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Abstract: Neurodegeneration is the gradual deterioration and eventual death
of brain cells, leading to progressive loss of structure and function of neu-
rons in the brain and nervous system. Neurodegenerative disorders, such as
Alzheimer’s, Huntington’s, Parkinson’s, amyotrophic lateral sclerosis, multiple
system atrophy, and multiple sclerosis, are characterized by progressive dete-
rioration of brain function, resulting in symptoms such as memory impair-
ment, movement difficulties, and cognitive decline. Early diagnosis of these
conditions is crucial to slowing down cell degeneration and reducing the
severity of the diseases. Magnetic resonance imaging (MRI) is widely used by
neurologists for diagnosing brain abnormalities. The majority of the research
in this field focuses on processing the 2D images extracted from the 3D MRI
volumetric scans for disease diagnosis. This might result in losing the volumet-
ric information obtained from the whole brain MRI. To address this problem,
a novel 3D-CNN architecture with an attention mechanism is proposed to
classify whole-brain MRI images for Alzheimer’s disease (AD) detection. The
3D-CNN model uses channel and spatial attention mechanisms to extract
relevant features and improve accuracy in identifying brain dysfunctions by
focusing on specific regions of the brain. The pipeline takes pre-processed
MRI volumetric scans as input, and the 3D-CNN model leverages both chan-
nel and spatial attention mechanisms to extract precise feature representations
of the input MRI volume for accurate classification. The present study utilizes
the publicly available Alzheimer’s disease Neuroimaging Initiative (ADNI)
dataset, which has three image classes: Mild Cognitive Impairment (MCI),
Cognitive Normal (CN), and AD affected. The proposed approach achieves
an overall accuracy of 79% when classifying three classes and an average
accuracy of 87% when identifying AD and the other two classes. The findings
reveal that 3D-CNN models with an attention mechanism exhibit significantly
higher classification performance compared to other models, highlighting
the potential of deep learning algorithms to aid in the early detection and
prediction of AD.
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1 Introduction

Neurodegenerative disorders encompass a wide variety of ailments characterized by the pro-
gressive degeneration of neurons and connections within the nervous system that underpins motor,
balance, strength, perceptual, and cognitive functions. Neurodegeneration occurs at various levels.
The disease advances from its initial Cognitive Normal (CN) stage to seriously advanced stages over
time. A stage of complete brain cell death is reached gradually. Since the changes are irreversible, they
are considered to be incurable. Hence, early detection can delay the degeneration of the cells and reduce
the severity of the disease.

Alzheimer’s disease (AD) is the most prevalent disorder in the neurodegenerative class of diseases.
It refers to a broad range of symptoms and manifestations rather than a specific disease that causes
memory loss or other cognitive impairments that interfere with daily life. The various neuro-cognitive
domains are complex attention, learning and memory, executive function, perceptual-motor, language,
and social cognition. In mild cognitive impairment (MCI) there is a modest cognitive decline in
one or more cognitive domains compared to the healthy state of the patient, and it will not affect
everyday activities. According to the World Alzheimer Report, one person contracts dementia every
three seconds, with 60% of these people suffering from AD. The estimated annual growth in patients
by 2050 is 152 million, and the cost of patient care will be 2 trillion per annum by 2030 [1].

An important biomarker for the progression of AD is brain atrophy. Atrophy starts even before
the appearance of amnestic symptoms [2]. Reduction in brain volume is an indicator of AD, which
is evident in MRI images. Brain volume shrinkage results from the accumulation of senile plaques
and neurofibrillary tangles throughout the brain. Functional and structural changes are visible in the
brain MRIs of AD patients. The three plane views of brain MRI scans of CN, patients with MCI,
and AD are shown in Fig. 1 for illustration. In the coronal view, there is visible atrophy (shrinkage)
of the hippocampus, which is a key memory-related brain structure. This atrophy can be seen in the
coronal view of the brain image of AD patients as a narrowing of the hippocampal region. In MCI,
the atrophy of the hippocampus is usually milder than in AD, but it can still be visible in the coronal
view. On the sagittal view, the temporal lobes frequently show atrophy, which may be visualized as a
shrinkage of the temporal lobe in patients who have AD, although in MCI instances, the atrophy is
generally less severe. In cases with AD, a decrease in the size of the parietal lobe is visible in the axial
view; however, in MCI patients, this loss is usually not as severe. As there is no known treatment for
AD, diagnosing it in its early stages is essential as it could delay abnormal brain atrophy.

