e . C ter Syste
& omputer Systems

Science and Engineering & Tech Science Press

DOI: 10.32604/csse.2023.039007 .
Article
Check for
updates

Chest Radiographs Based Pneumothorax Detection Using Federated Learning

Ahmad Almadhor'-“, Arfat Ahmad Khan’, Chitapong Wechtaisong™*, Iqra Yousaf”,
Natalia Kryvinska’, Usman Tariq° and Haithem Ben Chikha'

'Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University,
Sakaka, 72388, Saudi Arabia
?Department of Computer Science, College of Computing, Khon Kaen University, Khon Kaen, 40002, Thailand
3School of Telecommunication Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
“Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan
SInformation Systems Department, Faculty of Management, Comenius University in Bratislava, Odbojarov, Bratislava,
440, Slovakia

Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia
*Corresponding Authors: Ahmad Almadhor. Email: aaalmadhor@ju.edu.sa; Chitapong Wechtaisong.

Email: chitapong@g.sut.ac.th
Received: 07 January 2023; Accepted: 20 March 2023; Published: 28 July 2023

Abstract: Pneumothorax is a thoracic condition that occurs when a person’s
lungs collapse, causing air to enter the pleural cavity, the area close to the lungs
and chest wall. The most persistent disease, as well as one that necessitates
particular patient care and the privacy of their health records. The radiologists
find it challenging to diagnose pneumothorax due to the variations in images.
Deep learning-based techniques are commonly employed to solve image cat-
egorization and segmentation problems. However, it is challenging to employ
it in the medical field due to privacy issues and a lack of data. To address this
issue, a federated learning framework based on an Xception neural network
model is proposed in this research. The pneumothorax medical image dataset
is obtained from the Kaggle repository. Data preprocessing is performed on
the used dataset to convert unstructured data into structured information
to improve the model’s performance. Min-max normalization technique is
used to normalize the data, and the features are extracted from chest X-
ray images. Then dataset converts into two windows to make two clients for
local model training. Xception neural network model is trained on the dataset
individually and aggregates model updates from two clients on the server side.
To decrease the over-fitting effect, every client analyses the results three times.
Client 1 performed better in round 2 with a 79.0% accuracy, and client 2
performed better in round 2 with a 77.0% accuracy. The experimental result
shows the effectiveness of the federated learning-based technique on a deep
neural network, reaching a 79.28% accuracy while also providing privacy to
the patient’s data.
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1 Introduction

Pneumothorax appears to be a thoracic sickness disease that occurs when a person’s lungs collapse,
enabling air to flow into the pleural cavity, which is the region near the lungs and chest wall [1,2]. The
lungs collapse due to the air leak pushing against the lung’s outer wall. The lungs may partially or
entirely collapse in this circumstance [2-4]. Pneumothorax can happen as a result of a chest injury
that tears the lung’s surface, letting air become trapped in the pleural cavity, as a result of impact
lung conditions like pneumonia or chronic obstructive pulmonary disease, etc., or when the air in
the pleural cavity does not flee and expands [3,5]. A severe or extensive pneumothorax may become
deadly and result in shock, dyspnea, or other life-threatening symptoms. To eliminate the excess air,
a large pneumothorax is considered a significant anomaly [6]. It must be treated immediately with a
chest tube or needle. According to [7,8], 99.9 unexpected pneumothorax cases are for every 100,000
hospitalizations annually. According to Martinelli et al. [9], pneumothorax is being identified as one of
the crucial characteristics that aggravate the cases of COVID-19 and increase the hospitalization rate.

Chest radiography, which is quick and inexpensive to obtain, is frequently used in hospitals to test
for and diagnose pneumothorax. Radiologists, however, find it challenging to diagnose pneumothorax
using chest X-rays because images may have superimposed formations [10]. Patterns of different
thoracic disorders have varying appearances, dimensions, and positions on chest X-ray images, and
patient poses might distort the image during the image recording [2]. For instance, the disease area is
primarily made up of extra air, which has poor contrast and is frequently obscured inside the X-ray
image by various thoracic components. Therefore, the competence of the treating radiologists is crucial
for the accurate diagnosis of pneumothorax [3]. Furthermore, prompt assessment of the obtained
images is essential for successful medication. The proper treatment and diagnosis of pneumothorax
are frequently delayed in clinical settings where there is a shortage of radiologists with the necessary
training, which can cause patients severe injury and even death. The computerized screening tool is
critically needed to help medical professionals diagnose and correctly identify pneumothorax [2,3].

