realsense D455
as the experiment depth camera to capture a video. The The videos comprise of components for RGB
and depth. Each frame has a size of 640 pixels width by 480 pixels height. The camera and computer
employ a USB Type-C data cable to communicate data. Fig. 7 presents the system diagram of the
software and hardware configuration in this experiment.

Figure 7: System diagram of the experiment

The point cloud map constructed in the real environment is shown in Fig. 8. It can be seen from
Fig. 8B that dynamic objects will be retained in the map without dynamic object removal. Fig. 8C
shows the holes caused by dynamic object removal. It can be seen from Figs. 8D and 8E that the point
cloud map constructed by the proposed system is clear and not affected by dynamic objects. Through
the static scene restore module, the map holes caused by dynamic removal are filled, almost consistent
with the actual situation.

To evaluate the computation time, we compare the proposed method with DynaSLAM. We
conducted a total of ten trials for the experiments and computed the average time taken per frame,
which is presented in Table 5.
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(A) The original RGB image and Depth image

(B) Map without dynamic removal  

(C) Map without static scene restore 

(D) Front view of cloud point map constructed by RO-SLAM 

Figure 8: (Continued)
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(E) Top view of cloud point map constructed by RO-SLAM 

Figure 8: Point cloud map of a real environment

Table 5: Average time expense (unit: ms)

Method Time

Dyna-SLAM with Mask RCNN 235.98
Dyna-SLAM with PSPNet 198.42
RO-SLAM with improved PSPNet 137.96

The results show that RO-SLAM is faster than Dyna-SLAM.

5 Conclusion

In this paper, we proposed an innovative algorithm for visual SLAM called RO-SLAM. And the
algorithm is designed for UAVs operating in dynamic outdoor environments. We have implemented
this algorithm using the ORB-SLAM2 framework. And the proposed algorithm can handle intricate
and dynamic environments. Our algorithm leveraged the improved PSPNet’s semantic segmentation
results to eliminate dynamic feature points from original feature points and construct an auxiliary
descriptor. By eliminating the feature points of dynamic objects, the proposed algorithm improved the
precision of camera pose estimation. Additionally, we proposed a new static sense restore method
based on GANs, which addresses the shortcomings of traditional geometry-based methods. We
performed extensive experiments on the TUM dataset to validate the effectiveness of our algorithm
in dealing with highly dynamic environments and compared it with other existing algorithms. Our
results showed significant improvements in performance. Additionally, we collected data using UAV
in a real outdoor environment to verify RO-SLAM’s ability of map construction. Through the static
scene restore module, we were able to fill the map hole caused by dynamic removal, and successfully
construct precision maps finally. In future work, we aim to investigate how machine learning-based
schemes can be leveraged for data communication in SLAM.
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