Literature provides a substantial amount of research work on AD detection. Recent studies have
demonstrated that deep learning techniques can classify AD more accurately than traditional image
processing methods. The application of 2D CNNs in brain MRI images for AD diagnosis yields
promising results. Major state-of-the-art studies convert 3D MRI scans to 2D image slices and apply
2D CNNs on those images for the classification of AD. Hence, features of the whole brain volume are
not considered for analysis. In a 3D MRI scan, the relationship among 2D image slices is defined by
their position in the three-dimensional space of the scanned object. Each 2D image slice represents a
cross-sectional view of the object at a specific location along one of the three axes (x, y, or z). The images
are acquired in correct order, typically along the z-axis, resulting in a stack of 2D image slices that
together form a 3D volume. The spacing between the slices, known as the slice thickness, determines
the distance between adjacent slices along the z-axis. By combining the information from all the 2D
image slices, a 3D image of the object can be reconstructed, allowing for detailed visualization and
analysis of the internal structure of the scanned object. The relationship among the 2D image slices is
critical for the accurate interpretation of the 3D MRI scan and requires specialized software tools for
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image processing, analysis, and visualization. This research focuses on classifying AD using a novel
3D CNN framework.

Figure 1: The brain MRI scans of human subjects in three different viewing planes. (a) Cognitive
normal, (b) with AD, and (c) with MCI. The first column represents the coronal view, the second
column represents the sagittal view, and the third column represents the axial view of the MRI scans
of human subjects with and without brain disorders

3D CNNs are better suited to represent spatiotemporal information in comparison to 2D CNNs,
which can only capture spatial information. In the field of computer vision, 3D CNNs can efficiently
handle large volumes of data by learning both spatial and temporal features. 3D CNNs can process
data in real-time, making them suitable for real-time applications. Moreover, they have been shown
to generalize well to new data making them robust to variations in lighting, camera angle, and other
factors that can affect the input quality.

Spatial and channel attention mechanisms are also added to the proposed pipeline to enhance
the performance of the model. To the best of our knowledge, no study on AD classification using 3D
CNN incorporates both spatial and channel attention mechanisms. The major contributions of this
study are:

• A novel 3D CNN framework is designed for classifying AD, MCI, and CN.
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• Channel and spatial attention mechanisms are incorporated with the 3D framework, which
enhances the model performance.

• Three binary classifications: AD vs. CN, MCI vs. CN, AD vs. MCI, and a multi-class classifi-
cation, AD vs. MCI vs. CN are performed and the results are compared.

The paper is structured as follows: Section 2 provides an overview of the current state-of-the-
art methods for detecting Alzheimer’s disease in MRI images. In Section 3, the proposed approach
for classifying normal and diseased images using 3D CNN and attention mechanisms is described.
Section 4 contains information about the used data set for this study and the achieved results. A
comparison with state-of-the-art techniques and a discussion of the results are also provided in this
section. Section 5 concludes the paper by drawing conclusions.

2 Related Works

The automatic detection of Alzheimer’s disease (AD) is still a hot topic of study in the scientific
world. No research work has produced an outstanding result in AD prediction. Over the past decade,
the research on detecting AD has become more dependent on deep learning (DL) techniques [3–5].
Gupta et al. [6] used cross-domain features to represent the MRI data. In that work, neuroimaging
data is represented in natural image bases generated using a stacked autoencoder and then classified
using convolution into three categories: AD, MCI, and healthy control. Brosch et al. [7] used deep
belief networks (DBN) for learning features from complex three-dimensional brain images. DBNs are
considered to be computationally expensive when applied to three-dimensional images due to a large
number of trainable parameters. Liu et al. [8] used neuroimages acquired using different modalities
to develop a sparse autoencoder-based algorithm that learns features from MRI images for image
classification. This framework uses a zero-masking strategy for data fusion. Multiple deep 3D-CNN
models are constructed in the study presented in [9] to learn the local features needed to predict AD
in MRI images.