Acrtificial intelligence-based computerized disease detection has become a hot research topic in
medical diagnosis over the past few years [1,11,12]. By reducing the number of errors made during the
image interpretation process, Al systems can improve the efficiency of every disease detection method
[13]. For image categorization and segmentation issues, deep learning-based methods are frequently
used. These methods already have tremendous success in the fields of comprehending natural scene
images [14,15], medical image processing [10,17], and imagery from remote sensing analysis [18].
To correctly diagnose diseases, seasoned radiologists must carefully alter image display parameters,
including window width, level, and intensity. Chest X-rays, unlike raw images, have a low resolution
and little contrast, making them particularly difficult to evaluate. Additionally, because of these unique
qualities, it is particularly challenging to automatically detect and segment lesions from chest X-ray
images [3]. Data mining, machine learning, and deep learning are employed in the information era to
turn data into knowledge for the early diagnosis of diseases [19,20]. Lack of data, however, makes it
challenging to use artificial intelligence models in the medical world due to privacy concerns [21,22].
Private data cannot be guaranteed to be secure using machine learning algorithms since it is so simple
for attackers to steal or change information, whether on purpose or accidentally [23].

Federated learning (FL), which protects data privacy, was created to deal with these issues because
previous techniques are not considering this. Artificial Intelligent systems can learn about individual
data through federated learning without compromising privacy [24—27]. By keeping their data private,
end devices can take part in learning and disseminating the prediction model while disclosing their
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information. Currently, researchers are focusing on using federated learning with health records. The
study’s main contributions are given below:

e This research proposes an approach that detects, and diagnoses pneumothorax disease based
on federated learning using the pneumothorax (Chest X-ray) images data.

e The in-depth features are extracted from Chest X-ray images using the Xception model while
normalizing the data using the min-max normalization technique.

e The proposed model trains the local model first and sends the model’s parameters to the global
model. Then the global model aggregates the updated parameters and trains the process by
ensuring the privacy of each client’s data.

e The experiment shows that the federated learning model based on an Xception neural network
model improves accuracy for pneumothorax disease by 79.28% compared to conventional
methods and offers client data protection.

The paper is organized into the following sections: Section 2 discusses the related work of machine
learning, deep learning, and federated learning techniques for diagnosing pneumothorax disease. The
proposed framework, which covers dataset selection, data preprocessing, feature extraction, and model
architecture, is described in Section 3. Section 4 explains the results, and Section 5 presents the work’s
conclusion and recommendations for future research.

2 Literature Review

This section provides the history of Pneumothorax disease using machine learning and deep
learning techniques. The background of the healthcare devices using federated learning is also
provided.

2.1 Machine and Deep Learning Techniques

Machine learning has been used for various healthcare applications such as tumor detection,
activity recognition, health assessment, dementia detection, and many others [28-33]. Authors in
this research [34] verify a machine learning model developed on an open-source dataset and then
optimize it for chest X-rays of patients with significant pneumothorax. The research is in the form of
a retrospective. Pneumothorax cases and all the other cases (non-Pneumothorax) are separated from
the open-source chest X-ray dataset, providing 41,946 non-Pneumothorax and 4696 Pneumothorax
cases for the training set and 11,120 non-Pneumothorax and 541 Pneumothorax cases for the testing
set. The construction of a restricted supervision machine learning model included localized and un-
localized pathologies. Then, from 2013 to 2017, cases from the healthcare system of the institutions are
analyzed. The training set included 682 non-pneumothorax instances and 159 pneumothorax records.
The validation set included 48 pneumothorax instances and 1287 non-pneumothorax records. The
proposed model performed well on the open-source dataset with 0.90% AUC.