Li et al. [10] proposed a novel multipurpose DL framework for the classification of various levels
of AD using MRI and PET images. The pipeline consists of various components, namely multi-task
DL networks, principle component analysis, dropout, and stability selection. Shi et al. [11] proposed
an efficient DL pipeline using multimodal stacked deep polynomial networks for AD detection using
MRI and PET scan images. In [12], the problem of not having enough brain image data to train a
network was fixed using pre-trained weights from large benchmark datasets of natural images. Using
a novel 3D CNN approach, Yuan et al. [13] put forward a multi-center brain imaging classification
framework for AD staging analysis. Multiple convolutional layers were used to extract gradient
information in different directions, and spatial information at different scales was obtained through
a summing operation. Ahmed et al. [14] employed a patch-based technique in conjunction with an
ensemble of CNNs to learn MRI image features to differentiate healthy brains from diseased brains. In
[15], 3D MRI volumes were converted into corresponding 2D image slices, and a pre-trained 2D CNN
was used to classify image slices independently. Ebrahimi-Ghahnavieh et al. [16] proposed a ResNet-18
model utilizing transfer learning for AD detection. The framework uses the transfer of information
from two-dimensional to three-dimensional image data. In [17], a deep ensemble learning framework
using two sparse autoencoders was trained for feature learning to categorize normal and abnormal
brain images. Venugopalan et al. [18] utilized deep learning techniques to analyze multimodal imaging
data, namely MRI, genetic, and clinical test data for the classification of AD, MCI, and CN. MRI
features are extracted using 3D-CNNs, while genetic and clinical data use stacked denoising auto-
encoders for feature extraction. Zhang et al. in [19] presented a 3D residual self-attention network for
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AD classification. This network was able to capture local, global, and spatial features present in the
MRI volume.

Prajapati et al. in [20] developed a dense neural network for the binary classification of AD
and CN. To enhance the classifier’s accuracy, experiments were conducted using different activation
functions and evaluated their results using 5-fold cross-validation. Orouskhani et al. [21] introduced a
deep triplet network for brain MRI analysis and AD detection, using few-shot learning. To tackle the
problem of over-fitting and poor performance due to the limited image samples, deep metric learning
is employed in a deep triplet network with a conditional loss function, improving the accuracy of the
model. A novel approach has been proposed to enhance the accuracy of diagnosing and classifying AD
using a combination of MRI brain structural data and metabolite levels from the frontal and parietal
regions [22]. The method utilizes a stacked auto-encoder neural network to classify individuals as either
AD or healthy controls. 3D-CNN architecture composed of multiple convolutional layers, instance
normalization, rectified linear units (ReLUs), and max-pooling layers were designed for classifying
the cases of AD, MCI, and NC in [23].

A fair amount of research has also been reported on different methods of skull stripping, which
is an important step in the pre-processing of raw MRI images. Existing works on skull stripping
and the performance of different skull stripping (brain extraction) methods were surveyed in [24].
Schell et al. [25] introduced an artificial neural network-based algorithm for brain extraction called
HD-BET that has undergone extensive validation. HD-BET outperforms commonly used brain
extraction techniques. In the proposed work, this algorithm is used for brain extraction from raw
MRI images.

The literature review shows that 2D-CNNs were used in a good amount of research for AD
detection. The 2D image slices that are extracted from the 3D MRI data volume are used for
classification. The main drawback of this approach is that 2D CNNs cannot figure out the relationship
among 2D image slices in a 3D MRI scan. To fix this problem, a 3D CNN is deployed for detecting
Alzheimer’s disease from MRI scans.

3 Proposed Pipeline

The proposed framework is comprised of two major stages: the pre-processing of raw MRI volume
and the classification of pre-processed 3D data. During the pre-processing step, artifacts are removed,
and the data is put into a standard format through a series of filtering steps. The pre-processed 3D
MRI volume is then fed into a 3D CNN framework with attention mechanisms, which classifies the
degeneration levels of Alzheimer’s disease. The proposed work used a mixed attention mechanism
by combining channel and spatial attention [26] modules. Fig. 2 shows the schematic diagram of the
proposed approach.

3.1 Pre-Processing
The pre-processing of the raw images is the first step in every data-driven problem. The pre-

processing stage consists of various operations, including noise removal, artifact removal, image
enhancement, intensity normalization, skull stripping, image registration, and bias field correction.
When dealing with raw MRI data, skull stripping is the most important step in the pre-processing
stage. It takes out non-brain tissues such as the skull, dura, neck fat, and eyes from the brain MRI
while keeping the brain tissues intact. The performance of the succeeding stages is greatly influenced
by this process. The schematic diagram of the pre-processing stage is shown in Fig. 3.
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Figure 2: Schematic diagram of the proposed approach, where the input volumetric scans are pre-
processed and fed to the 3D CNN for classifying various stages of brain dysfunction

Figure 3: Schematic diagram of the pre-processing stages. (a) Filtered 3D input MRI scan, (b) repre-
sents the intermediate mask generated during skull stripping, (c) skull stripped output scan, (d) bias
field corrected scan, and (e) represents intensity normalization scan

The images in the data set underwent various filtering procedures before the skull stripping. The
data set contains scans obtained from the same person on the same day, which will result in redundant
data that are essentially identical to one another. So these images are manually removed from the data
set. The images included in the data set each have their unique image ID, subject ID, and the date of
their acquisition. These data provide the basis for the filtering that is done manually. All the images are
already pre-processed to some extent by the data set providers. The pre-processing of the scans was not
consistent since each image was acquired at a different time stamp and with a different piece of imaging
hardware. The unique image ID of each scan can be used to get a description of the pre-processing.