The author proposed the automatic method used for image multi-scale intensity texture analysis
and segmentation in this research [35]. Support Vector Machine (SVM) is used first to detect frequent
pneumothorax. Utilizing the Local Binary Pattern (LBP), features are retrieved from lung images.
The SVM is utilized to classify pneumothorax. Then next, the proposed automatic pneumothorax
detection approach utilizes multi-scale intensity texture segmentation to separate aberrant lung regions
from backgrounds and noise in chest pictures. For texture transformation from calculating numerous
overlapping blocks, anomalous regions are segmented. Using the technique of Sobel edge detection,
the rib margins are located. The ribbed border is filled between the abnormal sections to obtain an
entire disease region. The proposed approach obtained 85.8% highest accuracy with five by five patch
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size. They have labeled and evaluated a massive dataset of chest radiographs to encourage innovation
in this field. They looked into the value of utilizing AI models to produce comments for review because
labeling images is difficult and time-consuming. This research’s authors proposed a machine learning
annotation (MLA) approach to quicken the annotation procedure and apply sensitivity and specificity
as evaluation measurements [36].

Deep learning has been utilized recently to analyze clinical data across several sectors [37,38], and
it excels in tasks like image segmentation and recognition [39—41]. The author of [2] presents the Deep
Neural Network (DNN) model to detect pneumothorax regions in chest X-ray images. The model
uses transfer learning and a Mask Regional Convolutional Neural Network (Mask RCNN) structure,
with ResNet101 serving as the Feature Pyramid Network (FPN). The proposed model is developed
using a pneumothorax dataset created by the American College of Radiology and Society for Imaging
Informatics in Medicine (SIIM-ACR).

A deep-learning-based Al model is proposed in [1] and is used as a treatment method created by
skilled thoracic surgeons to predict the amount of pneumothorax visible on a chest radiograph. U-net
carries out semantic separation and categorization of pneumothorax and non-pneumothorax regions.
Chest computed tomography (standard of gold and ratio of volume) and chest radiography (accurate
labels and ratio of area) are being used to measure the quantity of pneumothorax, and the artificial
intelligence model is being used to calculate it (label prediction and ratio of area). Based on clinical
results, each value is compared and examined. The research examined 96 patients, 67 of whom made up
the training set and the remaining patients the test set. The artificial intelligence model demonstrated
a 61.8% dice similarity coefficient, a 69.2% sensitivity, a 99.1% negative predictive value, and 97.8%
accuracy. A pneumothorax detection methodology was proposed to examine the capability of transfer
learning (TL). For this study, the CheXpert dataset was chosen. The trained model CheXNet was
applied to initialize the model weights in the 122-layer deep neural network (DNN). Just 13911 of
the 94,948 CXRs used to train the model (out of 94,948) corresponded to the pneumothorax class.
They used the weighted binary cross-entropy loss function to resolve this class-imbalance issue. The
framework demonstrated an AUC of 70.8% when tested on a batch of 7 pneumothorax images and
195 normal CXR [42].

The author [43] recommends a feature-based neural network for pneumothorax diagnosis com-
bining lateral X-ray and frontal data. There are two inputs and three outputs in this network. The
frontal and lateral chest X-ray images serve as the two inputs. The three outputs are the frontal
chest X-ray image classification outcomes, the lateral chest X-ray image classification results, and
the classification performance incorporating the properties of the lateral chest and fused frontal X-
ray images. The proposed technique incorporates the residual block to address the pneumothorax
recognition model’s vanishing gradient issue. The work uses channel attention strategies to enhance the
model’s performance due to the vast number of channels in the system. The proposed model yields the
best results compared to other methods, with an area under the curve score of 0.979. A deep learning-
based method was presented to segregate the pathologic region autonomously. These attention masks
provided a rough estimate of the area of pathology after training an image-level classifier that not
only predicted the class of the CXR pictures but also generated the attention masks. The segmentation
model was developed with some images with good pixel-level annotations and the sparsely annotated
masks produced by the image-level classifier. Spatial label smoothing regularisation (SLSR) was used
to fix several problems in these masks. The ResNet101 model was used to classify images at the image
level, while the Guided Attention Inference Network created masks with weak annotations (GAIN).
Three distinct types of architectures, including U-Net, LinkNet, and Tiramisu (FCDenseNet67), were
tested while maintaining an input resolution of 256 % 256 for segmentation purposes. The experimental
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data, which included 5400 CXRS, including 3400 pneumothorax instances and 2000 normal CXRs,
was gathered from a Chinese Hospital. The dataset was uniformly and randomly split into training
and testing sets, with 4000 CXRS in the training set and 1400 CXRS in the test set. The model’s
performance was assessed using a test set, and the Intersection over Union (IoU) score was reported
as 66.69% [44].

2.2 Pneumothorax Detection Privacy

The author of this study describes non-invasive sensing-based diagnostics of pneumonia disease
that maintain security while utilizing a deep learning model to make the procedure non-invasive [45].
The proposed approach is split into two parts. The first part uses the proposed approach based on a
chaotic CNN to encode primary data in the shape of images. Additionally, numerous chaotic maps
are combined to construct a random number generator. The resulting random series is then used for
pixel permutation and replacement. The second part of the proposed approach proposes a unique DL
method for diagnosing pneumonia employing X-ray images as a dataset. Machine learning classifiers
such as RF, DT, SVM, and NB are also applied to compare the proposed approach CNN model. The
CNN-based proposed technique achieved good performance at 97% compared to ML techniques.

2.3 Federated Learning Techniques

The authors in [46] present a Federated Edge Aggregator (FEA) system with Distributed Pro-
tection (DP) using IoT technologies. This study’s performance of the suggested technique from a
healthcare perspective is demonstrated using data from the MNIST database, CIFAR10, and the
COVID-19 dataset. An iteration-based converged Convolutional Neural Network (CNN) algorithm
at the Edge Layer (EL) is presented to balance the privacy protection provided by federated learning
with algorithm performance throughout an IoT network. After a predetermined number of iterations,
the results outperform other baseline methodologies, showing a 90% best accuracy. Furthermore, the
suggested strategy more rapidly and successfully satisfies the privacy and security notion. An edge-
assisted framework using federated learning is suggested in [47] for training local models using data
generated by nearby healthcare IoT devices while protecting user data privacy and utilizing the least
resources. The suggested framework consists of three modules: cloud, edge, and application. A three-
part edge module will download the initial trained model from the cloud module after it has been
transmitted there. The federated learning server will determine the edge device’s eligibility and the local
storage controller’s local data. The cloud modules aggregated and controller components will notify
the owner of the updated global model after model training using an edge device. The application
module is in charge of producing data and assembling medical equipment. The architecture currently
used for disease monitoring, tracking, and prevention has some limitations, like assaults.

Wearable sensors/devices are becoming well known for health monitoring and activities, including
heart rate monitoring, medication timing, pulse rate monitoring, sleep, walking, etc., with the rise of
IoT technology [48—54]. Without preserving the privacy of the data, machine learning models continue
to enhance the functionality of such devices. To solve this problem, a Fed Health framework is put
out [55]. Fed Health employs federated learning for data gathering and transfer learning for model
construction. While maintaining data privacy, Fed Health’s accuracy increased by 5.3% compared
to other models. This article analyses various FL approaches and proposes a real-time distributed
networking framework based on the Message Queuing Telemetry Transport (MQTT) protocol. They
specifically design various ML network strategies based on FL tools utilizing a parameter server (PS)
and completely decentralized paradigms propelled by consensus techniques. The suggested method is
validated in brain tumor segmentation, employing a refined version of the well-known U-NET model
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and realistic clinical datasets gathered from everyday clinical practice. Several physically independent
computers spread across several nations and connected over the Internet are used to execute the FL.
procedure. The real-time test bed is employed to quantify the trade-offs between training accuracy
and latency and to emphasize the crucial operational factors that influence effectiveness in actual
implementations [56]. Another research used a federated learning framework in which authors propose
a decentralized SDN controller to operate as an agent, provide a softwarization mechanism, and
communicate with the virtualization based EFL environment [57]. Adopting the architecture, the agent
controller and the orchestrator enable a centralized perspective for deploying virtual network services
with effective virtual machine mapping to carry out edge modification processes and effectively build
the forwarding path. The proposed agent valuation and reward output are the foundations for the
proposed NFVeEC for local-EFL upgrades.

In conclusion, many machine and deep learning methods have been investigated to develop
pneumothorax disease prediction methods. However, they are limited in performance, which is
mentioned in Table 1. They also did not offer reassuring evidence of improved accuracy and did not
prioritize data protection. To preserve data privacy that ML and DL models do not account for, we
proposed a federated learning framework in this study that is built. The federated learning research
that was previously mentioned centered on resolving various healthcare challenges [47,48,55].