The primary filtering processes are followed by the removal of the tissues outside the meninges
from the brain MRI volume. For brain extraction, many dedicated tools are publicly available. For this
study, the skull stripping was done automatically using the HD-BET algorithm [25]. The algorithm
generates the brain mask (Fig. 3b) for each input scan and is applied to the corresponding image.
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Correction of the bias field is applied to the skull-stripped MRI scan. Due to the magnetic field
variations, MR images exhibit image intensity non-uniformities. The imperfections in the field coils
used in MRI systems and changes in magnetic susceptibility at the interfaces between anatomical tissue
and air contribute to the intensity non-uniformities. The magnetic susceptibility varies slowly spatially,
which is considered a signal gain change. This causes the white matter intensity to be the same as the
grey matter intensity in some regions of the image. Tissue classifiers assume that the image intensities
of tissues are uniform throughout the image, which is confounded by this problem. The present study
used Brainsuite [27] for the bias field correction.

This software generates a sequence of local estimates of the signal gain alterations and based on
this, the bias field corrector evaluates the region of the brain and estimates the corrected field.

In the next stage of pre-processing the bias field corrected MRI scans are intensity normalized for
getting unit variance and zero mean. The mean intensity is subtracted from the input intensity and the
result is divided by the standard deviation. The normalization process is defined as

�̃
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δα, δβ, δγ

) = �
(
δα, δβ, δγ

) − μ (�)

σ (�)
(1)

where �̃
(
δα, δβ, δγ

)
is normalized intensity, �

(
δα, δβ, δγ

)
is the input intensity, μ (�) is the mean intensity

and σ (�) is the standard deviation.

3.2 3D CNN Architecture
This work proposes a 3D CNN framework for identifying multiple classes that take the whole

image volume as input and uses both spatial and channel attention mechanisms. The block schematic
of the conceptual framework is shown in Fig. 4, which consists of two major building blocks, including
the 3D convolution block and the attention (spatial and channel) block. The CNN framework used has
five convolutional layers, five pooling layers, two fully connected layers, and a Softmax layer. The first
two convolutional layers each include 32 filters, the subsequent two layers each contain 64 filters, and
the final layer contains 128 filters. The 3D convolution applies a three-dimensional filter to capture
low-level feature representation, which is computed by the movement of the filter in all three directions.
Each filter is convolved with the whole volume of the input, which goes all the way to the full depth. The
proposed model uses filters of size 3 × 3 × 3 in the convolutional layers. The output of each convolution
produces a feature map assembled along the depth to constitute the output volume. There will be as
many feature maps as there are filters.

Each potential deep neural network architectural design shares the property that, as data moves
into deeper layers through the system, the spatial dimension reduces. Dimensionality reduction is
typically accomplished with max-pooling layers or by adjusting strides in convolutional layers. The
architecture of the proposed system uses a stride of one and padding of one. A convolution operation
with a stride size of one will produce output without losing much information. The reduced output size
after the convolution operation will cause data loss, which is especially noticeable in the border voxels.
To tackle this problem, zero padding is applied to the border voxels, which makes the analysis of the
image easier. Zero padding and stride are set equal to one so that the output of each convolutional
layer will have the same spatial size as the input volume. Rectified linear units (ReLU) are employed
as activation functions and incorporated batch normalization into each convolutional layer. The
computational complexity is reduced by incorporating a pooling operation that lowers the number
of learnable parameters. The features located in a specific region of the feature map generated by a
convolution layer are summarized by the pooling layer and are used for further processing. The study
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employs the max-pooling layers of dimension 2 × 2 × 2 voxel patches for dimensionality reduction.
The flattening layer follows the 3D convolution block, which reduces the four-dimensional space
to a single continuous linear vector. The output of the flattening layer is fed into a fully connected
layer or dense layer. Our architecture uses two fully connected layers with 512 and 256 neurons,
respectively. The output layer or Softmax layer is the final layer. The probabilities of the predicted
classes are calculated using the Softmax activation function, and the class with the highest probability
is considered to be the output. Table 1 provides the complete picture of the various components present
in the proposed architecture.