Table 1: Literature review

Author Techniques Dataset Limitation

Filice et al. [36] Machine learning annotations NIH chest X-ray dataset Low performance

Maziad et al. [37] Deep transfer learning Chest X-ray Limited accuracy

Kim et al. [1] Deep-learning based Al Chest radiograph Low sensitivity
model

Dey [39] Supervised segmentation Chest X-ray Low performance
framework

3 Proposed Framework

This section explains the concepts of federated learning, data preprocessing, and model architec-
ture as they are essential to the proposed framework. The experiment of the proposed methodology
is carried out on the pycharm IDE, and python language is used. In the proposed federated learning
framework, the local model of each client is trained before receiving the model parameters for the
global model. After aggregating the new parameter, the training process is initiated using the global
model, which guarantees the privacy of the client’s data.

Fig. 1 shows the steps performed in the proposed framework. The first step is to obtain a
pneumothorax (Chest X-ray) image dataset from the Kaggle repository. The second step performs
data preprocessing by extracting the in-depth features using Xception neural network model and nor-
malizing the data into the range [0, 1] using the min-max normalization technique. The preprocessed
dataset is divided into two panes for two clients in the last step. The preprocessed dataset is then used
to train the local model using a deep neural network. Results from both clients are combined and
updated in the global model.
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Figure 1: Proposed federated learning framework

According to the target application, the cloud-based federated learning server analyses essential
data types and trains hyper-parameters, including learning rate, number of epochs, activation function,
and Adam optimizer [58,59]. The federated learning model involves three essential steps. The first
stage is initializing training [60]. Additionally, the federated learning server first develops a global
model [61,62]. The Xception neural network model has specified client specifications and multiple
hyper-parameters. It is worth noting that the federated learning server chooses the model’s epoch and
learning rate.

The Xception neural network model needs to be trained at the second level. Every client begins
by collecting new information and updating the local model’s (M?,) parameter, which relies on the
global model (G*,), where y is the index for the subsequent iteration. Every client searches for the ideal
scenario to reduce the loss. Finally, periodically submit the updated settings to the federated learning
server. The third level is the integration of the global model. Deliver the updated parameters to every
client after combining the results from multiple clients on the server side. The federated learning server
uses Eq. (1) to focus on decreasing the global mean loss function.

Loss (G') = % Z:ﬂ Loss (M) (M

In Algorithm 1, the Ds denoted the dataset split into two parts after preprocessing for two clients.
Then extract the features fe by using the Xception model. At the server side in the algorithm, initialize
the model weight w0. which is expressed as w0. The algorithm will run for a specific amount of rounds.
ti denotes the current round of the model, and T is the total round of the local model. The number
of clients in each round is decided ci is the current client, and C is the total number of clients. A
local model upgrade receives the current weight as input and delivers the new weight value. The server
learning rate is multiplied by the received updates and added together to get the new weight value. On
the Client side, data is split into two windows. The weights should be modified for every client after a set
number of local epochs and batch size. Update the local model by calculating the loss function Fi(w).
The procedure is repeated until the requisite accuracy is attained or the loss function is constantly
minimized. Table 2 represents all the symbols used in the proposed framework.
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Table 2: Description of the symbols

Symbols

Symbols description

(M)
(G*)
2

D,
fe

Wo

Zl‘mrm

Local model
Global model
Summation
Dataset

Feature extraction
Model weight
Model current round
Total rounds
Current client
Total clients

Loss function
Epochs size

Batch size
Normalization

3.1 Experimental Dataset

CSSE, 2023, vol.47, no.2

This research uses the pneumothorax medical image dataset from the Kaggle repository. The small

pneumothorax dataset consists of 2027 medical images of lungs collected by the radiologist during
the chest X-ray of patients. Pneumothorax small dataset (2027 images) used for binary classification
task either Pneumothorax or not. The total training data is 2027. Fig. 2 represents the samples of the
Pneumothorax dataset in the form of chest X-ray images. The dataset is divided into two dormers
because this study works with two clients, each with its data. The dataset was split into training and
testing data, with 75% data for training models and 25% for testing the models.

Algorithm 1: Federated Learning Framework

1: Dataset D, (Pneumothorax/Chest X-ray image)

2: Feature extraction f, (Xception model)

3: function global model upgrade

4:
5:
6:
7
8:

9: function local model upgrade (ci, w,)

10:
11:
12:
13:

weight initialization w,
for (f;=1)to T do
for (ci=1) to Cdo

w1 =local model upgrade (c;, w,)

_N°¢ ci i
W“‘+1 _ZL’iZI w Ds * W ci+1

for (Epoch=1) to E, do
for (B, € BatchSize) do
w=w—vyF(w)

return w
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Figure 2: Samples of pneumothorax dataset (chest X-ray images)

3.2 Data Preprocessing

Data preprocessing in machine learning involves transforming unstructured data into a format
used to develop and improve machine learning models. Data preprocessing is the first step in machine
learning before creating a model. Data preprocessing is a vital process that raises data reliability
to extract valuable information. Actual data is typically inconsistent, erroneous (contains errors or
outliers), partial, and lacking specific attribute values or trends. Data preprocessing is crucial because
it makes it simpler to arrange, filter, and raw format data for machine learning models to use. The min-
max normalization technique is used for data preprocessing. The min-max scaling for normalizing the
features is used to structure the low variance and ambiguous dataset and maintain the data integrity.
The input attributes scaling is essential for a specific model that depends on the magnitude of values.
As a result, normalizing refers to the discrete range of real-valued numerical characteristics between 0
and 1. For data normalization, Eq. (2) is being used.
Lo = M )

Zyax = Lo

After Preprocessing, the dataset is divided into two parts: a training dataset and a testing dataset,
where 75% of the dataset is used to train the proposed model, and 25% is used as testing data to
evaluate the proposed model.

3.3 Feature Extraction

After preprocessing the data, the pneumothorax (chest X-ray) image dataset is trained. Features
are extracted that represent each pneumothorax. The Xception neural network model extracts the
significant features without any human help. The advantage of deep learning is that it decides how



1784 CSSE, 2023, vol.47, no.2

to use convolutional filters for extracting the features from the training dataset. We use the Xception
deep neural network model to classify pneumothorax types and extract the in-depth features.

3.4 Model Architecture

The Xception deep neural network model is used for pneumothorax prediction [63]. The neurons
and the number of layers are crucial when modeling the structure of neural networks. In a deep neural
network model, the size of the training set determines how many neurons are used as input and
output. An inception network is a deep neural network with a structure of recurring modules known as
inception components. The Xception model generally consists of three layers: an input layer, different
hidden layers (dropout, dense, etc.), and the output layer. This study uses a sequential Xception model
with one input layer. The shape of the input layer is 2048 with the relu activation function. The hidden
layer is the next: the hidden layer comprises one dropout layer and one dense layer. To prevent the
model from overfitting, dropout layers are being used. The value of the dropout layer is 0.3. The dense
layer comprises 2 units, and the activation function is sigmoid. The next is the output layer, which is
the fully connected layer used for binary classification problems. To address the binary classification
problem, every dense layer uses the activation functions relu along with a fully connected layer. The
Xception model has utilized Adam as an optimizer to calculate and reduce the loss; the Xception
model uses categorical cross-entropy.

4 Experimental Results and Analysis

The experimental results and an assessment of the suggested approach are presented in this
section. The study also explores the impacts of several methodology-proposed parameters. The
experiment is conducted on a pneumothorax medical image (chest X-ray) dataset from the Kaggle
repository. In the experiment, one server and two clients are engaged. The two clients use the chest
X-ray image dataset to train the Xception neural network model. The Xception neural network model
is trained using the pneumothorax (chest X-ray) image dataset and establishes the random weight.
The specifics of the Xception neural network model are given in the section on model architecture. We
initially collected 2027 chest X-ray images from Kaggle, and then we extracted the detailed features
that indicate whether a pneumothorax is present. The dataset is split into two portions: 25% is utilized
for model testing, and 75% is used for model training. All numbers are normalized using the min-
max normalization to fit into the range [0, 1]. The experiment employs a variety of evaluation criteria,
including recall, f1-score, precision, and accuracy. For loss prevention, the results for each client are
checked three times. The client’s results are aggregated at the server end. The label is transformed into
a machine-readable format using the label encoder approach. The accuracy of the Xception neural
network model is 79.28% following server-side aggregation.