Figure 4: Model architecture showing various components of the proposed framework. The pre-
processed input volume is fed to a 3D CNN framework comprising five convolutional layers, five
pooling layers, two fully connected layers, and a Softmax layer. The feature map obtained from the 3D
CNN is passed through an attention network consisting of spatial and channel attention mechanisms
before it is fed to the final predicting stage

Table 1: 3D CNN model architecture showing dimensions at various stages of its workflow

Layer type Filter Filter size Output size Learnable parameters

Convolutional 32 3 × 3 × 3 64 × 64 × 64 × 32 896
Max pooling - 2 × 2 × 2 32 × 32 × 32 × 32 0
Convolutional 32 3 × 3 × 3 32 × 32 × 32 × 32 27680
Max pooling - 2 × 2 × 2 16 × 16 × 16 × 32 0

(Continued)
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Table 1 (continued)

Layer type Filter Filter size Output size Learnable parameters

Convolutional 64 3 × 3 × 3 16 × 16 × 16 × 64 55360
Max pooling - 2 × 2 × 2 8 × 8 × 8 × 64 0
Convolutional 64 3 × 3 × 3 8 × 8 × 8 × 64 110656
Max pooling - 2 × 2 × 2 4 × 4 × 4 × 64 0
Convolutional 128 3 × 3 × 3 4 × 4 × 4 × 128 221312
Max pooling - 2 × 2 × 2 2 × 2 × 2 × 128 0
Dropout - - 2 × 2 × 2 × 128 0
Channel attention - - 2 × 2 × 2 × 128 0
Spatial attention - - 2 × 2 × 2 × 128 0
Flatten - - 1024 0
Dense - - 512 524800
Dropout - - 256 0
Dense - - 2 131328
Output - - 514

Adam optimizer [28] is used to optimize the weights in the neural network layers for training the
proposed network. The weights of the CNN layers were initialized using HeUniform initializers, which
take samples from a uniform distribution. This initializer shows better performance when used along
with the ReLU activation function [29].

3.3 Attention Mechanism
The feature map obtained from the 3D CNN is passed through an attention network [26] to extract

a more accurate feature representation of the input MRI volume. The intention behind the inclusion
of the attention module is to select the top features from all the possible components of the input
vector [30]. The attention mechanism is a key component in modern deep-learning models for image
classification. It allows the model to selectively focus on relevant features and regions of the image,
while ignoring irrelevant or noisy information. This is particularly important in medical imaging,
where the images can be complex and contain many subtle details that are important for an accurate
diagnosis. In a typical CNN, the same weight filters are applied to all regions of an input image,
regardless of the content in each region. This means that the model may not pay enough attention
to certain regions that are more relevant for a particular task. The attention mechanism solves this
issue by allowing the model to focus dynamically on regions of the input image that are more relevant.

The proposed framework employs sequential channel and spatial attention modules, as shown
in Fig. 5. This arrangement pays attention to both the channel and spatial dimensions separately,
which improves the features of both dimensions. Thus the valuable features from both dimensions
are enhanced. The feature maps obtained after the channel (I ′

f ) and spatial (I ′′
f ) attention modules are

multiplied element-wise with the input feature map If to obtain the final refined feature map. The
overall output of the mixed attention mechanism can be represented as:
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I
′
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′
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where, Ach and Asp represent the feature maps obtained after the channel and spatial attention modules,
respectively, and ⊗ represents element-wise multiplication. The channel attention map generated by a
channel attention module analyses the inter-channel correlation between the features and concentrates
on “what” is the prominent feature included in the input volume. The information along the spatial
dimension aggregates to generate efficient channel of attention. Two spatial feature descriptors are
generated by average pooling and max pooling of the feature map as shown in Fig. 6. The feature
descriptors are then passed through a multi-layer perceptron (MLP), which makes the channel
attention map, Ach, represented as [26]:

Ach = S(MLP(AvgPool(If )) + (MLP(MaxPool(If ))) (4)

where, S is the sigmoid function

Figure 5: Attention block [26] consisting of channel and spatial attention modules, which are used to
refine the feature map of the input MRI volume obtained from the 3D CNN

Figure 6: Channel attention block

The output from the channel attention module is then applied to the spatial attention module to
investigate the inter-spatial relationship between the features. This attention mechanism concentrates
on “where” the valuable information is positioned. Here, channel-wise average pooling and max-
pooling are performed and combined to produce the feature descriptor. Then this descriptor is
subjected to passing through a convolutional layer to obtain the spatial attention map as shown in
Fig. 7. The spatial attention map Asp is represented as [26]:

Asp = S
(
F([AvgPool(I

′
f ); MaxPool(I

′
f )])

)
(5)
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where, S, F, and [.] denote a sigmoid function, convolution operation with a fixed dimension filter,
and concatenation operation of average pooled features and max-pooled features across the channel,
respectively.

Figure 7: Spatial attention block

4 Experiments

4.1 Data Set
The MRI volumetric scans used for this study are obtained from Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) data set [31]. The T1-weighted scans present in the data set are acquired using a
1.5 T MRI machine and comprised MRI scans from subjects with AD, MCI, and healthy cases. The
ADNI data set comes with a metadata file that contains demographic information and pre-processing
details for the included scans. The data providers have already applied various correction techniques to
the scans to improve their quality. These techniques include Gradwarp, B1 non-uniformity correction,
and N3 bias field correction.

One common issue with MRI scans is misinterpreted geometry due to problems with stochastic
gradient descent. To address this issue and improve the accuracy of longitudinal behavior response,
it is critical to correct for gradient non-linearity. This is accomplished using an automatic correction
mechanism called Gradwarp [32]. Another issue that can affect the quality of MRI scans is contrast
non-uniformities. B1 non-uniformity correction helps to address this problem by improving contrast
uniformity across the image. Finally, N3 bias field correction is used to reduce low-frequency
multiplicative noise in MRI images, which can otherwise obscure details and reduce image clarity.

Overall, the pre-processing steps applied to the scans in the ADNI dataset aim to minimize
common issues and improve the quality of the data for analysis and interpretation. A block schematic
showing various pre-processing stages performed by data set providers is shown in Fig. 8. The readers
can refer to [31] for more details regarding the data set. The pre-processed data serve as input for our
proposed system and the details of the user data are summarized in Table 2.

Figure 8: Stages of pre-processing introduced by ADNI. The MRI scans obtained from ADNI were
pre-processed to a certain extent by the data set providers



2108 CSSE, 2023, vol.47, no.2

Table 2: Summary and mean age statistics of subjects in ADNI (adni.loni.usc.edu) data set. The image
set consists of 1876 scans with a mean age of 76.23

Set Number of images Mean age of patients

CN 650 77.21
MCI 844 75.63
AD 382 75.81

Total 1876 76.23

4.2 Evaluation
The proposed model is evaluated based on Sensitivity (Se), Specificity (Sp), Precision (Pr), and

F-measure (F) metrics which are defined as:

Se = TP
TP + FN

(6)

Sp = TN
TN + FP

(7)

Pr = TP
TP + FP

(8)

F = 2
Pr · Se

Pr + Se
(9)

where TP, FP, TN, and FN denote the true positives, false positives, true negatives, and false negatives,
respectively. Four classifications are carried out using the ADNI data set, namely NC vs. AD, MCI
vs. CN, AD vs. MCI, and AD vs. MCI vs. CN. For the three binary classifications, a TP is counted
when a scan labeled with the disease is correctly classified, and an FN when it is miss-classified. Also,
TN is counted when an image of a healthy brain is perfectly predicted and FP when it is predicted as
diseased. In the case of AD vs. CN classification TP is calculated concerning AD predictions and TN
to CN predictions. Similarly, for the MCI vs. CN and AD vs. MCI classifications, TP is counted by
considering the correct classification of MCI and AD, respectively, and TN is counted by considering
the correct prediction of CN and MCI, respectively.

For the three-class classification (AD vs. MCI vs. CN), TP, TN, FP, and FN are calculated for each
class. The evaluation metrics are computed for each class independently and then the unweighted mean
is measured. In addition, the model performance of each binary classification is evaluated by plotting
the receiver operating characteristic (ROC) curve and computing its underlying area, termed Area
Under Curve (AUC). The overall performance of the proposed pipeline is also evaluated by assessing
its accuracy, which is defined as:

Accuracy = TP + TN
TP + TN + FP + FN

(10)

4.3 Model Training
For model training, the ADNI dataset is split into a train set containing 84% of the images and a

test set with 16% of the remaining data. The train set is again subdivided into a train and validation
set with 80% and 20% images, respectively. Since the data set has an imbalance in the number of scans

adni.loni.usc.edu
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for each class, data augmentation is carried out for the training data. The augmentation techniques
employed include random rotation, noise addition, and flipping. The augmentation process increases
the images of the AD, CN, and MCI classes by four, three, and two times, respectively. The batch size is
set to 16 and the learning rate is empirically fixed at 0.001. The input brain MRI volumes of dimension
256 × 256 × 166 pixels are resized to 64 × 64 × 64 pixels, which serves as input to the proposed system.