4.1 Server-Based Training Using Log Data

The Xception neural network model is trained using data logged on servers. Two clients comprise
a federated learning system, with one serving as the primary parameter. At an introductory level of the
model training stage, the server selects which client or node is used and gathers any changes received.
Logs are anonymized and stripped of any personally identifiable details prior to training. After the
federated learning starts, there are three rounds. We set the number of rounds to 3 and evaluated the
tests three times after initializing some server-side parameters. The clients send the learning outcomes
to the server during the fit-round. In the assessment phase, both clients send the test results to the
server when the findings are aggregated. According to the server’s analysis of the data from N clients,
the pneumothorax neural network model has the maximum accuracy, scoring 79.28%.
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4.2 Federated Training and Testing Using Client 1

Client 1 conducts the experiment using a sequential Xception neural network model with two
dense and one dropout layer as hidden layers. The input shape of the input layer is 2048 with the relu
activation function. Adam optimizer calculates and reduces the loss; the Xception neural network
model uses categorical cross-entropy. Client 1 conducted the experiments three times and returned
the results in two rounds: the evaluation round and the fit round. The experiment is conducted on
Xception neural network model that runs three test rounds. The experiment uses different evaluation
metrics: precision, accuracy, f1-score, and recall in three rounds. Table 3 represents the experimental
results of client 1. The study runs the Xception neural network model for round 1, and the result
obtains in terms of accuracy, recall, precision, and F1-score. In the first round, the Xception neural
network model provides 77.0% accuracy, 82.0% precision, 77.0% recall, and 79.0% F1 score. Analyze
the results to prevent the model from overfitting once again. In round 2, the Xception neural network
model achieved an accuracy of 79.0%, a precision of 82.0%, a recall of 77.0%, and an Fl-score of
79.0%. In round 3 Xception neural network model obtained an accuracy of 77.0%, a precision of
80.0%, a recall of 80.0%, and an Fl-score of 80.0%. From client one, round 2 provides the highest
result.

Table 3: Proposed model result of client 1

Rounds Accuracy (%) Precision (%) Recall (%) F1-score (%)
Round 1 77.0 82.0 77.0 79.0
Round 2 79.0 82.0 77.0 79.0
Round 3 77.0 80.0 80.0 80.0

In Fig. 3, the highest result is visualized. In Fig. 3a, the graph represents the training and
validation accuracy, in which round 2 of client 1 obtained the highest validation accuracy than training
accuracy. The training accuracy curve is represented by a blue line, while an orange line represents the
validation accuracy curve. Training accuracy started from 0.0.82% at 0" and, after some fluctuation
between drops and gains, reaches 0.92% percent accuracy at the 14" epoch. Validation accuracy is
0.76% at 0" and, after some fluctuation between drops and gains, reaches 0.77% percent accuracy at
the 14" epoch. The graph in Fig. 3b shows the training and validation loss; in the training process,
the loss is reduced on each epoch, which increases the model’s performance. The loss curve in which
the blue line represents the training loss curve, and the orange line curve shows the validation loss.
Training loss initiated from 0.40% at 0" epoch and decreased to 0.20 at 14" epoch. Validation loss
initiated from 0.50% at 0" epoch and decreased to 0.45% at 14" epoch.

The graph in Fig. 3¢ indicates the Receiver Operating Characteristic (ROC). Two classes are
used in the experiment, and both received receiver operating characteristic (ROC) scores of 0.81%,
representing better performance on the used dataset for the proposed model. Better performance
is represented by the receiver operating characteristic (ROC) curves adjacent to the top-left corner.
The receiver operating characteristic (ROC) curves close to the top-left corner demonstrate better
performance. The confusion matrix for client one in the proposed methodology is graphically depicted
in Fig. 4a, which provides a broad idea of how a classification algorithm works. The proposed method
works better because it has more continuous, better valid positive and negative values and fewer false
positive and negative values.
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Figure 4: Representation of client 2 highest-scoring outcomes

4.3 Federated Training and Testing Using Client 2

The experiment is conducted on Xception neural network model that runs three test rounds. Client
2 conducts the experiment using a sequential Xception neural network model with two dense and one
dropout layer as hidden layers. The input shape of the input layer is 2048 with the relu activation
function. Adam optimizer calculates and reduces the loss; the Xception neural network model uses
categorical cross-entropy. Client 2 conducts the experiments three times and returns the results in the
evaluation and fit rounds. The experiment uses different evaluation metrics: precision, accuracy, f1-
score, and recall in three rounds.