The experiments are conducted using a GPU of NVIDIA-SMI 460.32.03 with CUDA Version
11.2, keeping Keras as the backend, on top of the Python 3.6 environment. Time complexity is
approximately 2.1 GFlops. For training, the number of epochs is fixed at 100, and a dropout of
5% is incorporated to evade the problem of overfitting. Categorical cross-entropy loss function is
used to adjust the network weights. During forward propagation, the generated output indicates
confidence in the predicted labels, and these probabilities are compared with the true labels. During
backpropagation partial derivative of the loss function is calculated corresponding to each network
weight. Backpropagation iteratively adjusts the network weights to obtain a model with the least loss.
Fig. 9 summarizes the learning curves of the model, showing both the loss (top) and accuracy (bottom)
for the model on the train (blue) and validation (orange) data.

Figure 9: Loss and accuracy learning curves on the train and validation set for the proposed system
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4.4 Results
The results obtained for the proposed model employing 3D CNN are discussed in this section.

The filtered image volumes obtained from the ADNI data set are again passed through various pre-
processing stages, namely skull stripping, bias field correction, and intensity normalization. The two-
dimensional view of the result after each pre-processing phase is shown in Fig. 10. The final 3D scan
obtained after the various pre-processing stages is given as input to the proposed classification model.

Figure 10: Two-dimensional view of the results obtained for various pre-processing stages using brain
MRI scans as input. (a) Input image (b) skull stripped image (c) bias field corrected output, and
(d) image obtained after intensity normalization

Four different classifications were carried out using the proposed model. The binary classification
of AD vs. CN yielded an accuracy of 0.884 and a sensitivity of 0.82, corresponding to a maximum F1
score of 0.84. The AUC is obtained as 0.94. For a maximum F1 score of 0.86, an accuracy of 0.832 and
a sensitivity of 0.90 were achieved for the MCI vs. CN classification. The AUC is obtained as 0.90 in
this case. The accuracy and sensitivity achieved for the AD vs. MCI binary classification are 0.867 and
0.69, respectively, for a maximum F1 score of 0.76. The AUC is obtained as 0.92. For the three-class
classification, AD vs. MCI vs. CN the accuracy obtained is 0.79, and the sensitivity and F1 score of
the model are 0.78 and 0.79, respectively. The confusion matrix and ROC curves obtained are shown
in Figs. 11 and 12 and the complete results of the experiments are summarized in Table 3.

The results of the proposed model are examined and compared both with and without the
integration of an attention mechanism. The accuracy obtained for AD vs. MCI classification is almost
the same, and in all the other cases, the inclusion of an attention mechanism enhanced the proposed
model performance. The observations obtained are depicted in Table 4.
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Figure 11: The performance metrics obtained for the binary classifications performed using the ADNI
data set. For (a) AD vs. CN, (b) MCI vs. CN, and (c) AD vs. MCI classifications. The first row
represents the confusion matrices and the second row represents the ROC curves

Figure 12: Confusion matrix obtained for the three classes- AD vs. MCI vs. CN classification

Table 3: Results obtained for various classification experiments performed with the ADNI data set

Classification type Se Sp F-score Accuracy AUC

AD vs. CN 0.82 0.92 0.84 0.884 0.94
MCI vs. CN 0.90 0.74 0.86 0.832 0.91

(Continued)
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Table 3 (continued)

Classification type Se Sp F-score Accuracy AUC

AD vs. MCI 0.69 0.95 0.76 0.867 0.92
AD vs. MCI vs. CN 0.78 0.89 0.79 0.79 -

Table 4: Classification accuracy obtained for experiments performed with and without attention
mechanism using the proposed pipeline

Classification type Without Attention With Attention

AD vs. CN 0.854 0.884
MCI vs. CN 0.792 0.832
AD vs. MCI 0.862 0.897
AD vs. MCI vs. CN 0.756 0.79

5 Discussion

In the past decade, there has been a surge in research projects focusing on machine learning and
deep learning techniques. As a result, these methods have received increased attention in medical
image processing and other research. The majority of CNN research to date has focused on 2D
model construction and optimization, which are unquestionably crucial tasks for which they cannot
interpret the relationship among 2D image slices in the 3D MRI scans. To address this challenge, a
3D CNN pipeline was developed that utilizes channel and spatial attention mechanisms to improve
the classification results. The spatial and channel attention modules aggregate the most meaningful
features that contribute to the respective classes of disease. Model performance shows a direct
improvement with the addition of the attention module.

The results achieved using the proposed 3D CNN framework are compared with those obtained by
state-of-the-art techniques that are currently available in the literature. Table 5 displays the comparison
results obtained for the various methods that were considered. The proposed work uses segmented ROI
volumetric scans, which are smaller in size, making classification computationally less expensive. The
results obtained show that the three-class classification with attention is 4% more accurate than the
classification without attention. As seen in Table 5, the research works that attempt to classify different
stages of AD have ramped up, particularly in the last few years. The outcomes of these research works
are inconsistent, even though they use a variety of ML and DL approaches. It has been found that the
accuracy of the AD classification spans a broad range, from 58% [33] to 92% [34].

Compared to the results of other applications that use CNN, the accuracy of the AD classification
has yet to reach its maximum value, which demonstrates the scope of this research topic. The results
obtained using our proposed system are certainly not optimal for AD classification; nevertheless, when
all of the experimented tasks are considered, our pipeline has its benefits.
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Despite the major advances in MRI image processing, one of the most significant challenges
researchers face today is the lack of standard annotated data sets for checking developed algorithms.
Most of the research works published results with a limited amount of image data set [35,36]. A total
of 1876 brain MRI scans obtained from the ADNI data set were used for training and validation in
our study, which is a reasonable quantity compared to similar research works in the literature. The
performance of deep learning models improves with an increased amount of data and helps network
models to learn more representative and robust features of the underlying distribution, leading to
improved performance. In addition to that, the proposed method of using 3D-CNN with attention
mechanisms has contributed to performance improvement. Attention mechanisms are effective in
improving the performance of deep learning models by allowing the model to focus on the most
relevant features in the input data. Hence, it is not possible to definitively attribute the performance
improvement to either the increase in data volume or the designed framework; both factors likely
played a role in the improved performance of the proposed system.

The proposed CNN-based framework achieved an excellent area under the curve measures ≥ 0.91
for all the group classifications that are conducted on the ADNI data set. The performance metrics
obtained for the other parameters are also reasonably good but could be more optimal. The proposed
CNN framework employed is relatively simple and consists of only five convolutional layers, which
confirms the low complexity of the proposed pipeline. Several research papers have worked with
CNN models for combining multimodal imaging data, like MRI and Fluorodeoxyglucose (FDG)-
PET [34,37,38], or additional clinical data [39]. Future developments of the present work could also
include adding multimodal data to enhance the results.

The computerized analysis of brain MRI images for the automatic detection of certain patholo-
gies, such as AD, MCI, and NC, among others, is of wide interest to the image processing and artificial
intelligence research communities. The predictions made by deep learning methods are challenging to
comprehend, even though they achieve high outcomes and often surpass the performance of human
observers on a quantitative level. This makes it harder for such systems to be used in real diagnostic
situations, where a detailed explanation of the decisions has to be provided. As black-box models, it
is often hard to figure out why CNN fails or which image characteristics drive a particular network
choice. This chasm might potentially be bridged with the use of novel visualization methods such
as Layer-Wise Relevance Propagation [40,41] and deep Taylor decomposition [42]. To address this
concern, our future work aims to build relevance maps for model assessment. These maps will highlight
the areas of the brain that, according to CNN models, contributed the most to the decision-making
process. In a clinical setting, the combination of CNN and relevance map unquestionably provides
a potential technique for boosting the efficacy of CNN in categorizing MRIs of patients suspected
of having Alzheimer’s disease (AD). Clinicians can compare classification results to understandable
features provided in the relevance maps in clinically confusing scenarios, improving their ability to
assess classification findings.

6 Conclusion

The proposed work involves the formulation and design of an efficient 3D CNN framework for
the classification of Alzheimer’s disease using brain MRI data analysis. The proposed pipeline utilizes
a mixed attention mechanism for enhancing the results. Our model provides a technique for dealing
with 3D MRI scans by using a 3D convolutional neural network, in contrast to the majority of the
research studies, which concentrate on 2D image slices extracted from volumetric scans. The proposed
framework using channel attention could also be used for other medical image classification problems,
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as medical images are considered to have distinct responses across different channels. Even though the
findings achieved are encouraging, deploying such a system would need substantial testing before it
can be applied to real-life problems.
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