Table 4 represents the experimental results of client 2. The study runs the Xception neural network
model for round 1, and the result obtains accuracy, precision, recall, and fl-score. In the first round,
the Xception neural network model provides an accuracy of 76.0%, 77.0% precision, 85.0% recall, and
81.0% F1-score. Analyze the results to prevent the model from overfitting once again. In round 2, the
Xception neural network model achieved an accuracy of 77.0%, 81.0% precision, 79.0% recall, and
80.0% F1-score. In round 3, we obtained an accuracy of 79.0%, 78.0% precision, 80.0% recall, and
79.0% F1-score. From client two, round 2 provides the highest result.

Table 5 demonstrate the comparison of proposed technique with previous technique that used to
predict pneumothorx. FFig. 4 visualized the highest result. The graph in Fig. 4a represents the training
and validation accuracy. The validation and training accuracy graph represent that round 2 of client 2
obtained the highest validation accuracy compared to training accuracy. The training accuracy curve
is represented by a blue line, while an orange line represents the validation accuracy curve. Training
accuracy started from 0.0.84% at 0” and, after some fluctuation between drops and gains, reaches
0.92% percent accuracy at the 12" epoch. Validation accuracy is 0.79% at the 0" and, after some
fluctuation between drops and gains, reaches 0.77% percent accuracy at the 12" epoch.
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Table 4: Proposed model result of client 2

Rounds Accuracy (%) Precision (%) Recall (%) Fl-score (%)
Round 1 76.0 77.0 85.0 81.0
Round 2 77.0 81.0 79.0 80.0
Round 3 76.0 78.0 80.0 79.0

Table 5: Comparison with previous approach

Author Techniques Dataset Performance
Filice et al. [30] Machine learning annotations NIH chest X-ray dataset Low performance
Maziad et al. [37]  Deep transfer learning Chest X-ray 70.08%

Dey [39] Supervised segementation framework Chest X-ray 66.69%

Our approach Xception based federated framework  Chest X-ray 79.28%

In Fig. 4b, the graph shows the training and validation loss; in the training process, the loss is
reduced on each epoch, which increases the model’s performance. The loss curve in which the blue
line represents the training loss curve, and the validation loss is shown by the orange line curve.
Training loss initiated from 0.37% at 0" epoch and decreased to 0.20 at 12 epoch. Validation loss
initiated from 0.41% at 0" epoch and increased to 0.44% at 12" epoch. The third graph indicates the
Receiver Operating Characteristic (ROC) in Fig. 4c. Two classes are used in the experiment, and both
received receiver operating characteristic (ROC) scores of 0.81%, representing better performance
on the used dataset for the proposed model. Better performance is represented by the receiver
operating characteristic (ROC) curves adjacent to the top-left corner. The ROC curve represents better
performance near the corner of the top-left. The confusion matrix for client two in the proposed
methodology is graphically depicted in Figs. 5a and 5b, which provides a broad idea of how a
classification algorithm works. The proposed method works better because it has more continuous,
better valid positive and negative values and fewer false positive and negative values.
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Figure 5: Confusion matrices for both clients using proposed methods
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5 Conclusion

This paper proposed a federated learning based Xception neural network model to detect and
diagnose pneumothorax disease. Two clients are used to train the Xception neural network model,
and the server end is combined with an accuracy of 79.28%. To lessen the over-fitting aspect, every
client reviewed the outcomes three times. The best result of round 2 of client one was obtained with a
79.0% accuracy, and client 2 of round 2 obtained the best result with a 77.0% accuracy. The Xception
neural network model’s ROC curve average of 81.0% demonstrates the suggested method’s excellent
performance on the tested dataset. The findings showed that federated learning accurately secures
the privacy of client data, but it is limited in accuracy. In further studies, we will apply different deep
learning models to improve the performance of the federated learning framework. According to a
system efficiency study, side training times and storage costs favor medical devices with constrained
resources. In the future, we plan to investigate this trend more thoroughly by training more systems
using various smartphone device combinations and expanding our research by applying new deep
learning algorithms with multiple datasets.
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